9829f75d0363660f598e56bdcfa904b9653e84d3
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102
103     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* Setup water-specific parameters */
109     inr              = nlist->iinr[0];
110     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
111     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
112     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }  
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
145                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
146         
147         fix1             = _mm_setzero_ps();
148         fiy1             = _mm_setzero_ps();
149         fiz1             = _mm_setzero_ps();
150         fix2             = _mm_setzero_ps();
151         fiy2             = _mm_setzero_ps();
152         fiz2             = _mm_setzero_ps();
153         fix3             = _mm_setzero_ps();
154         fiy3             = _mm_setzero_ps();
155         fiz3             = _mm_setzero_ps();
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx10             = _mm_sub_ps(ix1,jx0);
181             dy10             = _mm_sub_ps(iy1,jy0);
182             dz10             = _mm_sub_ps(iz1,jz0);
183             dx20             = _mm_sub_ps(ix2,jx0);
184             dy20             = _mm_sub_ps(iy2,jy0);
185             dz20             = _mm_sub_ps(iz2,jz0);
186             dx30             = _mm_sub_ps(ix3,jx0);
187             dy30             = _mm_sub_ps(iy3,jy0);
188             dz30             = _mm_sub_ps(iz3,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
192             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
193             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
194
195             rinv10           = gmx_mm_invsqrt_ps(rsq10);
196             rinv20           = gmx_mm_invsqrt_ps(rsq20);
197             rinv30           = gmx_mm_invsqrt_ps(rsq30);
198
199             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
200             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
201             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                               charge+jnrC+0,charge+jnrD+0);
206
207             fjx0             = _mm_setzero_ps();
208             fjy0             = _mm_setzero_ps();
209             fjz0             = _mm_setzero_ps();
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             r10              = _mm_mul_ps(rsq10,rinv10);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq10             = _mm_mul_ps(iq1,jq0);
219
220             /* EWALD ELECTROSTATICS */
221
222             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
223             ewrt             = _mm_mul_ps(r10,ewtabscale);
224             ewitab           = _mm_cvttps_epi32(ewrt);
225             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
226             ewitab           = _mm_slli_epi32(ewitab,2);
227             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
228             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
229             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
230             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
231             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
232             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
233             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
234             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
235             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_ps(velecsum,velec);
239
240             fscal            = felec;
241
242             /* Calculate temporary vectorial force */
243             tx               = _mm_mul_ps(fscal,dx10);
244             ty               = _mm_mul_ps(fscal,dy10);
245             tz               = _mm_mul_ps(fscal,dz10);
246
247             /* Update vectorial force */
248             fix1             = _mm_add_ps(fix1,tx);
249             fiy1             = _mm_add_ps(fiy1,ty);
250             fiz1             = _mm_add_ps(fiz1,tz);
251
252             fjx0             = _mm_add_ps(fjx0,tx);
253             fjy0             = _mm_add_ps(fjy0,ty);
254             fjz0             = _mm_add_ps(fjz0,tz);
255             
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             r20              = _mm_mul_ps(rsq20,rinv20);
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq20             = _mm_mul_ps(iq2,jq0);
264
265             /* EWALD ELECTROSTATICS */
266
267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
268             ewrt             = _mm_mul_ps(r20,ewtabscale);
269             ewitab           = _mm_cvttps_epi32(ewrt);
270             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
271             ewitab           = _mm_slli_epi32(ewitab,2);
272             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
273             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
274             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
275             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
276             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
277             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
278             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
279             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
280             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_ps(velecsum,velec);
284
285             fscal            = felec;
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx20);
289             ty               = _mm_mul_ps(fscal,dy20);
290             tz               = _mm_mul_ps(fscal,dz20);
291
292             /* Update vectorial force */
293             fix2             = _mm_add_ps(fix2,tx);
294             fiy2             = _mm_add_ps(fiy2,ty);
295             fiz2             = _mm_add_ps(fiz2,tz);
296
297             fjx0             = _mm_add_ps(fjx0,tx);
298             fjy0             = _mm_add_ps(fjy0,ty);
299             fjz0             = _mm_add_ps(fjz0,tz);
300             
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r30              = _mm_mul_ps(rsq30,rinv30);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq30             = _mm_mul_ps(iq3,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_ps(r30,ewtabscale);
