Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128           dummy_mask,cutoff_mask;
77     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
78     __m128           one     = _mm_set1_ps(1.0);
79     __m128           two     = _mm_set1_ps(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_ps(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = jnrC = jnrD = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103     j_coord_offsetC = 0;
104     j_coord_offsetD = 0;
105
106     outeriter        = 0;
107     inneriter        = 0;
108
109     /* Start outer loop over neighborlists */
110     for(iidx=0; iidx<nri; iidx++)
111     {
112         /* Load shift vector for this list */
113         i_shift_offset   = DIM*shiftidx[iidx];
114         shX              = shiftvec[i_shift_offset+XX];
115         shY              = shiftvec[i_shift_offset+YY];
116         shZ              = shiftvec[i_shift_offset+ZZ];
117
118         /* Load limits for loop over neighbors */
119         j_index_start    = jindex[iidx];
120         j_index_end      = jindex[iidx+1];
121
122         /* Get outer coordinate index */
123         inr              = iinr[iidx];
124         i_coord_offset   = DIM*inr;
125
126         /* Load i particle coords and add shift vector */
127         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
128         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
129         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
130
131         fix0             = _mm_setzero_ps();
132         fiy0             = _mm_setzero_ps();
133         fiz0             = _mm_setzero_ps();
134
135         /* Load parameters for i particles */
136         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_ps();
140
141         /* Start inner kernel loop */
142         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
143         {
144
145             /* Get j neighbor index, and coordinate index */
146             jnrA             = jjnr[jidx];
147             jnrB             = jjnr[jidx+1];
148             jnrC             = jjnr[jidx+2];
149             jnrD             = jjnr[jidx+3];
150
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153             j_coord_offsetC  = DIM*jnrC;
154             j_coord_offsetD  = DIM*jnrD;
155
156             /* load j atom coordinates */
157             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
158                                               x+j_coord_offsetC,x+j_coord_offsetD,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_ps(ix0,jx0);
163             dy00             = _mm_sub_ps(iy0,jy0);
164             dz00             = _mm_sub_ps(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_ps(rsq00);
170
171             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
175                                                               charge+jnrC+0,charge+jnrD+0);
176
177             /**************************
178              * CALCULATE INTERACTIONS *
179              **************************/
180
181             r00              = _mm_mul_ps(rsq00,rinv00);
182
183             /* Compute parameters for interactions between i and j atoms */
184             qq00             = _mm_mul_ps(iq0,jq0);
185
186             /* EWALD ELECTROSTATICS */
187
188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
189             ewrt             = _mm_mul_ps(r00,ewtabscale);
190             ewitab           = _mm_cvttps_epi32(ewrt);
191             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
192             ewitab           = _mm_slli_epi32(ewitab,2);
193             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
194             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
195             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
196             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
197             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
198             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
199             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
200             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
201             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
202
203             /* Update potential sum for this i atom from the interaction with this j atom. */
204             velecsum         = _mm_add_ps(velecsum,velec);
205
206             fscal            = felec;
207
208             /* Calculate temporary vectorial force */
209             tx               = _mm_mul_ps(fscal,dx00);
210             ty               = _mm_mul_ps(fscal,dy00);
211             tz               = _mm_mul_ps(fscal,dz00);
212
213             /* Update vectorial force */
214             fix0             = _mm_add_ps(fix0,tx);
215             fiy0             = _mm_add_ps(fiy0,ty);
216             fiz0             = _mm_add_ps(fiz0,tz);
217
218             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
219                                                    f+j_coord_offsetC,f+j_coord_offsetD,
220                                                    tx,ty,tz);
221
222             /* Inner loop uses 41 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             /* Get j neighbor index, and coordinate index */
229             jnrA             = jjnr[jidx];
230             jnrB             = jjnr[jidx+1];
231             jnrC             = jjnr[jidx+2];
232             jnrD             = jjnr[jidx+3];
233
234             /* Sign of each element will be negative for non-real atoms.
