9d5ff02156eac44452009f90c69ba22953a6e89e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          ewitab;
92     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_ps(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
125     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }  
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
159         
160         fix0             = _mm_setzero_ps();
161         fiy0             = _mm_setzero_ps();
162         fiz0             = _mm_setzero_ps();
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169         fix3             = _mm_setzero_ps();
170         fiy3             = _mm_setzero_ps();
171         fiz3             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206             dx30             = _mm_sub_ps(ix3,jx0);
207             dy30             = _mm_sub_ps(iy3,jy0);
208             dz30             = _mm_sub_ps(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
215
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             rinvsq00         = gmx_mm_inv_ps(rsq00);
221             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
222             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
223             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             /* Compute parameters for interactions between i and j atoms */
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
252             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
253             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
254             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
258
259             fscal            = fvdw;
260
261             /* Calculate temporary vectorial force */
262             tx               = _mm_mul_ps(fscal,dx00);
263             ty               = _mm_mul_ps(fscal,dy00);
264             tz               = _mm_mul_ps(fscal,dz00);
265
266             /* Update vectorial force */
267             fix0             = _mm_add_ps(fix0,tx);
268             fiy0             = _mm_add_ps(fiy0,ty);
269             fiz0             = _mm_add_ps(fiz0,tz);
270
271             fjx0             = _mm_add_ps(fjx0,tx);
272             fjy0             = _mm_add_ps(fjy0,ty);
273             fjz0             = _mm_add_ps(fjz0,tz);
274             
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r10              = _mm_mul_ps(rsq10,rinv10);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _mm_mul_ps(iq1,jq0);
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
287             ewrt             = _mm_mul_ps(r10,ewtabscale);
288             ewitab           = _mm_cvttps_epi32(ewrt);
289             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
290             ewitab           = _mm_slli_epi32(ewitab,2);
291             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
292             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
293             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
294             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
295             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
296             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
297             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
298             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
299             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velecsum         = _mm_add_ps(velecsum,velec);
303
304             fscal            = felec;
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_ps(fscal,dx10);
308             ty               = _mm_mul_ps(fscal,dy10);
309             tz               = _mm_mul_ps(fscal,dz10);
310
311             /* Update vectorial force */
312             fix1             = _mm_add_ps(fix1,tx);
313             fiy1             = _mm_add_ps(fiy1,ty);
314             fiz1             = _mm_add_ps(fiz1,tz);
315
316             fjx0             = _mm_add_ps(fjx0,tx);
317             fjy0             = _mm_add_ps(fjy0,ty);
318             fjz0             = _mm_add_ps(fjz0,tz);
319             
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r20              = _mm_mul_ps(rsq20,rinv20);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq20             = _mm_mul_ps(iq2,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_ps(r20,ewtabscale);
333             ewitab           = _mm_cvttps_epi32(ewrt);
334             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
338             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
339             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
340             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
341             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
342             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
343             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
344             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx20);
353             ty               = _mm_mul_ps(fscal,dy20);
354             tz               = _mm_mul_ps(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm_add_ps(fix2,tx);
358             fiy2             = _mm_add_ps(fiy2,ty);
359             fiz2             = _mm_add_ps(fiz2,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364             
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r30              = _mm_mul_ps(rsq30,rinv30);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq30             = _mm_mul_ps(iq3,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r30,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_ps(fscal,dx30);
398             ty               = _mm_mul_ps(fscal,dy30);
399             tz               = _mm_mul_ps(fscal,dz30);
400
401             /* Update vectorial force */
402             fix3             = _mm_add_ps(fix3,tx);
403             fiy3             = _mm_add_ps(fiy3,ty);
404             fiz3             = _mm_add_ps(fiz3,tz);
405
406             fjx0             = _mm_add_ps(fjx0,tx);
407             fjy0             = _mm_add_ps(fjy0,ty);
408             fjz0             = _mm_add_ps(fjz0,tz);
409             
410             fjptrA             = f+j_coord_offsetA;
411             fjptrB             = f+j_coord_offsetB;
412             fjptrC             = f+j_coord_offsetC;
413             fjptrD             = f+j_coord_offsetD;
414
415             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
416
417             /* Inner loop uses 155 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             /* Get j neighbor index, and coordinate index */
424             jnrlistA         = jjnr[jidx];
425             jnrlistB         = jjnr[jidx+1];
426             jnrlistC         = jjnr[jidx+2];
427             jnrlistD         = jjnr[jidx+3];
428             /* Sign of each element will be negative for non-real atoms.
