Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128           minushalf = _mm_set1_ps(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
82     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     vftab            = kernel_data->table_vdw->data;
109     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132         shX              = shiftvec[i_shift_offset+XX];
133         shY              = shiftvec[i_shift_offset+YY];
134         shZ              = shiftvec[i_shift_offset+ZZ];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
146         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
147         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
148
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
155         isai0            = _mm_load1_ps(invsqrta+inr+0);
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vgbsum           = _mm_setzero_ps();
161         vvdwsum          = _mm_setzero_ps();
162         dvdasum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               x+j_coord_offsetC,x+j_coord_offsetD,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_ps(ix0,jx0);
186             dy00             = _mm_sub_ps(iy0,jy0);
187             dz00             = _mm_sub_ps(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_ps(rsq00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
196                                                               charge+jnrC+0,charge+jnrD+0);
197             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
198                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201             vdwjidx0C        = 2*vdwtype[jnrC+0];
202             vdwjidx0D        = 2*vdwtype[jnrD+0];
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r00              = _mm_mul_ps(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm_mul_ps(iq0,jq0);
212             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
213                                          vdwparam+vdwioffset0+vdwjidx0B,
214                                          vdwparam+vdwioffset0+vdwjidx0C,
215                                          vdwparam+vdwioffset0+vdwjidx0D,
216                                          &c6_00,&c12_00);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm_mul_ps(r00,vftabscale);
220             vfitab           = _mm_cvttps_epi32(rt);
221             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
222             vfitab           = _mm_slli_epi32(vfitab,3);
223
224             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
225             isaprod          = _mm_mul_ps(isai0,isaj0);
226             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
227             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
228             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
229
230             /* Calculate generalized born table index - this is a separate table from the normal one,
231              * but we use the same procedure by multiplying r with scale and truncating to integer.
232              */
233             rt               = _mm_mul_ps(r00,gbscale);
234             gbitab           = _mm_cvttps_epi32(rt);
235             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
236             gbitab           = _mm_slli_epi32(gbitab,2);
237
238             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
239             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
240             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
241             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
242             _MM_TRANSPOSE4_PS(Y,F,G,H);
243             Heps             = _mm_mul_ps(gbeps,H);
244             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
245             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
246             vgb              = _mm_mul_ps(gbqqfactor,VV);
247
248             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
249             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
250             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
251             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
252             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
253                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
254             velec            = _mm_mul_ps(qq00,rinv00);
255             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
256
257             /* CUBIC SPLINE TABLE DISPERSION */
258             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
261             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
262             _MM_TRANSPOSE4_PS(Y,F,G,H);
263             Heps             = _mm_mul_ps(vfeps,H);
264             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
265             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
266             vvdw6            = _mm_mul_ps(c6_00,VV);
267             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
268             fvdw6            = _mm_mul_ps(c6_00,FF);
269
270             /* CUBIC SPLINE TABLE REPULSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Heps             = _mm_mul_ps(vfeps,H);
278             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
279             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
280             vvdw12           = _mm_mul_ps(c12_00,VV);
281             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
282             fvdw12           = _mm_mul_ps(c12_00,FF);
283             vvdw             = _mm_add_ps(vvdw12,vvdw6);
284             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm_add_ps(velecsum,velec);
288             vgbsum           = _mm_add_ps(vgbsum,vgb);
289             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
290
291             fscal            = _mm_add_ps(felec,fvdw);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
304                                                    f+j_coord_offsetC,f+j_coord_offsetD,
305                                                    tx,ty,tz);
306
307             /* Inner loop uses 92 flops */
308         }
309
310         if(jidx<j_index_end)
311         {
312
313             /* Get j neighbor index, and coordinate index */
314             jnrA             = jjnr[jidx];
315             jnrB             = jjnr[jidx+1];
316             jnrC             = jjnr[jidx+2];
317             jnrD             = jjnr[jidx+3];
318
319             /* Sign of each element will be negative for non-real atoms.
