Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128           minushalf = _mm_set1_ps(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
82     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     invsqrta         = fr->invsqrta;
109     dvda             = fr->dvda;
110     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
111     gbtab            = fr->gbtab.data;
112     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129         shX              = shiftvec[i_shift_offset+XX];
130         shY              = shiftvec[i_shift_offset+YY];
131         shZ              = shiftvec[i_shift_offset+ZZ];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
143         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
144         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
145
146         fix0             = _mm_setzero_ps();
147         fiy0             = _mm_setzero_ps();
148         fiz0             = _mm_setzero_ps();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
152         isai0            = _mm_load1_ps(invsqrta+inr+0);
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_ps();
157         vgbsum           = _mm_setzero_ps();
158         vvdwsum          = _mm_setzero_ps();
159         dvdasum          = _mm_setzero_ps();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
190
191             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
195                                                               charge+jnrC+0,charge+jnrD+0);
196             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
197                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200             vdwjidx0C        = 2*vdwtype[jnrC+0];
201             vdwjidx0D        = 2*vdwtype[jnrD+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_ps(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_ps(iq0,jq0);
211             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,
213                                          vdwparam+vdwioffset0+vdwjidx0C,
214                                          vdwparam+vdwioffset0+vdwjidx0D,
215                                          &c6_00,&c12_00);
216
217             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
218             isaprod          = _mm_mul_ps(isai0,isaj0);
219             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
220             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
221             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
222
223             /* Calculate generalized born table index - this is a separate table from the normal one,
224              * but we use the same procedure by multiplying r with scale and truncating to integer.
225              */
226             rt               = _mm_mul_ps(r00,gbscale);
227             gbitab           = _mm_cvttps_epi32(rt);
228             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
229             gbitab           = _mm_slli_epi32(gbitab,2);
230
231             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
232             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
233             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
234             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
235             _MM_TRANSPOSE4_PS(Y,F,G,H);
236             Heps             = _mm_mul_ps(gbeps,H);
237             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
238             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
239             vgb              = _mm_mul_ps(gbqqfactor,VV);
240
241             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
242             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
243             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
244             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
245             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
246                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
247             velec            = _mm_mul_ps(qq00,rinv00);
248             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
254             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
256             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velecsum         = _mm_add_ps(velecsum,velec);
260             vgbsum           = _mm_add_ps(vgbsum,vgb);
261             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
262
263             fscal            = _mm_add_ps(felec,fvdw);
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm_mul_ps(fscal,dx00);
267             ty               = _mm_mul_ps(fscal,dy00);
268             tz               = _mm_mul_ps(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm_add_ps(fix0,tx);
272             fiy0             = _mm_add_ps(fiy0,ty);
273             fiz0             = _mm_add_ps(fiz0,tz);
274
275             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
276                                                    f+j_coord_offsetC,f+j_coord_offsetD,
277                                                    tx,ty,tz);
278
279             /* Inner loop uses 71 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             /* Get j neighbor index, and coordinate index */
286             jnrA             = jjnr[jidx];
287             jnrB             = jjnr[jidx+1];
288             jnrC             = jjnr[jidx+2];
289             jnrD             = jjnr[jidx+3];
290
291             /* Sign of each element will be negative for non-real atoms.