314             ewitab           = _mm_cvttps_epi32(ewrt);
315             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
320             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
321             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
322             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
323             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
324             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
325             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_ps(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx30);
334             ty               = _mm_mul_ps(fscal,dy30);
335             tz               = _mm_mul_ps(fscal,dz30);
336
337             /* Update vectorial force */
338             fix3             = _mm_add_ps(fix3,tx);
339             fiy3             = _mm_add_ps(fiy3,ty);
340             fiz3             = _mm_add_ps(fiz3,tz);
341
342             fjx0             = _mm_add_ps(fjx0,tx);
343             fjy0             = _mm_add_ps(fjy0,ty);
344             fjz0             = _mm_add_ps(fjz0,tz);
345             
346             fjptrA             = f+j_coord_offsetA;
347             fjptrB             = f+j_coord_offsetB;
348             fjptrC             = f+j_coord_offsetC;
349             fjptrD             = f+j_coord_offsetD;
350
351             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
352
353             /* Inner loop uses 123 flops */
354         }
355
356         if(jidx<j_index_end)
357         {
358
359             /* Get j neighbor index, and coordinate index */
360             jnrlistA         = jjnr[jidx];
361             jnrlistB         = jjnr[jidx+1];
362             jnrlistC         = jjnr[jidx+2];
363             jnrlistD         = jjnr[jidx+3];
364             /* Sign of each element will be negative for non-real atoms.
365              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
366              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
367              */
368             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
369             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
370             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
371             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
372             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
373             j_coord_offsetA  = DIM*jnrA;
374             j_coord_offsetB  = DIM*jnrB;
375             j_coord_offsetC  = DIM*jnrC;
376             j_coord_offsetD  = DIM*jnrD;
377
378             /* load j atom coordinates */
379             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
380                                               x+j_coord_offsetC,x+j_coord_offsetD,
381                                               &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx10             = _mm_sub_ps(ix1,jx0);
385             dy10             = _mm_sub_ps(iy1,jy0);
386             dz10             = _mm_sub_ps(iz1,jz0);
387             dx20             = _mm_sub_ps(ix2,jx0);
388             dy20             = _mm_sub_ps(iy2,jy0);
389             dz20             = _mm_sub_ps(iz2,jz0);
390             dx30             = _mm_sub_ps(ix3,jx0);
391             dy30             = _mm_sub_ps(iy3,jy0);
392             dz30             = _mm_sub_ps(iz3,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
396             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
397             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
398
399             rinv10           = gmx_mm_invsqrt_ps(rsq10);
400             rinv20           = gmx_mm_invsqrt_ps(rsq20);
401             rinv30           = gmx_mm_invsqrt_ps(rsq30);
402
403             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
404             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
405             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
406
407             /* Load parameters for j particles */
408             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
409                                                               charge+jnrC+0,charge+jnrD+0);
410
411             fjx0             = _mm_setzero_ps();
412             fjy0             = _mm_setzero_ps();
413             fjz0             = _mm_setzero_ps();
414
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             r10              = _mm_mul_ps(rsq10,rinv10);
420             r10              = _mm_andnot_ps(dummy_mask,r10);
421
422             /* Compute parameters for interactions between i and j atoms */
423             qq10             = _mm_mul_ps(iq1,jq0);
424
425             /* EWALD ELECTROSTATICS */
426
427             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428             ewrt             = _mm_mul_ps(r10,ewtabscale);
429             ewitab           = _mm_cvttps_epi32(ewrt);
430             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
431             ewitab           = _mm_slli_epi32(ewitab,2);
432             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
433             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
434             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
435             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
436             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
437             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
438             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
439             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
440             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm_andnot_ps(dummy_mask,velec);
444             velecsum         = _mm_add_ps(velecsum,velec);
445
446             fscal            = felec;
447
448             fscal            = _mm_andnot_ps(dummy_mask,fscal);
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm_mul_ps(fscal,dx10);
452             ty               = _mm_mul_ps(fscal,dy10);
453             tz               = _mm_mul_ps(fscal,dz10);
454
455             /* Update vectorial force */
456             fix1             = _mm_add_ps(fix1,tx);
457             fiy1             = _mm_add_ps(fiy1,ty);
458             fiz1             = _mm_add_ps(fiz1,tz);
459
460             fjx0             = _mm_add_ps(fjx0,tx);