320              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
321              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
322              */
323             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
324             jnrA       = (jnrA>=0) ? jnrA : 0;
325             jnrB       = (jnrB>=0) ? jnrB : 0;
326             jnrC       = (jnrC>=0) ? jnrC : 0;
327             jnrD       = (jnrD>=0) ? jnrD : 0;
328
329             j_coord_offsetA  = DIM*jnrA;
330             j_coord_offsetB  = DIM*jnrB;
331             j_coord_offsetC  = DIM*jnrC;
332             j_coord_offsetD  = DIM*jnrD;
333
334             /* load j atom coordinates */
335             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
336                                               x+j_coord_offsetC,x+j_coord_offsetD,
337                                               &jx0,&jy0,&jz0);
338
339             /* Calculate displacement vector */
340             dx00             = _mm_sub_ps(ix0,jx0);
341             dy00             = _mm_sub_ps(iy0,jy0);
342             dz00             = _mm_sub_ps(iz0,jz0);
343
344             /* Calculate squared distance and things based on it */
345             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
346
347             rinv00           = gmx_mm_invsqrt_ps(rsq00);
348
349             /* Load parameters for j particles */
350             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
351                                                               charge+jnrC+0,charge+jnrD+0);
352             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
353                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
354             vdwjidx0A        = 2*vdwtype[jnrA+0];
355             vdwjidx0B        = 2*vdwtype[jnrB+0];
356             vdwjidx0C        = 2*vdwtype[jnrC+0];
357             vdwjidx0D        = 2*vdwtype[jnrD+0];
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r00              = _mm_mul_ps(rsq00,rinv00);
364             r00              = _mm_andnot_ps(dummy_mask,r00);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq00             = _mm_mul_ps(iq0,jq0);
368             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
369                                          vdwparam+vdwioffset0+vdwjidx0B,
370                                          vdwparam+vdwioffset0+vdwjidx0C,
371                                          vdwparam+vdwioffset0+vdwjidx0D,
372                                          &c6_00,&c12_00);
373
374             /* Calculate table index by multiplying r with table scale and truncate to integer */
375             rt               = _mm_mul_ps(r00,vftabscale);
376             vfitab           = _mm_cvttps_epi32(rt);
377             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
378             vfitab           = _mm_slli_epi32(vfitab,3);
379
380             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
381             isaprod          = _mm_mul_ps(isai0,isaj0);
382             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
383             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
384             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
385
386             /* Calculate generalized born table index - this is a separate table from the normal one,
387              * but we use the same procedure by multiplying r with scale and truncating to integer.
388              */
389             rt               = _mm_mul_ps(r00,gbscale);
390             gbitab           = _mm_cvttps_epi32(rt);
391             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
392             gbitab           = _mm_slli_epi32(gbitab,2);
393
394             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
395             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
396             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
397             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
398             _MM_TRANSPOSE4_PS(Y,F,G,H);
399             Heps             = _mm_mul_ps(gbeps,H);
400             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
401             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
402             vgb              = _mm_mul_ps(gbqqfactor,VV);
403
404             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
405             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
406             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
407             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
408             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
409                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
410             velec            = _mm_mul_ps(qq00,rinv00);
411             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
412
413             /* CUBIC SPLINE TABLE DISPERSION */
414             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
415             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
416             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
417             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
418             _MM_TRANSPOSE4_PS(Y,F,G,H);
419             Heps             = _mm_mul_ps(vfeps,H);
420             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
421             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
422             vvdw6            = _mm_mul_ps(c6_00,VV);
423             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
424             fvdw6            = _mm_mul_ps(c6_00,FF);
425
426             /* CUBIC SPLINE TABLE REPULSION */
427             vfitab           = _mm_add_epi32(vfitab,ifour);
428             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
429             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