292              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
293              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
294              */
295             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
296             jnrA       = (jnrA>=0) ? jnrA : 0;
297             jnrB       = (jnrB>=0) ? jnrB : 0;
298             jnrC       = (jnrC>=0) ? jnrC : 0;
299             jnrD       = (jnrD>=0) ? jnrD : 0;
300
301             j_coord_offsetA  = DIM*jnrA;
302             j_coord_offsetB  = DIM*jnrB;
303             j_coord_offsetC  = DIM*jnrC;
304             j_coord_offsetD  = DIM*jnrD;
305
306             /* load j atom coordinates */
307             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
308                                               x+j_coord_offsetC,x+j_coord_offsetD,
309                                               &jx0,&jy0,&jz0);
310
311             /* Calculate displacement vector */
312             dx00             = _mm_sub_ps(ix0,jx0);
313             dy00             = _mm_sub_ps(iy0,jy0);
314             dz00             = _mm_sub_ps(iz0,jz0);
315
316             /* Calculate squared distance and things based on it */
317             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
318
319             rinv00           = gmx_mm_invsqrt_ps(rsq00);
320
321             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
322
323             /* Load parameters for j particles */
324             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
325                                                               charge+jnrC+0,charge+jnrD+0);
326             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
327                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
328             vdwjidx0A        = 2*vdwtype[jnrA+0];
329             vdwjidx0B        = 2*vdwtype[jnrB+0];
330             vdwjidx0C        = 2*vdwtype[jnrC+0];
331             vdwjidx0D        = 2*vdwtype[jnrD+0];
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r00              = _mm_mul_ps(rsq00,rinv00);
338             r00              = _mm_andnot_ps(dummy_mask,r00);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq00             = _mm_mul_ps(iq0,jq0);
342             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
343                                          vdwparam+vdwioffset0+vdwjidx0B,
344                                          vdwparam+vdwioffset0+vdwjidx0C,
345                                          vdwparam+vdwioffset0+vdwjidx0D,
346                                          &c6_00,&c12_00);
347
348             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
349             isaprod          = _mm_mul_ps(isai0,isaj0);
350             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
351             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
352             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
353
354             /* Calculate generalized born table index - this is a separate table from the normal one,
355              * but we use the same procedure by multiplying r with scale and truncating to integer.
356              */
357             rt               = _mm_mul_ps(r00,gbscale);
358             gbitab           = _mm_cvttps_epi32(rt);
359             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
360             gbitab           = _mm_slli_epi32(gbitab,2);
361
362             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
363             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
364             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
365             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
366             _MM_TRANSPOSE4_PS(Y,F,G,H);
367             Heps             = _mm_mul_ps(gbeps,H);
368             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
369             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
370             vgb              = _mm_mul_ps(gbqqfactor,VV);
371
372             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
373             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
374             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
375             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
376             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
377                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
378             velec            = _mm_mul_ps(qq00,rinv00);
379             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
380
381             /* LENNARD-JONES DISPERSION/REPULSION */
382
383             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
384             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
385             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
386             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
387             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm_andnot_ps(dummy_mask,velec);
391             velecsum         = _mm_add_ps(velecsum,velec);
392             vgb              = _mm_andnot_ps(dummy_mask,vgb);
393             vgbsum           = _mm_add_ps(vgbsum,vgb);
394             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
395             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
396
397             fscal            = _mm_add_ps(felec,fvdw);
398
399             fscal            = _mm_andnot_ps(dummy_mask,fscal);
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm_mul_ps(fscal,dx00);
403             ty               = _mm_mul_ps(fscal,dy00);
404             tz               = _mm_mul_ps(fscal,dz00);
405
406             /* Update vectorial force */
407             fix0             = _mm_add_ps(fix0,tx);
408             fiy0             = _mm_add_ps(fiy0,ty);
409             fiz0             = _mm_add_ps(fiz0,tz);
410
411             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
412                                                    f+j_coord_offsetC,f+j_coord_offsetD,
413                                                    tx,ty,tz);
414
415             /* Inner loop uses 72 flops */
416         }
417
418         /* End of innermost loop */
419
420         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
421                                               f+i_coord_offset,fshift+i_shift_offset);
422
423         ggid                        = gid[iidx];
424         /* Update potential energies */
425         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
426         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
427         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
428         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
429         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
430
431         /* Increment number of inner iterations */
432         inneriter                  += j_index_end - j_index_start;
433
434         /* Outer loop uses 13 flops */
435     }
436
437     /* Increment number of outer iterations */
438     outeriter        += nri;
439
440     /* Update outer/inner flops */
441
442     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*13 + inneriter*72);
443 }
444 /*
445  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
446  * Electrostatics interaction: GeneralizedBorn
447  * VdW interaction:            LennardJones
448  * Geometry:                   Particle-Particle
449  * Calculate force/pot:        Force
450  */
451 void
452 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
453                     (t_nblist * gmx_restrict                nlist,
454                      rvec * gmx_restrict                    xx,
455                      rvec * gmx_restrict                    ff,
456                      t_forcerec * gmx_restrict              fr,
457                      t_mdatoms * gmx_restrict               mdatoms,
458                      nb_kernel_data_t * gmx_restrict        kernel_data,
459                      t_nrnb * gmx_restrict                  nrnb)
460 {
461     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
462      * just 0 for non-waters.