461             fjy0             = _mm_add_ps(fjy0,ty);
462             fjz0             = _mm_add_ps(fjz0,tz);
463             
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r20              = _mm_mul_ps(rsq20,rinv20);
469             r20              = _mm_andnot_ps(dummy_mask,r20);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq20             = _mm_mul_ps(iq2,jq0);
473
474             /* EWALD ELECTROSTATICS */
475
476             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
477             ewrt             = _mm_mul_ps(r20,ewtabscale);
478             ewitab           = _mm_cvttps_epi32(ewrt);
479             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
480             ewitab           = _mm_slli_epi32(ewitab,2);
481             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
482             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
483             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
484             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
485             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
486             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
487             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
488             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
489             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm_andnot_ps(dummy_mask,velec);
493             velecsum         = _mm_add_ps(velecsum,velec);
494
495             fscal            = felec;
496
497             fscal            = _mm_andnot_ps(dummy_mask,fscal);
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm_mul_ps(fscal,dx20);
501             ty               = _mm_mul_ps(fscal,dy20);
502             tz               = _mm_mul_ps(fscal,dz20);
503
504             /* Update vectorial force */
505             fix2             = _mm_add_ps(fix2,tx);
506             fiy2             = _mm_add_ps(fiy2,ty);
507             fiz2             = _mm_add_ps(fiz2,tz);
508
509             fjx0             = _mm_add_ps(fjx0,tx);
510             fjy0             = _mm_add_ps(fjy0,ty);
511             fjz0             = _mm_add_ps(fjz0,tz);
512             
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             r30              = _mm_mul_ps(rsq30,rinv30);
518             r30              = _mm_andnot_ps(dummy_mask,r30);
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq30             = _mm_mul_ps(iq3,jq0);
522
523             /* EWALD ELECTROSTATICS */
524
525             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
526             ewrt             = _mm_mul_ps(r30,ewtabscale);
527             ewitab           = _mm_cvttps_epi32(ewrt);
528             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
529             ewitab           = _mm_slli_epi32(ewitab,2);
530             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
531             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
532             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
533             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
534             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
535             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
536             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
537             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
538             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_andnot_ps(dummy_mask,velec);
542             velecsum         = _mm_add_ps(velecsum,velec);
543
544             fscal            = felec;
545
546             fscal            = _mm_andnot_ps(dummy_mask,fscal);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm_mul_ps(fscal,dx30);
550             ty               = _mm_mul_ps(fscal,dy30);
551             tz               = _mm_mul_ps(fscal,dz30);
552
553             /* Update vectorial force */
554             fix3             = _mm_add_ps(fix3,tx);
555             fiy3             = _mm_add_ps(fiy3,ty);
556             fiz3             = _mm_add_ps(fiz3,tz);
557
558             fjx0             = _mm_add_ps(fjx0,tx);
559             fjy0             = _mm_add_ps(fjy0,ty);
560             fjz0             = _mm_add_ps(fjz0,tz);
561             
562             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
563             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
564             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
565             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
566
567             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
568
569             /* Inner loop uses 126 flops */
570         }
571
572         /* End of innermost loop */
573
574         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
575                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
576
577         ggid                        = gid[iidx];
578         /* Update potential energies */
579         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
580
581         /* Increment number of inner iterations */
582         inneriter                  += j_index_end - j_index_start;
583
584         /* Outer loop uses 19 flops */
585     }
586
587     /* Increment number of outer iterations */
588     outeriter        += nri;
589
590     /* Update outer/inner flops */
591
592     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
593 }
594 /*
595  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_single
596  * Electrostatics interaction: Ewald
597  * VdW interaction:            None
598  * Geometry:                   Water4-Particle
599  * Calculate force/pot:        Force
600  */
601 void
602 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_single
603                     (t_nblist * gmx_restrict                nlist,
604                      rvec * gmx_restrict                    xx,
605                      rvec * gmx_restrict                    ff,
606                      t_forcerec * gmx_restrict              fr,
607                      t_mdatoms * gmx_restrict               mdatoms,
608                      nb_kernel_data_t * gmx_restrict        kernel_data,
609                      t_nrnb * gmx_restrict                  nrnb)
610 {
611     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
612      * just 0 for non-waters.