430             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
431             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
432             _MM_TRANSPOSE4_PS(Y,F,G,H);
433             Heps             = _mm_mul_ps(vfeps,H);
434             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
435             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
436             vvdw12           = _mm_mul_ps(c12_00,VV);
437             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
438             fvdw12           = _mm_mul_ps(c12_00,FF);
439             vvdw             = _mm_add_ps(vvdw12,vvdw6);
440             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm_andnot_ps(dummy_mask,velec);
444             velecsum         = _mm_add_ps(velecsum,velec);
445             vgb              = _mm_andnot_ps(dummy_mask,vgb);
446             vgbsum           = _mm_add_ps(vgbsum,vgb);
447             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
448             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
449
450             fscal            = _mm_add_ps(felec,fvdw);
451
452             fscal            = _mm_andnot_ps(dummy_mask,fscal);
453
454             /* Calculate temporary vectorial force */
455             tx               = _mm_mul_ps(fscal,dx00);
456             ty               = _mm_mul_ps(fscal,dy00);
457             tz               = _mm_mul_ps(fscal,dz00);
458
459             /* Update vectorial force */
460             fix0             = _mm_add_ps(fix0,tx);
461             fiy0             = _mm_add_ps(fiy0,ty);
462             fiz0             = _mm_add_ps(fiz0,tz);
463
464             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
465                                                    f+j_coord_offsetC,f+j_coord_offsetD,
466                                                    tx,ty,tz);
467
468             /* Inner loop uses 93 flops */
469         }
470
471         /* End of innermost loop */
472
473         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
474                                               f+i_coord_offset,fshift+i_shift_offset);
475
476         ggid                        = gid[iidx];
477         /* Update potential energies */
478         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
479         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
480         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
481         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
482         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
483
484         /* Increment number of inner iterations */
485         inneriter                  += j_index_end - j_index_start;
486
487         /* Outer loop uses 13 flops */
488     }
489
490     /* Increment number of outer iterations */
491     outeriter        += nri;
492
493     /* Update outer/inner flops */
494
495     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*13 + inneriter*93);
496 }
497 /*
498  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
499  * Electrostatics interaction: GeneralizedBorn
500  * VdW interaction:            CubicSplineTable
501  * Geometry:                   Particle-Particle
502  * Calculate force/pot:        Force
503  */
504 void
505 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
506                     (t_nblist * gmx_restrict                nlist,
507                      rvec * gmx_restrict                    xx,
508                      rvec * gmx_restrict                    ff,
509                      t_forcerec * gmx_restrict              fr,
510                      t_mdatoms * gmx_restrict               mdatoms,
511                      nb_kernel_data_t * gmx_restrict        kernel_data,
512                      t_nrnb * gmx_restrict                  nrnb)
513 {
514     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
515      * just 0 for non-waters.
516      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
517      * jnr indices corresponding to data put in the four positions in the SIMD register.
518      */
519     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
520     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
521     int              jnrA,jnrB,jnrC,jnrD;
522     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
523     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
524     real             shX,shY,shZ,rcutoff_scalar;
525     real             *shiftvec,*fshift,*x,*f;
526     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
527     int              vdwioffset0;
528     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
529     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
530     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
531     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
532     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
533     real             *charge;
534     __m128i          gbitab;
535     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
536     __m128           minushalf = _mm_set1_ps(-0.5);
537     real             *invsqrta,*dvda,*gbtab;
538     int              nvdwtype;
539     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
540     int              *vdwtype;
541     real             *vdwparam;
542     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
543     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
544     __m128i          vfitab;
545     __m128i          ifour       = _mm_set1_epi32(4);
546     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
547     real             *vftab;
548     __m128           dummy_mask,cutoff_mask;
549     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
550     __m128           one     = _mm_set1_ps(1.0);
551     __m128           two     = _mm_set1_ps(2.0);
552     x                = xx[0];
