Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
75     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139         shX              = shiftvec[i_shift_offset+XX];
140         shY              = shiftvec[i_shift_offset+YY];
141         shZ              = shiftvec[i_shift_offset+ZZ];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
153         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
154         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
155         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
156         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
157         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
158         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
159         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
160         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
161         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
162         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
163         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168         fix1             = _mm_setzero_ps();
169         fiy1             = _mm_setzero_ps();
170         fiz1             = _mm_setzero_ps();
171         fix2             = _mm_setzero_ps();
172         fiy2             = _mm_setzero_ps();
173         fiz2             = _mm_setzero_ps();
174         fix3             = _mm_setzero_ps();
175         fiy3             = _mm_setzero_ps();
176         fiz3             = _mm_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212             dx30             = _mm_sub_ps(ix3,jx0);
213             dy30             = _mm_sub_ps(iy3,jy0);
214             dz30             = _mm_sub_ps(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
221
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224             rinv30           = gmx_mm_invsqrt_ps(rsq30);
225
226             rinvsq00         = gmx_mm_inv_ps(rsq00);
227             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
228             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
229             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                               charge+jnrC+0,charge+jnrD+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,
246                                          vdwparam+vdwioffset0+vdwjidx0C,
247                                          vdwparam+vdwioffset0+vdwjidx0D,
248                                          &c6_00,&c12_00);
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
254             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
256             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
260
261             fscal            = fvdw;
262
263             /* Calculate temporary vectorial force */
264             tx               = _mm_mul_ps(fscal,dx00);
265             ty               = _mm_mul_ps(fscal,dy00);
266             tz               = _mm_mul_ps(fscal,dz00);
267
268             /* Update vectorial force */
269             fix0             = _mm_add_ps(fix0,tx);
270             fiy0             = _mm_add_ps(fiy0,ty);
271             fiz0             = _mm_add_ps(fiz0,tz);
272
273             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
274                                                    f+j_coord_offsetC,f+j_coord_offsetD,
275                                                    tx,ty,tz);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r10              = _mm_mul_ps(rsq10,rinv10);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _mm_mul_ps(iq1,jq0);
285
286             /* EWALD ELECTROSTATICS */
287
288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
289             ewrt             = _mm_mul_ps(r10,ewtabscale);
290             ewitab           = _mm_cvttps_epi32(ewrt);
291             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
292             ewitab           = _mm_slli_epi32(ewitab,2);
293             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
294             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
295             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
296             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
297             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
298             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
299             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
300             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
301             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_ps(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx10);
310             ty               = _mm_mul_ps(fscal,dy10);
311             tz               = _mm_mul_ps(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm_add_ps(fix1,tx);
315             fiy1             = _mm_add_ps(fiy1,ty);
316             fiz1             = _mm_add_ps(fiz1,tz);
317
318             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
319                                                    f+j_coord_offsetC,f+j_coord_offsetD,
320                                                    tx,ty,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r20              = _mm_mul_ps(rsq20,rinv20);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq20             = _mm_mul_ps(iq2,jq0);
330
331             /* EWALD ELECTROSTATICS */
332
333             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
334             ewrt             = _mm_mul_ps(r20,ewtabscale);
335             ewitab           = _mm_cvttps_epi32(ewrt);
336             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
337             ewitab           = _mm_slli_epi32(ewitab,2);
338             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
339             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
340             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
341             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
342             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
343             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
344             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
345             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
346             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_ps(fscal,dx20);
355             ty               = _mm_mul_ps(fscal,dy20);
356             tz               = _mm_mul_ps(fscal,dz20);
357
358             /* Update vectorial force */
359             fix2             = _mm_add_ps(fix2,tx);
360             fiy2             = _mm_add_ps(fiy2,ty);
361             fiz2             = _mm_add_ps(fiz2,tz);
362
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
364                                                    f+j_coord_offsetC,f+j_coord_offsetD,
365                                                    tx,ty,tz);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r30              = _mm_mul_ps(rsq30,rinv30);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq30             = _mm_mul_ps(iq3,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_ps(r30,ewtabscale);
380             ewitab           = _mm_cvttps_epi32(ewrt);
381             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
390             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
391             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx30);
400             ty               = _mm_mul_ps(fscal,dy30);
401             tz               = _mm_mul_ps(fscal,dz30);
402
403             /* Update vectorial force */
404             fix3             = _mm_add_ps(fix3,tx);
405             fiy3             = _mm_add_ps(fiy3,ty);
406             fiz3             = _mm_add_ps(fiz3,tz);
407
408             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
409                                                    f+j_coord_offsetC,f+j_coord_offsetD,
410                                                    tx,ty,tz);
411
412             /* Inner loop uses 155 flops */
413         }
414
415         if(jidx<j_index_end)
416         {
417
418             /* Get j neighbor index, and coordinate index */
419             jnrA             = jjnr[jidx];
420             jnrB             = jjnr[jidx+1];
421             jnrC             = jjnr[jidx+2];
422             jnrD             = jjnr[jidx+3];
423
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
427              */
428             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
429             jnrA       = (jnrA>=0) ? jnrA : 0;
430             jnrB       = (jnrB>=0) ? jnrB : 0;
431             jnrC       = (jnrC>=0) ? jnrC : 0;
432             jnrD       = (jnrD>=0) ? jnrD : 0;
433
434             j_coord_offsetA  = DIM*jnrA;
435             j_coord_offsetB  = DIM*jnrB;
436             j_coord_offsetC  = DIM*jnrC;
437             j_coord_offsetD  = DIM*jnrD;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