613      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
614      * jnr indices corresponding to data put in the four positions in the SIMD register.
615      */
616     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
617     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
618     int              jnrA,jnrB,jnrC,jnrD;
619     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
620     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
621     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
622     real             rcutoff_scalar;
623     real             *shiftvec,*fshift,*x,*f;
624     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
625     real             scratch[4*DIM];
626     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
627     int              vdwioffset1;
628     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
629     int              vdwioffset2;
630     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
631     int              vdwioffset3;
632     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
633     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
634     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
635     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
636     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
637     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
638     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
639     real             *charge;
640     __m128i          ewitab;
641     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
642     real             *ewtab;
643     __m128           dummy_mask,cutoff_mask;
644     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
645     __m128           one     = _mm_set1_ps(1.0);
646     __m128           two     = _mm_set1_ps(2.0);
647     x                = xx[0];
648     f                = ff[0];
649
650     nri              = nlist->nri;
651     iinr             = nlist->iinr;
652     jindex           = nlist->jindex;
653     jjnr             = nlist->jjnr;
654     shiftidx         = nlist->shift;
655     gid              = nlist->gid;
656     shiftvec         = fr->shift_vec[0];
657     fshift           = fr->fshift[0];
658     facel            = _mm_set1_ps(fr->epsfac);
659     charge           = mdatoms->chargeA;
660
661     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
662     ewtab            = fr->ic->tabq_coul_F;
663     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
664     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
665
666     /* Setup water-specific parameters */
667     inr              = nlist->iinr[0];
668     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
669     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
670     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
671
672     /* Avoid stupid compiler warnings */
673     jnrA = jnrB = jnrC = jnrD = 0;
674     j_coord_offsetA = 0;
675     j_coord_offsetB = 0;
676     j_coord_offsetC = 0;
677     j_coord_offsetD = 0;
678
679     outeriter        = 0;
680     inneriter        = 0;
681
682     for(iidx=0;iidx<4*DIM;iidx++)
683     {
684         scratch[iidx] = 0.0;
685     }  
686
687     /* Start outer loop over neighborlists */
688     for(iidx=0; iidx<nri; iidx++)
689     {
690         /* Load shift vector for this list */
691         i_shift_offset   = DIM*shiftidx[iidx];
692
693         /* Load limits for loop over neighbors */
694         j_index_start    = jindex[iidx];
695         j_index_end      = jindex[iidx+1];
696
697         /* Get outer coordinate index */
698         inr              = iinr[iidx];
699         i_coord_offset   = DIM*inr;
700
701         /* Load i particle coords and add shift vector */
702         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
703                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
704         
705         fix1             = _mm_setzero_ps();
706         fiy1             = _mm_setzero_ps();
707         fiz1             = _mm_setzero_ps();
708         fix2             = _mm_setzero_ps();
709         fiy2             = _mm_setzero_ps();
710         fiz2             = _mm_setzero_ps();
711         fix3             = _mm_setzero_ps();
712         fiy3             = _mm_setzero_ps();
713         fiz3             = _mm_setzero_ps();
714
715         /* Start inner kernel loop */
716         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
717         {
718
719             /* Get j neighbor index, and coordinate index */
720             jnrA             = jjnr[jidx];
721             jnrB             = jjnr[jidx+1];
722             jnrC             = jjnr[jidx+2];
723             jnrD             = jjnr[jidx+3];
724             j_coord_offsetA  = DIM*jnrA;
725             j_coord_offsetB  = DIM*jnrB;
726             j_coord_offsetC  = DIM*jnrC;
727             j_coord_offsetD  = DIM*jnrD;
728
729             /* load j atom coordinates */
730             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
731                                               x+j_coord_offsetC,x+j_coord_offsetD,