553     f                = ff[0];
554
555     nri              = nlist->nri;
556     iinr             = nlist->iinr;
557     jindex           = nlist->jindex;
558     jjnr             = nlist->jjnr;
559     shiftidx         = nlist->shift;
560     gid              = nlist->gid;
561     shiftvec         = fr->shift_vec[0];
562     fshift           = fr->fshift[0];
563     facel            = _mm_set1_ps(fr->epsfac);
564     charge           = mdatoms->chargeA;
565     nvdwtype         = fr->ntype;
566     vdwparam         = fr->nbfp;
567     vdwtype          = mdatoms->typeA;
568
569     vftab            = kernel_data->table_vdw->data;
570     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
571
572     invsqrta         = fr->invsqrta;
573     dvda             = fr->dvda;
574     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
575     gbtab            = fr->gbtab.data;
576     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
577
578     /* Avoid stupid compiler warnings */
579     jnrA = jnrB = jnrC = jnrD = 0;
580     j_coord_offsetA = 0;
581     j_coord_offsetB = 0;
582     j_coord_offsetC = 0;
583     j_coord_offsetD = 0;
584
585     outeriter        = 0;
586     inneriter        = 0;
587
588     /* Start outer loop over neighborlists */
589     for(iidx=0; iidx<nri; iidx++)
590     {
591         /* Load shift vector for this list */
592         i_shift_offset   = DIM*shiftidx[iidx];
593         shX              = shiftvec[i_shift_offset+XX];
594         shY              = shiftvec[i_shift_offset+YY];
595         shZ              = shiftvec[i_shift_offset+ZZ];
596
597         /* Load limits for loop over neighbors */
598         j_index_start    = jindex[iidx];
599         j_index_end      = jindex[iidx+1];
600
601         /* Get outer coordinate index */
602         inr              = iinr[iidx];
603         i_coord_offset   = DIM*inr;
604
605         /* Load i particle coords and add shift vector */
606         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
607         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
608         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
609
610         fix0             = _mm_setzero_ps();
611         fiy0             = _mm_setzero_ps();
612         fiz0             = _mm_setzero_ps();
613
614         /* Load parameters for i particles */
615         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
616         isai0            = _mm_load1_ps(invsqrta+inr+0);
617         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
618
619         dvdasum          = _mm_setzero_ps();
620
621         /* Start inner kernel loop */
622         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
623         {
624
625             /* Get j neighbor index, and coordinate index */
626             jnrA             = jjnr[jidx];
627             jnrB             = jjnr[jidx+1];
628             jnrC             = jjnr[jidx+2];
629             jnrD             = jjnr[jidx+3];
630
631             j_coord_offsetA  = DIM*jnrA;
632             j_coord_offsetB  = DIM*jnrB;
633             j_coord_offsetC  = DIM*jnrC;
634             j_coord_offsetD  = DIM*jnrD;
635
636             /* load j atom coordinates */
637             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
638                                               x+j_coord_offsetC,x+j_coord_offsetD,
639                                               &jx0,&jy0,&jz0);
640
641             /* Calculate displacement vector */
642             dx00             = _mm_sub_ps(ix0,jx0);
643             dy00             = _mm_sub_ps(iy0,jy0);
644             dz00             = _mm_sub_ps(iz0,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
648
649             rinv00           = gmx_mm_invsqrt_ps(rsq00);
650
651             /* Load parameters for j particles */
652             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
653                                                               charge+jnrC+0,charge+jnrD+0);
654             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
655                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
656             vdwjidx0A        = 2*vdwtype[jnrA+0];
657             vdwjidx0B        = 2*vdwtype[jnrB+0];
658             vdwjidx0C        = 2*vdwtype[jnrC+0];
659             vdwjidx0D        = 2*vdwtype[jnrD+0];
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r00              = _mm_mul_ps(rsq00,rinv00);
666
667             /* Compute parameters for interactions between i and j atoms */
668             qq00             = _mm_mul_ps(iq0,jq0);
669             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
670                                          vdwparam+vdwioffset0+vdwjidx0B,
671                                          vdwparam+vdwioffset0+vdwjidx0C,
672                                          vdwparam+vdwioffset0+vdwjidx0D,
673                                          &c6_00,&c12_00);
674
675             /* Calculate table index by multiplying r with table scale and truncate to integer */
676             rt               = _mm_mul_ps(r00,vftabscale);
677             vfitab           = _mm_cvttps_epi32(rt);
678             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
679             vfitab           = _mm_slli_epi32(vfitab,3);
680
681             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
682             isaprod          = _mm_mul_ps(isai0,isaj0);
683             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
684             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
685             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
686
687             /* Calculate generalized born table index - this is a separate table from the normal one,
688              * but we use the same procedure by multiplying r with scale and truncating to integer.