429              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
430              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
431              */
432             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
433             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
434             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
435             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
436             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
437             j_coord_offsetA  = DIM*jnrA;
438             j_coord_offsetB  = DIM*jnrB;
439             j_coord_offsetC  = DIM*jnrC;
440             j_coord_offsetD  = DIM*jnrD;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444                                               x+j_coord_offsetC,x+j_coord_offsetD,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_ps(ix0,jx0);
449             dy00             = _mm_sub_ps(iy0,jy0);
450             dz00             = _mm_sub_ps(iz0,jz0);
451             dx10             = _mm_sub_ps(ix1,jx0);
452             dy10             = _mm_sub_ps(iy1,jy0);
453             dz10             = _mm_sub_ps(iz1,jz0);
454             dx20             = _mm_sub_ps(ix2,jx0);
455             dy20             = _mm_sub_ps(iy2,jy0);
456             dz20             = _mm_sub_ps(iz2,jz0);
457             dx30             = _mm_sub_ps(ix3,jx0);
458             dy30             = _mm_sub_ps(iy3,jy0);
459             dz30             = _mm_sub_ps(iz3,jz0);
460
461             /* Calculate squared distance and things based on it */
462             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
463             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
464             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
465             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
466
467             rinv10           = gmx_mm_invsqrt_ps(rsq10);
468             rinv20           = gmx_mm_invsqrt_ps(rsq20);
469             rinv30           = gmx_mm_invsqrt_ps(rsq30);
470
471             rinvsq00         = gmx_mm_inv_ps(rsq00);
472             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
473             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
474             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
475
476             /* Load parameters for j particles */
477             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
478                                                               charge+jnrC+0,charge+jnrD+0);
479             vdwjidx0A        = 2*vdwtype[jnrA+0];
480             vdwjidx0B        = 2*vdwtype[jnrB+0];
481             vdwjidx0C        = 2*vdwtype[jnrC+0];
482             vdwjidx0D        = 2*vdwtype[jnrD+0];
483
484             fjx0             = _mm_setzero_ps();
485             fjy0             = _mm_setzero_ps();
486             fjz0             = _mm_setzero_ps();
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             /* Compute parameters for interactions between i and j atoms */
493             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
494                                          vdwparam+vdwioffset0+vdwjidx0B,
495                                          vdwparam+vdwioffset0+vdwjidx0C,
496                                          vdwparam+vdwioffset0+vdwjidx0D,
497                                          &c6_00,&c12_00);
498
499             /* LENNARD-JONES DISPERSION/REPULSION */
500
501             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
502             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
503             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
504             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
505             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
509             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
510
511             fscal            = fvdw;
512
513             fscal            = _mm_andnot_ps(dummy_mask,fscal);
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_ps(fscal,dx00);
517             ty               = _mm_mul_ps(fscal,dy00);
518             tz               = _mm_mul_ps(fscal,dz00);
519
520             /* Update vectorial force */
521             fix0             = _mm_add_ps(fix0,tx);
522             fiy0             = _mm_add_ps(fiy0,ty);
523             fiz0             = _mm_add_ps(fiz0,tz);
524
525             fjx0             = _mm_add_ps(fjx0,tx);
526             fjy0             = _mm_add_ps(fjy0,ty);
527             fjz0             = _mm_add_ps(fjz0,tz);
528             
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r10              = _mm_mul_ps(rsq10,rinv10);
534             r10              = _mm_andnot_ps(dummy_mask,r10);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _mm_mul_ps(iq1,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_ps(r10,ewtabscale);
543             ewitab           = _mm_cvttps_epi32(ewrt);
544             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
545             ewitab           = _mm_slli_epi32(ewitab,2);
546             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
548             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
549             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
550             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
551             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
552             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
553             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
554             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_andnot_ps(dummy_mask,velec);
558             velecsum         = _mm_add_ps(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_ps(fscal,dx10);
566             ty               = _mm_mul_ps(fscal,dy10);
567             tz               = _mm_mul_ps(fscal,dz10);
568
569             /* Update vectorial force */
570             fix1             = _mm_add_ps(fix1,tx);
571             fiy1             = _mm_add_ps(fiy1,ty);