732                                               &jx0,&jy0,&jz0);
733
734             /* Calculate displacement vector */
735             dx10             = _mm_sub_ps(ix1,jx0);
736             dy10             = _mm_sub_ps(iy1,jy0);
737             dz10             = _mm_sub_ps(iz1,jz0);
738             dx20             = _mm_sub_ps(ix2,jx0);
739             dy20             = _mm_sub_ps(iy2,jy0);
740             dz20             = _mm_sub_ps(iz2,jz0);
741             dx30             = _mm_sub_ps(ix3,jx0);
742             dy30             = _mm_sub_ps(iy3,jy0);
743             dz30             = _mm_sub_ps(iz3,jz0);
744
745             /* Calculate squared distance and things based on it */
746             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
747             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
748             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
749
750             rinv10           = gmx_mm_invsqrt_ps(rsq10);
751             rinv20           = gmx_mm_invsqrt_ps(rsq20);
752             rinv30           = gmx_mm_invsqrt_ps(rsq30);
753
754             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
755             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
756             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
757
758             /* Load parameters for j particles */
759             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
760                                                               charge+jnrC+0,charge+jnrD+0);
761
762             fjx0             = _mm_setzero_ps();
763             fjy0             = _mm_setzero_ps();
764             fjz0             = _mm_setzero_ps();
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             r10              = _mm_mul_ps(rsq10,rinv10);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq10             = _mm_mul_ps(iq1,jq0);
774
775             /* EWALD ELECTROSTATICS */
776
777             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
778             ewrt             = _mm_mul_ps(r10,ewtabscale);
779             ewitab           = _mm_cvttps_epi32(ewrt);
780             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
781             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
782                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
783                                          &ewtabF,&ewtabFn);
784             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
785             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
786
787             fscal            = felec;
788
789             /* Calculate temporary vectorial force */
790             tx               = _mm_mul_ps(fscal,dx10);
791             ty               = _mm_mul_ps(fscal,dy10);
792             tz               = _mm_mul_ps(fscal,dz10);
793
794             /* Update vectorial force */
795             fix1             = _mm_add_ps(fix1,tx);
796             fiy1             = _mm_add_ps(fiy1,ty);
797             fiz1             = _mm_add_ps(fiz1,tz);
798
799             fjx0             = _mm_add_ps(fjx0,tx);
800             fjy0             = _mm_add_ps(fjy0,ty);
801             fjz0             = _mm_add_ps(fjz0,tz);
802             
803             /**************************
804              * CALCULATE INTERACTIONS *
805              **************************/
806
807             r20              = _mm_mul_ps(rsq20,rinv20);
808
809             /* Compute parameters for interactions between i and j atoms */
810             qq20             = _mm_mul_ps(iq2,jq0);
811
812             /* EWALD ELECTROSTATICS */
813
814             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
815             ewrt             = _mm_mul_ps(r20,ewtabscale);
816             ewitab           = _mm_cvttps_epi32(ewrt);
817             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
818             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
819                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
820                                          &ewtabF,&ewtabFn);
821             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
822             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
823
824             fscal            = felec;
825
826             /* Calculate temporary vectorial force */
827             tx               = _mm_mul_ps(fscal,dx20);
828             ty               = _mm_mul_ps(fscal,dy20);
829             tz               = _mm_mul_ps(fscal,dz20);
830
831             /* Update vectorial force */
832             fix2             = _mm_add_ps(fix2,tx);
833             fiy2             = _mm_add_ps(fiy2,ty);
834             fiz2             = _mm_add_ps(fiz2,tz);
835
836             fjx0             = _mm_add_ps(fjx0,tx);
837             fjy0             = _mm_add_ps(fjy0,ty);
838             fjz0             = _mm_add_ps(fjz0,tz);
839             
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             r30              = _mm_mul_ps(rsq30,rinv30);
845