463      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
464      * jnr indices corresponding to data put in the four positions in the SIMD register.
465      */
466     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
467     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
468     int              jnrA,jnrB,jnrC,jnrD;
469     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
470     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
471     real             shX,shY,shZ,rcutoff_scalar;
472     real             *shiftvec,*fshift,*x,*f;
473     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
474     int              vdwioffset0;
475     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
476     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
477     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
478     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
479     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
480     real             *charge;
481     __m128i          gbitab;
482     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
483     __m128           minushalf = _mm_set1_ps(-0.5);
484     real             *invsqrta,*dvda,*gbtab;
485     int              nvdwtype;
486     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
487     int              *vdwtype;
488     real             *vdwparam;
489     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
490     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
491     __m128i          vfitab;
492     __m128i          ifour       = _mm_set1_epi32(4);
493     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
494     real             *vftab;
495     __m128           dummy_mask,cutoff_mask;
496     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
497     __m128           one     = _mm_set1_ps(1.0);
498     __m128           two     = _mm_set1_ps(2.0);
499     x                = xx[0];
500     f                = ff[0];
501
502     nri              = nlist->nri;
503     iinr             = nlist->iinr;
504     jindex           = nlist->jindex;
505     jjnr             = nlist->jjnr;
506     shiftidx         = nlist->shift;
507     gid              = nlist->gid;
508     shiftvec         = fr->shift_vec[0];
509     fshift           = fr->fshift[0];
510     facel            = _mm_set1_ps(fr->epsfac);
511     charge           = mdatoms->chargeA;
512     nvdwtype         = fr->ntype;
513     vdwparam         = fr->nbfp;
514     vdwtype          = mdatoms->typeA;
515
516     invsqrta         = fr->invsqrta;
517     dvda             = fr->dvda;
518     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
519     gbtab            = fr->gbtab.data;
520     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
521
522     /* Avoid stupid compiler warnings */
523     jnrA = jnrB = jnrC = jnrD = 0;
524     j_coord_offsetA = 0;
525     j_coord_offsetB = 0;
526     j_coord_offsetC = 0;
527     j_coord_offsetD = 0;
528
529     outeriter        = 0;
530     inneriter        = 0;
531
532     /* Start outer loop over neighborlists */
533     for(iidx=0; iidx<nri; iidx++)
534     {
535         /* Load shift vector for this list */
536         i_shift_offset   = DIM*shiftidx[iidx];
537         shX              = shiftvec[i_shift_offset+XX];
538         shY              = shiftvec[i_shift_offset+YY];
539         shZ              = shiftvec[i_shift_offset+ZZ];
540
541         /* Load limits for loop over neighbors */
542         j_index_start    = jindex[iidx];
543         j_index_end      = jindex[iidx+1];
544
545         /* Get outer coordinate index */
546         inr              = iinr[iidx];
547         i_coord_offset   = DIM*inr;
548
549         /* Load i particle coords and add shift vector */
550         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
551         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
552         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
553
554         fix0             = _mm_setzero_ps();
555         fiy0             = _mm_setzero_ps();
556         fiz0             = _mm_setzero_ps();
557
558         /* Load parameters for i particles */
559         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
560         isai0            = _mm_load1_ps(invsqrta+inr+0);
561         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
562
563         dvdasum          = _mm_setzero_ps();
564
565         /* Start inner kernel loop */
566         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
567         {
568
569             /* Get j neighbor index, and coordinate index */
570             jnrA             = jjnr[jidx];
571             jnrB             = jjnr[jidx+1];
572             jnrC             = jjnr[jidx+2];