689              */
690             rt               = _mm_mul_ps(r00,gbscale);
691             gbitab           = _mm_cvttps_epi32(rt);
692             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
693             gbitab           = _mm_slli_epi32(gbitab,2);
694
695             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
696             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
697             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
698             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
699             _MM_TRANSPOSE4_PS(Y,F,G,H);
700             Heps             = _mm_mul_ps(gbeps,H);
701             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
702             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
703             vgb              = _mm_mul_ps(gbqqfactor,VV);
704
705             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
706             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
707             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
708             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
709             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
710                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
711             velec            = _mm_mul_ps(qq00,rinv00);
712             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
713
714             /* CUBIC SPLINE TABLE DISPERSION */
715             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
716             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
717             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
718             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
719             _MM_TRANSPOSE4_PS(Y,F,G,H);
720             Heps             = _mm_mul_ps(vfeps,H);
721             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
722             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
723             fvdw6            = _mm_mul_ps(c6_00,FF);
724
725             /* CUBIC SPLINE TABLE REPULSION */
726             vfitab           = _mm_add_epi32(vfitab,ifour);
727             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
728             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
729             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
730             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
731             _MM_TRANSPOSE4_PS(Y,F,G,H);
732             Heps             = _mm_mul_ps(vfeps,H);
733             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
734             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
735             fvdw12           = _mm_mul_ps(c12_00,FF);
736             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
737
738             fscal            = _mm_add_ps(felec,fvdw);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm_mul_ps(fscal,dx00);
742             ty               = _mm_mul_ps(fscal,dy00);
743             tz               = _mm_mul_ps(fscal,dz00);
744
745             /* Update vectorial force */
746             fix0             = _mm_add_ps(fix0,tx);
747             fiy0             = _mm_add_ps(fiy0,ty);
748             fiz0             = _mm_add_ps(fiz0,tz);
749
750             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
751                                                    f+j_coord_offsetC,f+j_coord_offsetD,
752                                                    tx,ty,tz);
753
754             /* Inner loop uses 82 flops */
755         }
756
757         if(jidx<j_index_end)
758         {
759
760             /* Get j neighbor index, and coordinate index */
761             jnrA             = jjnr[jidx];
762             jnrB             = jjnr[jidx+1];
763             jnrC             = jjnr[jidx+2];
764             jnrD             = jjnr[jidx+3];
765
766             /* Sign of each element will be negative for non-real atoms.