846             /* Compute parameters for interactions between i and j atoms */
847             qq30             = _mm_mul_ps(iq3,jq0);
848
849             /* EWALD ELECTROSTATICS */
850
851             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
852             ewrt             = _mm_mul_ps(r30,ewtabscale);
853             ewitab           = _mm_cvttps_epi32(ewrt);
854             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
855             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
856                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
857                                          &ewtabF,&ewtabFn);
858             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
859             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
860
861             fscal            = felec;
862
863             /* Calculate temporary vectorial force */
864             tx               = _mm_mul_ps(fscal,dx30);
865             ty               = _mm_mul_ps(fscal,dy30);
866             tz               = _mm_mul_ps(fscal,dz30);
867
868             /* Update vectorial force */
869             fix3             = _mm_add_ps(fix3,tx);
870             fiy3             = _mm_add_ps(fiy3,ty);
871             fiz3             = _mm_add_ps(fiz3,tz);
872
873             fjx0             = _mm_add_ps(fjx0,tx);
874             fjy0             = _mm_add_ps(fjy0,ty);
875             fjz0             = _mm_add_ps(fjz0,tz);
876             
877             fjptrA             = f+j_coord_offsetA;
878             fjptrB             = f+j_coord_offsetB;
879             fjptrC             = f+j_coord_offsetC;
880             fjptrD             = f+j_coord_offsetD;
881
882             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
883
884             /* Inner loop uses 108 flops */
885         }
886
887         if(jidx<j_index_end)
888         {
889
890             /* Get j neighbor index, and coordinate index */
891             jnrlistA         = jjnr[jidx];
892             jnrlistB         = jjnr[jidx+1];
893             jnrlistC         = jjnr[jidx+2];
894             jnrlistD         = jjnr[jidx+3];
895             /* Sign of each element will be negative for non-real atoms.
896              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
897              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
898              */
899             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
900             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
901             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
902             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
903             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
904             j_coord_offsetA  = DIM*jnrA;
905             j_coord_offsetB  = DIM*jnrB;
906             j_coord_offsetC  = DIM*jnrC;
907             j_coord_offsetD  = DIM*jnrD;
908
909             /* load j atom coordinates */
910             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
911                                               x+j_coord_offsetC,x+j_coord_offsetD,
912                                               &jx0,&jy0,&jz0);
913
914             /* Calculate displacement vector */
915             dx10             = _mm_sub_ps(ix1,jx0);
916             dy10             = _mm_sub_ps(iy1,jy0);
917             dz10             = _mm_sub_ps(iz1,jz0);
918             dx20             = _mm_sub_ps(ix2,jx0);
919             dy20             = _mm_sub_ps(iy2,jy0);
920             dz20             = _mm_sub_ps(iz2,jz0);
921             dx30             = _mm_sub_ps(ix3,jx0);
922             dy30             = _mm_sub_ps(iy3,jy0);
923             dz30             = _mm_sub_ps(iz3,jz0);
924
925             /* Calculate squared distance and things based on it */
926             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
927             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
928             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
929
930             rinv10           = gmx_mm_invsqrt_ps(rsq10);
931             rinv20           = gmx_mm_invsqrt_ps(rsq20);
932             rinv30           = gmx_mm_invsqrt_ps(rsq30);
933
934             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
935             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
936             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
937
938             /* Load parameters for j particles */
939             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
940                                                               charge+jnrC+0,charge+jnrD+0);
941
942             fjx0             = _mm_setzero_ps();
943             fjy0             = _mm_setzero_ps();
944             fjz0             = _mm_setzero_ps();
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r10              = _mm_mul_ps(rsq10,rinv10);
951             r10              = _mm_andnot_ps(dummy_mask,r10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm_mul_ps(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959             ewrt             = _mm_mul_ps(r10,ewtabscale);