573             jnrD             = jjnr[jidx+3];
574
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
582                                               x+j_coord_offsetC,x+j_coord_offsetD,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_ps(ix0,jx0);
587             dy00             = _mm_sub_ps(iy0,jy0);
588             dz00             = _mm_sub_ps(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm_invsqrt_ps(rsq00);
594
595             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599                                                               charge+jnrC+0,charge+jnrD+0);
600             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
601                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603             vdwjidx0B        = 2*vdwtype[jnrB+0];
604             vdwjidx0C        = 2*vdwtype[jnrC+0];
605             vdwjidx0D        = 2*vdwtype[jnrD+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r00              = _mm_mul_ps(rsq00,rinv00);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq00             = _mm_mul_ps(iq0,jq0);
615             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
616                                          vdwparam+vdwioffset0+vdwjidx0B,
617                                          vdwparam+vdwioffset0+vdwjidx0C,
618                                          vdwparam+vdwioffset0+vdwjidx0D,
619                                          &c6_00,&c12_00);
620
621             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
622             isaprod          = _mm_mul_ps(isai0,isaj0);
623             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
624             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
625             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
626
627             /* Calculate generalized born table index - this is a separate table from the normal one,
628              * but we use the same procedure by multiplying r with scale and truncating to integer.
629              */
630             rt               = _mm_mul_ps(r00,gbscale);
631             gbitab           = _mm_cvttps_epi32(rt);
632             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
633             gbitab           = _mm_slli_epi32(gbitab,2);
634
635             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
636             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
637             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
638             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
639             _MM_TRANSPOSE4_PS(Y,F,G,H);
640             Heps             = _mm_mul_ps(gbeps,H);
641             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
642             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
643             vgb              = _mm_mul_ps(gbqqfactor,VV);
644
645             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
646             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
647             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
648             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
649             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
650                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
651             velec            = _mm_mul_ps(qq00,rinv00);
652             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
653
654             /* LENNARD-JONES DISPERSION/REPULSION */
655
656             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
657             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
658
659             fscal            = _mm_add_ps(felec,fvdw);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_ps(fscal,dx00);
663             ty               = _mm_mul_ps(fscal,dy00);
664             tz               = _mm_mul_ps(fscal,dz00);
665
666             /* Update vectorial force */
667             fix0             = _mm_add_ps(fix0,tx);
668             fiy0             = _mm_add_ps(fiy0,ty);
669             fiz0             = _mm_add_ps(fiz0,tz);
670
671             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
672                                                    f+j_coord_offsetC,f+j_coord_offsetD,
673                                                    tx,ty,tz);
674
675             /* Inner loop uses 64 flops */
676         }
677
678         if(jidx<j_index_end)
679         {
680
681             /* Get j neighbor index, and coordinate index */
682             jnrA             = jjnr[jidx];
683             jnrB             = jjnr[jidx+1];
684             jnrC             = jjnr[jidx+2];
685             jnrD             = jjnr[jidx+3];
686
687             /* Sign of each element will be negative for non-real atoms.