235              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
236              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
237              */
238             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
239             jnrA       = (jnrA>=0) ? jnrA : 0;
240             jnrB       = (jnrB>=0) ? jnrB : 0;
241             jnrC       = (jnrC>=0) ? jnrC : 0;
242             jnrD       = (jnrD>=0) ? jnrD : 0;
243
244             j_coord_offsetA  = DIM*jnrA;
245             j_coord_offsetB  = DIM*jnrB;
246             j_coord_offsetC  = DIM*jnrC;
247             j_coord_offsetD  = DIM*jnrD;
248
249             /* load j atom coordinates */
250             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
251                                               x+j_coord_offsetC,x+j_coord_offsetD,
252                                               &jx0,&jy0,&jz0);
253
254             /* Calculate displacement vector */
255             dx00             = _mm_sub_ps(ix0,jx0);
256             dy00             = _mm_sub_ps(iy0,jy0);
257             dz00             = _mm_sub_ps(iz0,jz0);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
261
262             rinv00           = gmx_mm_invsqrt_ps(rsq00);
263
264             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
265
266             /* Load parameters for j particles */
267             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
268                                                               charge+jnrC+0,charge+jnrD+0);
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _mm_mul_ps(rsq00,rinv00);
275             r00              = _mm_andnot_ps(dummy_mask,r00);
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq00             = _mm_mul_ps(iq0,jq0);
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
283             ewrt             = _mm_mul_ps(r00,ewtabscale);
284             ewitab           = _mm_cvttps_epi32(ewrt);
285             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
286             ewitab           = _mm_slli_epi32(ewitab,2);
287             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
288             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
289             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
290             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
291             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
292             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
293             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
294             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
295             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm_andnot_ps(dummy_mask,velec);
299             velecsum         = _mm_add_ps(velecsum,velec);
300
301             fscal            = felec;
302
303             fscal            = _mm_andnot_ps(dummy_mask,fscal);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
316                                                    f+j_coord_offsetC,f+j_coord_offsetD,
317                                                    tx,ty,tz);
318
319             /* Inner loop uses 42 flops */
320         }
321
322         /* End of innermost loop */
323
324         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
325                                               f+i_coord_offset,fshift+i_shift_offset);
326
327         ggid                        = gid[iidx];
328         /* Update potential energies */
329         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
330
331         /* Increment number of inner iterations */
332         inneriter                  += j_index_end - j_index_start;
333
334         /* Outer loop uses 11 flops */
335     }
336
337     /* Increment number of outer iterations */
338     outeriter        += nri;
339
340     /* Update outer/inner flops */
341
342     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*11 + inneriter*42);
343 }
344 /*
345  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse2_single
346  * Electrostatics interaction: Ewald
347  * VdW interaction:            None
348  * Geometry:                   Particle-Particle
349  * Calculate force/pot:        Force
350  */
351 void
352 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse2_single
353                     (t_nblist * gmx_restrict                nlist,
354                      rvec * gmx_restrict                    xx,
355                      rvec * gmx_restrict                    ff,
356                      t_forcerec * gmx_restrict              fr,
357                      t_mdatoms * gmx_restrict               mdatoms,
358                      nb_kernel_data_t * gmx_restrict        kernel_data,
359                      t_nrnb * gmx_restrict                  nrnb)
360 {
361     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
362      * just 0 for non-waters.
363      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
364      * jnr indices corresponding to data put in the four positions in the SIMD register.
365      */
366     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
367     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
368     int              jnrA,jnrB,jnrC,jnrD;
369     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
370     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
371     real             shX,shY,shZ,rcutoff_scalar;
372     real             *shiftvec,*fshift,*x,*f;
373     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
374     int              vdwioffset0;
375     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
376     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
377     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
378     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
379     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
380     real             *charge;
381     __m128i          ewitab;
382     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
383     real             *ewtab;
384     __m128           dummy_mask,cutoff_mask;
385     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
386     __m128           one     = _mm_set1_ps(1.0);
387     __m128           two     = _mm_set1_ps(2.0);
388     x                = xx[0];
389     f                = ff[0];
390
391     nri              = nlist->nri;
392     iinr             = nlist->iinr;
393     jindex           = nlist->jindex;
394     jjnr             = nlist->jjnr;
395     shiftidx         = nlist->shift;
396     gid              = nlist->gid;
397     shiftvec         = fr->shift_vec[0];
398     fshift           = fr->fshift[0];
399     facel            = _mm_set1_ps(fr->epsfac);
400     charge           = mdatoms->chargeA;
401
402     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
403     ewtab            = fr->ic->tabq_coul_F;
404     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
405     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
406
407     /* Avoid stupid compiler warnings */
408     jnrA = jnrB = jnrC = jnrD = 0;
409     j_coord_offsetA = 0;
410     j_coord_offsetB = 0;
411     j_coord_offsetC = 0;
412     j_coord_offsetD = 0;
413
414     outeriter        = 0;
415     inneriter        = 0;
416
417     /* Start outer loop over neighborlists */
418     for(iidx=0; iidx<nri; iidx++)
419     {
420         /* Load shift vector for this list */
421         i_shift_offset   = DIM*shiftidx[iidx];
422         shX              = shiftvec[i_shift_offset+XX];
423         shY              = shiftvec[i_shift_offset+YY];
424         shZ              = shiftvec[i_shift_offset+ZZ];
425
426         /* Load limits for loop over neighbors */
427         j_index_start    = jindex[iidx];
428         j_index_end      = jindex[iidx+1];
429
430         /* Get outer coordinate index */