572             fiz1             = _mm_add_ps(fiz1,tz);
573
574             fjx0             = _mm_add_ps(fjx0,tx);
575             fjy0             = _mm_add_ps(fjy0,ty);
576             fjz0             = _mm_add_ps(fjz0,tz);
577             
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r20              = _mm_mul_ps(rsq20,rinv20);
583             r20              = _mm_andnot_ps(dummy_mask,r20);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq20             = _mm_mul_ps(iq2,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _mm_mul_ps(r20,ewtabscale);
592             ewitab           = _mm_cvttps_epi32(ewrt);
593             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
594             ewitab           = _mm_slli_epi32(ewitab,2);
595             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
596             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
597             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
598             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
599             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
600             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
601             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
602             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
603             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_andnot_ps(dummy_mask,velec);
607             velecsum         = _mm_add_ps(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_ps(fscal,dx20);
615             ty               = _mm_mul_ps(fscal,dy20);
616             tz               = _mm_mul_ps(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_ps(fix2,tx);
620             fiy2             = _mm_add_ps(fiy2,ty);
621             fiz2             = _mm_add_ps(fiz2,tz);
622
623             fjx0             = _mm_add_ps(fjx0,tx);
624             fjy0             = _mm_add_ps(fjy0,ty);
625             fjz0             = _mm_add_ps(fjz0,tz);
626             
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r30              = _mm_mul_ps(rsq30,rinv30);
632             r30              = _mm_andnot_ps(dummy_mask,r30);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq30             = _mm_mul_ps(iq3,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _mm_mul_ps(r30,ewtabscale);
641             ewitab           = _mm_cvttps_epi32(ewrt);
642             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
643             ewitab           = _mm_slli_epi32(ewitab,2);
644             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
645             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
646             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
647             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
648             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
649             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
650             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
651             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
652             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm_andnot_ps(dummy_mask,fscal);
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm_mul_ps(fscal,dx30);
664             ty               = _mm_mul_ps(fscal,dy30);
665             tz               = _mm_mul_ps(fscal,dz30);
666
667             /* Update vectorial force */
668             fix3             = _mm_add_ps(fix3,tx);
669             fiy3             = _mm_add_ps(fiy3,ty);
670             fiz3             = _mm_add_ps(fiz3,tz);
671
672             fjx0             = _mm_add_ps(fjx0,tx);
673             fjy0             = _mm_add_ps(fjy0,ty);
674             fjz0             = _mm_add_ps(fjz0,tz);
675             
676             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
677             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
678             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
679             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
680
681             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
682
683             /* Inner loop uses 158 flops */
684         }
685
686         /* End of innermost loop */
687
688         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
689                                               f+i_coord_offset,fshift+i_shift_offset);
690
691         ggid                        = gid[iidx];
692         /* Update potential energies */
693         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
694         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
695
696         /* Increment number of inner iterations */
697         inneriter                  += j_index_end - j_index_start;
698
699         /* Outer loop uses 26 flops */
700     }
701
702     /* Increment number of outer iterations */
703     outeriter        += nri;
704
705     /* Update outer/inner flops */
706
707     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
708 }
709 /*
710  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
711  * Electrostatics interaction: Ewald
712  * VdW interaction:            LennardJones
713  * Geometry:                   Water4-Particle
714  * Calculate force/pot:        Force
715  */
716 void
717 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
718                     (t_nblist * gmx_restrict                nlist,
719                      rvec * gmx_restrict                    xx,
720                      rvec * gmx_restrict                    ff,
721                      t_forcerec * gmx_restrict              fr,
722                      t_mdatoms * gmx_restrict               mdatoms,
723                      nb_kernel_data_t * gmx_restrict        kernel_data,
724                      t_nrnb * gmx_restrict                  nrnb)
725 {
726     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
727      * just 0 for non-waters.
728      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
729      * jnr indices corresponding to data put in the four positions in the SIMD register.