767              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
768              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
769              */
770             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
771             jnrA       = (jnrA>=0) ? jnrA : 0;
772             jnrB       = (jnrB>=0) ? jnrB : 0;
773             jnrC       = (jnrC>=0) ? jnrC : 0;
774             jnrD       = (jnrD>=0) ? jnrD : 0;
775
776             j_coord_offsetA  = DIM*jnrA;
777             j_coord_offsetB  = DIM*jnrB;
778             j_coord_offsetC  = DIM*jnrC;
779             j_coord_offsetD  = DIM*jnrD;
780
781             /* load j atom coordinates */
782             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783                                               x+j_coord_offsetC,x+j_coord_offsetD,
784                                               &jx0,&jy0,&jz0);
785
786             /* Calculate displacement vector */
787             dx00             = _mm_sub_ps(ix0,jx0);
788             dy00             = _mm_sub_ps(iy0,jy0);
789             dz00             = _mm_sub_ps(iz0,jz0);
790
791             /* Calculate squared distance and things based on it */
792             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
793
794             rinv00           = gmx_mm_invsqrt_ps(rsq00);
795
796             /* Load parameters for j particles */
797             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
798                                                               charge+jnrC+0,charge+jnrD+0);
799             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
800                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
801             vdwjidx0A        = 2*vdwtype[jnrA+0];
802             vdwjidx0B        = 2*vdwtype[jnrB+0];
803             vdwjidx0C        = 2*vdwtype[jnrC+0];
804             vdwjidx0D        = 2*vdwtype[jnrD+0];
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             r00              = _mm_mul_ps(rsq00,rinv00);
811             r00              = _mm_andnot_ps(dummy_mask,r00);
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq00             = _mm_mul_ps(iq0,jq0);
815             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
816                                          vdwparam+vdwioffset0+vdwjidx0B,
817                                          vdwparam+vdwioffset0+vdwjidx0C,
818                                          vdwparam+vdwioffset0+vdwjidx0D,
819                                          &c6_00,&c12_00);
820
821             /* Calculate table index by multiplying r with table scale and truncate to integer */
822             rt               = _mm_mul_ps(r00,vftabscale);
823             vfitab           = _mm_cvttps_epi32(rt);
824             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
825             vfitab           = _mm_slli_epi32(vfitab,3);
826
827             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
828             isaprod          = _mm_mul_ps(isai0,isaj0);
829             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
830             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
831             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
832
833             /* Calculate generalized born table index - this is a separate table from the normal one,
834              * but we use the same procedure by multiplying r with scale and truncating to integer.
835              */
836             rt               = _mm_mul_ps(r00,gbscale);
837             gbitab           = _mm_cvttps_epi32(rt);
838             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
839             gbitab           = _mm_slli_epi32(gbitab,2);
840
841             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
842             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
843             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
844             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
845             _MM_TRANSPOSE4_PS(Y,F,G,H);
846             Heps             = _mm_mul_ps(gbeps,H);
847             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
848             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
849             vgb              = _mm_mul_ps(gbqqfactor,VV);
850
851             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
852             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
853             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
854             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
855             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
856                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
857             velec            = _mm_mul_ps(qq00,rinv00);
858             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
859
860             /* CUBIC SPLINE TABLE DISPERSION */
861             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
862             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
863             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
864             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
865             _MM_TRANSPOSE4_PS(Y,F,G,H);
866             Heps             = _mm_mul_ps(vfeps,H);
867             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
868             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
869             fvdw6            = _mm_mul_ps(c6_00,FF);
870
871             /* CUBIC SPLINE TABLE REPULSION */
872             vfitab           = _mm_add_epi32(vfitab,ifour);
873             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
874             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
875             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
876             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
877             _MM_TRANSPOSE4_PS(Y,F,G,H);
878             Heps             = _mm_mul_ps(vfeps,H);
879             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
880             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
881             fvdw12           = _mm_mul_ps(c12_00,FF);
882             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
883
884             fscal            = _mm_add_ps(felec,fvdw);
885
886             fscal            = _mm_andnot_ps(dummy_mask,fscal);
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm_mul_ps(fscal,dx00);
890             ty               = _mm_mul_ps(fscal,dy00);
891             tz               = _mm_mul_ps(fscal,dz00);
892
893             /* Update vectorial force */
894             fix0             = _mm_add_ps(fix0,tx);
895             fiy0             = _mm_add_ps(fiy0,ty);
896             fiz0             = _mm_add_ps(fiz0,tz);
897
898             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
899                                                    f+j_coord_offsetC,f+j_coord_offsetD,
900                                                    tx,ty,tz);
901
902             /* Inner loop uses 83 flops */
903         }
904
905         /* End of innermost loop */
906
907         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
908                                               f+i_coord_offset,fshift+i_shift_offset);
909
910         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
911         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
912
913         /* Increment number of inner iterations */
914         inneriter                  += j_index_end - j_index_start;
915
916         /* Outer loop uses 10 flops */
917     }
918
919     /* Increment number of outer iterations */
920     outeriter        += nri;
921
922     /* Update outer/inner flops */
923
924     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*83);
925 }