431         inr              = iinr[iidx];
432         i_coord_offset   = DIM*inr;
433
434         /* Load i particle coords and add shift vector */
435         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
436         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
437         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
438
439         fix0             = _mm_setzero_ps();
440         fiy0             = _mm_setzero_ps();
441         fiz0             = _mm_setzero_ps();
442
443         /* Load parameters for i particles */
444         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
445
446         /* Start inner kernel loop */
447         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
448         {
449
450             /* Get j neighbor index, and coordinate index */
451             jnrA             = jjnr[jidx];
452             jnrB             = jjnr[jidx+1];
453             jnrC             = jjnr[jidx+2];
454             jnrD             = jjnr[jidx+3];
455
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458             j_coord_offsetC  = DIM*jnrC;
459             j_coord_offsetD  = DIM*jnrD;
460
461             /* load j atom coordinates */
462             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
463                                               x+j_coord_offsetC,x+j_coord_offsetD,
464                                               &jx0,&jy0,&jz0);
465
466             /* Calculate displacement vector */
467             dx00             = _mm_sub_ps(ix0,jx0);
468             dy00             = _mm_sub_ps(iy0,jy0);
469             dz00             = _mm_sub_ps(iz0,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
473
474             rinv00           = gmx_mm_invsqrt_ps(rsq00);
475
476             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
477
478             /* Load parameters for j particles */
479             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
480                                                               charge+jnrC+0,charge+jnrD+0);
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_ps(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq00             = _mm_mul_ps(iq0,jq0);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
494             ewrt             = _mm_mul_ps(r00,ewtabscale);
495             ewitab           = _mm_cvttps_epi32(ewrt);
496             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
497             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
498                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
499                                          &ewtabF,&ewtabFn);
500             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
501             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
502
503             fscal            = felec;
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm_mul_ps(fscal,dx00);
507             ty               = _mm_mul_ps(fscal,dy00);
508             tz               = _mm_mul_ps(fscal,dz00);
509
510             /* Update vectorial force */
511             fix0             = _mm_add_ps(fix0,tx);
512             fiy0             = _mm_add_ps(fiy0,ty);
513             fiz0             = _mm_add_ps(fiz0,tz);
514
515             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
516                                                    f+j_coord_offsetC,f+j_coord_offsetD,
517                                                    tx,ty,tz);
518
519             /* Inner loop uses 36 flops */
520         }
521
522         if(jidx<j_index_end)
523         {
524
525             /* Get j neighbor index, and coordinate index */
526             jnrA             = jjnr[jidx];
527             jnrB             = jjnr[jidx+1];
528             jnrC             = jjnr[jidx+2];
529             jnrD             = jjnr[jidx+3];
530
531             /* Sign of each element will be negative for non-real atoms.
532              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
533              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
534              */
535             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
536             jnrA       = (jnrA>=0) ? jnrA : 0;
537             jnrB       = (jnrB>=0) ? jnrB : 0;
538             jnrC       = (jnrC>=0) ? jnrC : 0;
539             jnrD       = (jnrD>=0) ? jnrD : 0;
540
541             j_coord_offsetA  = DIM*jnrA;
542             j_coord_offsetB  = DIM*jnrB;
543             j_coord_offsetC  = DIM*jnrC;
544             j_coord_offsetD  = DIM*jnrD;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
548                                               x+j_coord_offsetC,x+j_coord_offsetD,
549                                               &jx0,&jy0,&jz0);
550
551             /* Calculate displacement vector */
552             dx00             = _mm_sub_ps(ix0,jx0);
553             dy00             = _mm_sub_ps(iy0,jy0);
554             dz00             = _mm_sub_ps(iz0,jz0);
555
556             /* Calculate squared distance and things based on it */
557             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
558
559             rinv00           = gmx_mm_invsqrt_ps(rsq00);
560
561             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
562
563             /* Load parameters for j particles */
564             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
565                                                               charge+jnrC+0,charge+jnrD+0);
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             r00              = _mm_mul_ps(rsq00,rinv00);
572             r00              = _mm_andnot_ps(dummy_mask,r00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq00             = _mm_mul_ps(iq0,jq0);
576
577             /* EWALD ELECTROSTATICS */
578
579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580             ewrt             = _mm_mul_ps(r00,ewtabscale);
581             ewitab           = _mm_cvttps_epi32(ewrt);
582             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
583             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
584                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
585                                          &ewtabF,&ewtabFn);
586             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
587             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
588
589             fscal            = felec;
590
591             fscal            = _mm_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm_mul_ps(fscal,dx00);
595             ty               = _mm_mul_ps(fscal,dy00);
596             tz               = _mm_mul_ps(fscal,dz00);
597
598             /* Update vectorial force */
599             fix0             = _mm_add_ps(fix0,tx);
600             fiy0             = _mm_add_ps(fiy0,ty);
601             fiz0             = _mm_add_ps(fiz0,tz);
602
603             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
604                                                    f+j_coord_offsetC,f+j_coord_offsetD,
605                                                    tx,ty,tz);
606
607             /* Inner loop uses 37 flops */
608         }
609
610         /* End of innermost loop */
611
612         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
613                                               f+i_coord_offset,fshift+i_shift_offset);
614
615         /* Increment number of inner iterations */
616         inneriter                  += j_index_end - j_index_start;
617
618         /* Outer loop uses 10 flops */
619     }
620
621     /* Increment number of outer iterations */
622     outeriter        += nri;
623
624     /* Update outer/inner flops */
625
626     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*10 + inneriter*37);
627 }