730      */
731     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
732     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
733     int              jnrA,jnrB,jnrC,jnrD;
734     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
735     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
736     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
737     real             rcutoff_scalar;
738     real             *shiftvec,*fshift,*x,*f;
739     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
740     real             scratch[4*DIM];
741     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
742     int              vdwioffset0;
743     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
744     int              vdwioffset1;
745     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
746     int              vdwioffset2;
747     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
748     int              vdwioffset3;
749     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
750     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
751     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
752     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
753     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
754     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
755     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
756     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
757     real             *charge;
758     int              nvdwtype;
759     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
760     int              *vdwtype;
761     real             *vdwparam;
762     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
763     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
764     __m128i          ewitab;
765     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
766     real             *ewtab;
767     __m128           dummy_mask,cutoff_mask;
768     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
769     __m128           one     = _mm_set1_ps(1.0);
770     __m128           two     = _mm_set1_ps(2.0);
771     x                = xx[0];
772     f                = ff[0];
773
774     nri              = nlist->nri;
775     iinr             = nlist->iinr;
776     jindex           = nlist->jindex;
777     jjnr             = nlist->jjnr;
778     shiftidx         = nlist->shift;
779     gid              = nlist->gid;
780     shiftvec         = fr->shift_vec[0];
781     fshift           = fr->fshift[0];
782     facel            = _mm_set1_ps(fr->epsfac);
783     charge           = mdatoms->chargeA;
784     nvdwtype         = fr->ntype;
785     vdwparam         = fr->nbfp;
786     vdwtype          = mdatoms->typeA;
787
788     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
789     ewtab            = fr->ic->tabq_coul_F;
790     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
791     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
796     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
797     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
798     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = jnrC = jnrD = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804     j_coord_offsetC = 0;
805     j_coord_offsetD = 0;
806
807     outeriter        = 0;
808     inneriter        = 0;
809
810     for(iidx=0;iidx<4*DIM;iidx++)
811     {
812         scratch[iidx] = 0.0;
813     }  
814
815     /* Start outer loop over neighborlists */
816     for(iidx=0; iidx<nri; iidx++)
817     {
818         /* Load shift vector for this list */
819         i_shift_offset   = DIM*shiftidx[iidx];
820
821         /* Load limits for loop over neighbors */
822         j_index_start    = jindex[iidx];
823         j_index_end      = jindex[iidx+1];
824
825         /* Get outer coordinate index */
826         inr              = iinr[iidx];
827         i_coord_offset   = DIM*inr;
828
829         /* Load i particle coords and add shift vector */
830         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
831                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
832         
833         fix0             = _mm_setzero_ps();
834         fiy0             = _mm_setzero_ps();
835         fiz0             = _mm_setzero_ps();
836         fix1             = _mm_setzero_ps();
837         fiy1             = _mm_setzero_ps();
838         fiz1             = _mm_setzero_ps();
839         fix2             = _mm_setzero_ps();
840         fiy2             = _mm_setzero_ps();
841         fiz2             = _mm_setzero_ps();
842         fix3             = _mm_setzero_ps();
843         fiy3             = _mm_setzero_ps();
844         fiz3             = _mm_setzero_ps();
845
846         /* Start inner kernel loop */
847         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrA             = jjnr[jidx];
852             jnrB             = jjnr[jidx+1];
853             jnrC             = jjnr[jidx+2];
854             jnrD             = jjnr[jidx+3];
855             j_coord_offsetA  = DIM*jnrA;
856             j_coord_offsetB  = DIM*jnrB;
857             j_coord_offsetC  = DIM*jnrC;
858             j_coord_offsetD  = DIM*jnrD;
859
860             /* load j atom coordinates */
861             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
862                                               x+j_coord_offsetC,x+j_coord_offsetD,
863                                               &jx0,&jy0,&jz0);
864
865             /* Calculate displacement vector */
866             dx00             = _mm_sub_ps(ix0,jx0);
867             dy00             = _mm_sub_ps(iy0,jy0);
868             dz00             = _mm_sub_ps(iz0,jz0);
869             dx10             = _mm_sub_ps(ix1,jx0);
870             dy10             = _mm_sub_ps(iy1,jy0);
871             dz10             = _mm_sub_ps(iz1,jz0);
872             dx20             = _mm_sub_ps(ix2,jx0);
873             dy20             = _mm_sub_ps(iy2,jy0);
874             dz20             = _mm_sub_ps(iz2,jz0);
875             dx30             = _mm_sub_ps(ix3,jx0);
876             dy30             = _mm_sub_ps(iy3,jy0);
877             dz30             = _mm_sub_ps(iz3,jz0);
878
879             /* Calculate squared distance and things based on it */
880             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
881             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
882             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
883             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
884
885             rinv10           = gmx_mm_invsqrt_ps(rsq10);
886             rinv20           = gmx_mm_invsqrt_ps(rsq20);
887             rinv30           = gmx_mm_invsqrt_ps(rsq30);
888
889             rinvsq00         = gmx_mm_inv_ps(rsq00);
890             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
891             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
892             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
893