960             ewitab           = _mm_cvttps_epi32(ewrt);
961             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
962             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
963                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
964                                          &ewtabF,&ewtabFn);
965             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
966             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
967
968             fscal            = felec;
969
970             fscal            = _mm_andnot_ps(dummy_mask,fscal);
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm_mul_ps(fscal,dx10);
974             ty               = _mm_mul_ps(fscal,dy10);
975             tz               = _mm_mul_ps(fscal,dz10);
976
977             /* Update vectorial force */
978             fix1             = _mm_add_ps(fix1,tx);
979             fiy1             = _mm_add_ps(fiy1,ty);
980             fiz1             = _mm_add_ps(fiz1,tz);
981
982             fjx0             = _mm_add_ps(fjx0,tx);
983             fjy0             = _mm_add_ps(fjy0,ty);
984             fjz0             = _mm_add_ps(fjz0,tz);
985             
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             r20              = _mm_mul_ps(rsq20,rinv20);
991             r20              = _mm_andnot_ps(dummy_mask,r20);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq20             = _mm_mul_ps(iq2,jq0);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm_mul_ps(r20,ewtabscale);
1000             ewitab           = _mm_cvttps_epi32(ewrt);
1001             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1002             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1003                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1004                                          &ewtabF,&ewtabFn);
1005             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1006             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx20);
1014             ty               = _mm_mul_ps(fscal,dy20);
1015             tz               = _mm_mul_ps(fscal,dz20);
1016
1017             /* Update vectorial force */
1018             fix2             = _mm_add_ps(fix2,tx);
1019             fiy2             = _mm_add_ps(fiy2,ty);
1020             fiz2             = _mm_add_ps(fiz2,tz);
1021
1022             fjx0             = _mm_add_ps(fjx0,tx);
1023             fjy0             = _mm_add_ps(fjy0,ty);
1024             fjz0             = _mm_add_ps(fjz0,tz);
1025             
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             r30              = _mm_mul_ps(rsq30,rinv30);
1031             r30              = _mm_andnot_ps(dummy_mask,r30);
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq30             = _mm_mul_ps(iq3,jq0);
1035
1036             /* EWALD ELECTROSTATICS */
1037
1038             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1039             ewrt             = _mm_mul_ps(r30,ewtabscale);
1040             ewitab           = _mm_cvttps_epi32(ewrt);
1041             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1042             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1043                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1044                                          &ewtabF,&ewtabFn);
1045             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1046             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = _mm_mul_ps(fscal,dx30);
1054             ty               = _mm_mul_ps(fscal,dy30);
1055             tz               = _mm_mul_ps(fscal,dz30);
1056
1057             /* Update vectorial force */
1058             fix3             = _mm_add_ps(fix3,tx);
1059             fiy3             = _mm_add_ps(fiy3,ty);
1060             fiz3             = _mm_add_ps(fiz3,tz);
1061
1062             fjx0             = _mm_add_ps(fjx0,tx);
1063             fjy0             = _mm_add_ps(fjy0,ty);
1064             fjz0             = _mm_add_ps(fjz0,tz);
1065             
1066             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1067             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1068             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1069             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1070
1071             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1072
1073             /* Inner loop uses 111 flops */
1074         }
1075
1076         /* End of innermost loop */
1077
1078         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1079                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1080
1081         /* Increment number of inner iterations */
1082         inneriter                  += j_index_end - j_index_start;
1083
1084         /* Outer loop uses 18 flops */
1085     }
1086
1087     /* Increment number of outer iterations */
1088     outeriter        += nri;
1089
1090     /* Update outer/inner flops */
1091
1092     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
1093 }