688              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
689              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
690              */
691             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
692             jnrA       = (jnrA>=0) ? jnrA : 0;
693             jnrB       = (jnrB>=0) ? jnrB : 0;
694             jnrC       = (jnrC>=0) ? jnrC : 0;
695             jnrD       = (jnrD>=0) ? jnrD : 0;
696
697             j_coord_offsetA  = DIM*jnrA;
698             j_coord_offsetB  = DIM*jnrB;
699             j_coord_offsetC  = DIM*jnrC;
700             j_coord_offsetD  = DIM*jnrD;
701
702             /* load j atom coordinates */
703             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
704                                               x+j_coord_offsetC,x+j_coord_offsetD,
705                                               &jx0,&jy0,&jz0);
706
707             /* Calculate displacement vector */
708             dx00             = _mm_sub_ps(ix0,jx0);
709             dy00             = _mm_sub_ps(iy0,jy0);
710             dz00             = _mm_sub_ps(iz0,jz0);
711
712             /* Calculate squared distance and things based on it */
713             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
714
715             rinv00           = gmx_mm_invsqrt_ps(rsq00);
716
717             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
718
719             /* Load parameters for j particles */
720             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
721                                                               charge+jnrC+0,charge+jnrD+0);
722             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
723                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
724             vdwjidx0A        = 2*vdwtype[jnrA+0];
725             vdwjidx0B        = 2*vdwtype[jnrB+0];
726             vdwjidx0C        = 2*vdwtype[jnrC+0];
727             vdwjidx0D        = 2*vdwtype[jnrD+0];
728
729             /**************************
730              * CALCULATE INTERACTIONS *
731              **************************/
732
733             r00              = _mm_mul_ps(rsq00,rinv00);
734             r00              = _mm_andnot_ps(dummy_mask,r00);
735
736             /* Compute parameters for interactions between i and j atoms */
737             qq00             = _mm_mul_ps(iq0,jq0);
738             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
739                                          vdwparam+vdwioffset0+vdwjidx0B,
740                                          vdwparam+vdwioffset0+vdwjidx0C,
741                                          vdwparam+vdwioffset0+vdwjidx0D,
742                                          &c6_00,&c12_00);
743
744             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
745             isaprod          = _mm_mul_ps(isai0,isaj0);
746             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
747             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
748             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
749
750             /* Calculate generalized born table index - this is a separate table from the normal one,
751              * but we use the same procedure by multiplying r with scale and truncating to integer.
752              */
753             rt               = _mm_mul_ps(r00,gbscale);
754             gbitab           = _mm_cvttps_epi32(rt);
755             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
756             gbitab           = _mm_slli_epi32(gbitab,2);
757
758             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
759             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
760             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
761             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
762             _MM_TRANSPOSE4_PS(Y,F,G,H);
763             Heps             = _mm_mul_ps(gbeps,H);
764             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
765             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
766             vgb              = _mm_mul_ps(gbqqfactor,VV);
767
768             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
769             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
770             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
771             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
772             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
773                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
774             velec            = _mm_mul_ps(qq00,rinv00);
775             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
776
777             /* LENNARD-JONES DISPERSION/REPULSION */
778
779             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
780             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
781
782             fscal            = _mm_add_ps(felec,fvdw);
783
784             fscal            = _mm_andnot_ps(dummy_mask,fscal);
785
786             /* Calculate temporary vectorial force */
787             tx               = _mm_mul_ps(fscal,dx00);
788             ty               = _mm_mul_ps(fscal,dy00);
789             tz               = _mm_mul_ps(fscal,dz00);
790
791             /* Update vectorial force */
792             fix0             = _mm_add_ps(fix0,tx);
793             fiy0             = _mm_add_ps(fiy0,ty);
794             fiz0             = _mm_add_ps(fiz0,tz);
795
796             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
797                                                    f+j_coord_offsetC,f+j_coord_offsetD,
798                                                    tx,ty,tz);
799
800             /* Inner loop uses 65 flops */
801         }
802
803         /* End of innermost loop */
804
805         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
806                                               f+i_coord_offset,fshift+i_shift_offset);
807
808         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
809         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
810
811         /* Increment number of inner iterations */
812         inneriter                  += j_index_end - j_index_start;
813
814         /* Outer loop uses 10 flops */
815     }
816
817     /* Increment number of outer iterations */
818     outeriter        += nri;
819
820     /* Update outer/inner flops */
821
822     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*65);
823 }