894             /* Load parameters for j particles */
895             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
896                                                               charge+jnrC+0,charge+jnrD+0);
897             vdwjidx0A        = 2*vdwtype[jnrA+0];
898             vdwjidx0B        = 2*vdwtype[jnrB+0];
899             vdwjidx0C        = 2*vdwtype[jnrC+0];
900             vdwjidx0D        = 2*vdwtype[jnrD+0];
901
902             fjx0             = _mm_setzero_ps();
903             fjy0             = _mm_setzero_ps();
904             fjz0             = _mm_setzero_ps();
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             /* Compute parameters for interactions between i and j atoms */
911             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
912                                          vdwparam+vdwioffset0+vdwjidx0B,
913                                          vdwparam+vdwioffset0+vdwjidx0C,
914                                          vdwparam+vdwioffset0+vdwjidx0D,
915                                          &c6_00,&c12_00);
916
917             /* LENNARD-JONES DISPERSION/REPULSION */
918
919             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
920             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
921
922             fscal            = fvdw;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm_mul_ps(fscal,dx00);
926             ty               = _mm_mul_ps(fscal,dy00);
927             tz               = _mm_mul_ps(fscal,dz00);
928
929             /* Update vectorial force */
930             fix0             = _mm_add_ps(fix0,tx);
931             fiy0             = _mm_add_ps(fiy0,ty);
932             fiz0             = _mm_add_ps(fiz0,tz);
933
934             fjx0             = _mm_add_ps(fjx0,tx);
935             fjy0             = _mm_add_ps(fjy0,ty);
936             fjz0             = _mm_add_ps(fjz0,tz);
937             
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             r10              = _mm_mul_ps(rsq10,rinv10);
943
944             /* Compute parameters for interactions between i and j atoms */
945             qq10             = _mm_mul_ps(iq1,jq0);
946
947             /* EWALD ELECTROSTATICS */
948
949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
950             ewrt             = _mm_mul_ps(r10,ewtabscale);
951             ewitab           = _mm_cvttps_epi32(ewrt);
952             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
953             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
954                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
955                                          &ewtabF,&ewtabFn);
956             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
957             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
958
959             fscal            = felec;
960
961             /* Calculate temporary vectorial force */
962             tx               = _mm_mul_ps(fscal,dx10);
963             ty               = _mm_mul_ps(fscal,dy10);
964             tz               = _mm_mul_ps(fscal,dz10);
965
966             /* Update vectorial force */
967             fix1             = _mm_add_ps(fix1,tx);
968             fiy1             = _mm_add_ps(fiy1,ty);
969             fiz1             = _mm_add_ps(fiz1,tz);
970
971             fjx0             = _mm_add_ps(fjx0,tx);
972             fjy0             = _mm_add_ps(fjy0,ty);
973             fjz0             = _mm_add_ps(fjz0,tz);
974             
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r20              = _mm_mul_ps(rsq20,rinv20);
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq20             = _mm_mul_ps(iq2,jq0);
983
984             /* EWALD ELECTROSTATICS */
985
986             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
987             ewrt             = _mm_mul_ps(r20,ewtabscale);
988             ewitab           = _mm_cvttps_epi32(ewrt);
989             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
990             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
991                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
992                                          &ewtabF,&ewtabFn);
993             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
994             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_ps(fscal,dx20);
1000             ty               = _mm_mul_ps(fscal,dy20);
1001             tz               = _mm_mul_ps(fscal,dz20);
1002
1003             /* Update vectorial force */
1004             fix2             = _mm_add_ps(fix2,tx);
1005             fiy2             = _mm_add_ps(fiy2,ty);
1006             fiz2             = _mm_add_ps(fiz2,tz);
1007
1008             fjx0             = _mm_add_ps(fjx0,tx);
1009             fjy0             = _mm_add_ps(fjy0,ty);
1010             fjz0             = _mm_add_ps(fjz0,tz);
1011             
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r30              = _mm_mul_ps(rsq30,rinv30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm_mul_ps(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_ps(r30,ewtabscale);
1025             ewitab           = _mm_cvttps_epi32(ewrt);
1026             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1027             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1028                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1029                                          &ewtabF,&ewtabFn);
1030             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1031             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1032
1033             fscal            = felec;
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm_mul_ps(fscal,dx30);
1037             ty               = _mm_mul_ps(fscal,dy30);
1038             tz               = _mm_mul_ps(fscal,dz30);
1039
1040             /* Update vectorial force */
1041             fix3             = _mm_add_ps(fix3,tx);
1042             fiy3             = _mm_add_ps(fiy3,ty);
1043             fiz3             = _mm_add_ps(fiz3,tz);
1044
1045             fjx0             = _mm_add_ps(fjx0,tx);
1046             fjy0             = _mm_add_ps(fjy0,ty);
1047             fjz0             = _mm_add_ps(fjz0,tz);
1048             
1049             fjptrA             = f+j_coord_offsetA;
1050             fjptrB             = f+j_coord_offsetB;
1051             fjptrC             = f+j_coord_offsetC;
1052             fjptrD             = f+j_coord_offsetD;
1053
1054             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1055
1056             /* Inner loop uses 135 flops */
1057         }
1058
1059         if(jidx<j_index_end)
1060         {
1061
1062             /* Get j neighbor index, and coordinate index */
1063             jnrlistA         = jjnr[jidx];
1064             jnrlistB         = jjnr[jidx+1];
1065             jnrlistC         = jjnr[jidx+2];
1066             jnrlistD         = jjnr[jidx+3];
1067             /* Sign of each element will be negative for non-real atoms.
1068              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1069              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1070              */
1071             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1072             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1073             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1074             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1075             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1076             j_coord_offsetA  = DIM*jnrA;
1077             j_coord_offsetB  = DIM*jnrB;
1078             j_coord_offsetC  = DIM*jnrC;
1079             j_coord_offsetD  = DIM*jnrD;
1080
1081             /* load j atom coordinates */
1082             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1083                                               x+j_coord_offsetC,x+j_coord_offsetD,
1084                                               &jx0,&jy0,&jz0);
1085
1086             /* Calculate displacement vector */
1087             dx00             = _mm_sub_ps(ix0,jx0);
1088             dy00             = _mm_sub_ps(iy0,jy0);
1089             dz00             = _mm_sub_ps(iz0,jz0);
1090             dx10             = _mm_sub_ps(ix1,jx0);
1091             dy10             = _mm_sub_ps(iy1,jy0);
1092             dz10             = _mm_sub_ps(iz1,jz0);
1093             dx20             = _mm_sub_ps(ix2,jx0);
1094             dy20             = _mm_sub_ps(iy2,jy0);
1095             dz20             = _mm_sub_ps(iz2,jz0);
1096             dx30             = _mm_sub_ps(ix3,jx0);
1097             dy30             = _mm_sub_ps(iy3,jy0);
1098             dz30             = _mm_sub_ps(iz3,jz0);
1099
1100             /* Calculate squared distance and things based on it */
1101             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1102             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1103             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1104             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1105
1106             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1107             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1108             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1109
1110             rinvsq00         = gmx_mm_inv_ps(rsq00);
1111             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1112             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1113             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1114
1115             /* Load parameters for j particles */
1116             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1117                                                               charge+jnrC+0,charge+jnrD+0);
1118             vdwjidx0A        = 2*vdwtype[jnrA+0];
1119             vdwjidx0B        = 2*vdwtype[jnrB+0];
1120             vdwjidx0C        = 2*vdwtype[jnrC+0];
1121             vdwjidx0D        = 2*vdwtype[jnrD+0];
1122
1123             fjx0             = _mm_setzero_ps();
1124             fjy0             = _mm_setzero_ps();
1125             fjz0             = _mm_setzero_ps();
1126
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1133                                          vdwparam+vdwioffset0+vdwjidx0B,
1134                                          vdwparam+vdwioffset0+vdwjidx0C,
1135                                          vdwparam+vdwioffset0+vdwjidx0D,
1136                                          &c6_00,&c12_00);
1137
1138             /* LENNARD-JONES DISPERSION/REPULSION */
1139
1140             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1141             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1142
1143             fscal            = fvdw;
1144
1145             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1146
1147             /* Calculate temporary vectorial force */
1148             tx               = _mm_mul_ps(fscal,dx00);
1149             ty               = _mm_mul_ps(fscal,dy00);
1150             tz               = _mm_mul_ps(fscal,dz00);
1151
1152             /* Update vectorial force */
1153             fix0             = _mm_add_ps(fix0,tx);
1154             fiy0             = _mm_add_ps(fiy0,ty);
1155             fiz0             = _mm_add_ps(fiz0,tz);
1156
1157             fjx0             = _mm_add_ps(fjx0,tx);
1158             fjy0             = _mm_add_ps(fjy0,ty);
1159             fjz0             = _mm_add_ps(fjz0,tz);
1160             
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             r10              = _mm_mul_ps(rsq10,rinv10);
1166             r10              = _mm_andnot_ps(dummy_mask,r10);
1167
1168             /* Compute parameters for interactions between i and j atoms */
1169             qq10             = _mm_mul_ps(iq1,jq0);
1170
1171             /* EWALD ELECTROSTATICS */
1172
1173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174             ewrt             = _mm_mul_ps(r10,ewtabscale);
1175             ewitab           = _mm_cvttps_epi32(ewrt);
1176             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1177             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1178                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1179                                          &ewtabF,&ewtabFn);
1180             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1181             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1182
1183             fscal            = felec;
1184
1185             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm_mul_ps(fscal,dx10);
1189             ty               = _mm_mul_ps(fscal,dy10);
1190             tz               = _mm_mul_ps(fscal,dz10);
1191
1192             /* Update vectorial force */
1193             fix1             = _mm_add_ps(fix1,tx);
1194             fiy1             = _mm_add_ps(fiy1,ty);
1195             fiz1             = _mm_add_ps(fiz1,tz);
1196
1197             fjx0             = _mm_add_ps(fjx0,tx);
1198             fjy0             = _mm_add_ps(fjy0,ty);
1199             fjz0             = _mm_add_ps(fjz0,tz);
1200             
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r20              = _mm_mul_ps(rsq20,rinv20);
1206             r20              = _mm_andnot_ps(dummy_mask,r20);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq20             = _mm_mul_ps(iq2,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_ps(r20,ewtabscale);
1215             ewitab           = _mm_cvttps_epi32(ewrt);
1216             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1217             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1218                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1219                                          &ewtabF,&ewtabFn);
1220             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1221             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm_mul_ps(fscal,dx20);
1229             ty               = _mm_mul_ps(fscal,dy20);
1230             tz               = _mm_mul_ps(fscal,dz20);
1231
1232             /* Update vectorial force */
1233             fix2             = _mm_add_ps(fix2,tx);
1234             fiy2             = _mm_add_ps(fiy2,ty);
1235             fiz2             = _mm_add_ps(fiz2,tz);
1236
1237             fjx0             = _mm_add_ps(fjx0,tx);
1238             fjy0             = _mm_add_ps(fjy0,ty);
1239             fjz0             = _mm_add_ps(fjz0,tz);
1240             
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             r30              = _mm_mul_ps(rsq30,rinv30);
1246             r30              = _mm_andnot_ps(dummy_mask,r30);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq30             = _mm_mul_ps(iq3,jq0);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm_mul_ps(r30,ewtabscale);
1255             ewitab           = _mm_cvttps_epi32(ewrt);
1256             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1257             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1258                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1259                                          &ewtabF,&ewtabFn);
1260             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1261             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1262
1263             fscal            = felec;
1264
1265             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1266
1267             /* Calculate temporary vectorial force */
1268             tx               = _mm_mul_ps(fscal,dx30);
1269             ty               = _mm_mul_ps(fscal,dy30);
1270             tz               = _mm_mul_ps(fscal,dz30);
1271
1272             /* Update vectorial force */
1273             fix3             = _mm_add_ps(fix3,tx);
1274             fiy3             = _mm_add_ps(fiy3,ty);
1275             fiz3             = _mm_add_ps(fiz3,tz);
1276
1277             fjx0             = _mm_add_ps(fjx0,tx);
1278             fjy0             = _mm_add_ps(fjy0,ty);
1279             fjz0             = _mm_add_ps(fjz0,tz);
1280             
1281             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1282             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1283             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1284             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1285
1286             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1287
1288             /* Inner loop uses 138 flops */
1289         }
1290
1291         /* End of innermost loop */
1292
1293         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1294                                               f+i_coord_offset,fshift+i_shift_offset);
1295
1296         /* Increment number of inner iterations */
1297         inneriter                  += j_index_end - j_index_start;
1298
1299         /* Outer loop uses 24 flops */
1300     }
1301
1302     /* Increment number of outer iterations */
1303     outeriter        += nri;
1304
1305     /* Update outer/inner flops */
1306
1307     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1308 }