441                                               x+j_coord_offsetC,x+j_coord_offsetD,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx00             = _mm_sub_ps(ix0,jx0);
446             dy00             = _mm_sub_ps(iy0,jy0);
447             dz00             = _mm_sub_ps(iz0,jz0);
448             dx10             = _mm_sub_ps(ix1,jx0);
449             dy10             = _mm_sub_ps(iy1,jy0);
450             dz10             = _mm_sub_ps(iz1,jz0);
451             dx20             = _mm_sub_ps(ix2,jx0);
452             dy20             = _mm_sub_ps(iy2,jy0);
453             dz20             = _mm_sub_ps(iz2,jz0);
454             dx30             = _mm_sub_ps(ix3,jx0);
455             dy30             = _mm_sub_ps(iy3,jy0);
456             dz30             = _mm_sub_ps(iz3,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
462             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
463
464             rinv10           = gmx_mm_invsqrt_ps(rsq10);
465             rinv20           = gmx_mm_invsqrt_ps(rsq20);
466             rinv30           = gmx_mm_invsqrt_ps(rsq30);
467
468             rinvsq00         = gmx_mm_inv_ps(rsq00);
469             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
470             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
471             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
472
473             /* Load parameters for j particles */
474             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
475                                                               charge+jnrC+0,charge+jnrD+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477             vdwjidx0B        = 2*vdwtype[jnrB+0];
478             vdwjidx0C        = 2*vdwtype[jnrC+0];
479             vdwjidx0D        = 2*vdwtype[jnrD+0];
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             /* Compute parameters for interactions between i and j atoms */
486             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
487                                          vdwparam+vdwioffset0+vdwjidx0B,
488                                          vdwparam+vdwioffset0+vdwjidx0C,
489                                          vdwparam+vdwioffset0+vdwjidx0D,
490                                          &c6_00,&c12_00);
491
492             /* LENNARD-JONES DISPERSION/REPULSION */
493
494             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
495             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
496             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
497             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
498             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
502             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
503
504             fscal            = fvdw;
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx00);
510             ty               = _mm_mul_ps(fscal,dy00);
511             tz               = _mm_mul_ps(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm_add_ps(fix0,tx);
515             fiy0             = _mm_add_ps(fiy0,ty);
516             fiz0             = _mm_add_ps(fiz0,tz);
517
518             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
519                                                    f+j_coord_offsetC,f+j_coord_offsetD,
520                                                    tx,ty,tz);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r10              = _mm_mul_ps(rsq10,rinv10);
527             r10              = _mm_andnot_ps(dummy_mask,r10);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq10             = _mm_mul_ps(iq1,jq0);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = _mm_mul_ps(r10,ewtabscale);
536             ewitab           = _mm_cvttps_epi32(ewrt);
537             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
538             ewitab           = _mm_slli_epi32(ewitab,2);
539             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
540             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
541             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
542             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
543             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
544             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
545             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
546             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
547             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_andnot_ps(dummy_mask,velec);
551             velecsum         = _mm_add_ps(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_andnot_ps(dummy_mask,fscal);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_ps(fscal,dx10);
559             ty               = _mm_mul_ps(fscal,dy10);
560             tz               = _mm_mul_ps(fscal,dz10);
561
562             /* Update vectorial force */
563             fix1             = _mm_add_ps(fix1,tx);
564             fiy1             = _mm_add_ps(fiy1,ty);
565             fiz1             = _mm_add_ps(fiz1,tz);
566
567             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
568                                                    f+j_coord_offsetC,f+j_coord_offsetD,
569                                                    tx,ty,tz);
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r20              = _mm_mul_ps(rsq20,rinv20);
576             r20              = _mm_andnot_ps(dummy_mask,r20);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq20             = _mm_mul_ps(iq2,jq0);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _mm_mul_ps(r20,ewtabscale);
585             ewitab           = _mm_cvttps_epi32(ewrt);
586             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
587             ewitab           = _mm_slli_epi32(ewitab,2);
588             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
589             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
590             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
591             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
592             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
593             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
594             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
595             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
596             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm_andnot_ps(dummy_mask,velec);
600             velecsum         = _mm_add_ps(velecsum,velec);
601
602             fscal            = felec;
603
604             fscal            = _mm_andnot_ps(dummy_mask,fscal);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm_mul_ps(fscal,dx20);
608             ty               = _mm_mul_ps(fscal,dy20);
609             tz               = _mm_mul_ps(fscal,dz20);
610
611             /* Update vectorial force */
612             fix2             = _mm_add_ps(fix2,tx);
613             fiy2             = _mm_add_ps(fiy2,ty);
614             fiz2             = _mm_add_ps(fiz2,tz);
615
616             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
617                                                    f+j_coord_offsetC,f+j_coord_offsetD,
618                                                    tx,ty,tz);
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r30              = _mm_mul_ps(rsq30,rinv30);
625             r30              = _mm_andnot_ps(dummy_mask,r30);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq30             = _mm_mul_ps(iq3,jq0);
629
630             /* EWALD ELECTROSTATICS */
631
632             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633             ewrt             = _mm_mul_ps(r30,ewtabscale);
634             ewitab           = _mm_cvttps_epi32(ewrt);
635             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
636             ewitab           = _mm_slli_epi32(ewitab,2);
637             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
638             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
639             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
640             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
641             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
642             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
643             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
644             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
645             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm_andnot_ps(dummy_mask,velec);
649             velecsum         = _mm_add_ps(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm_andnot_ps(dummy_mask,fscal);
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm_mul_ps(fscal,dx30);
657             ty               = _mm_mul_ps(fscal,dy30);
658             tz               = _mm_mul_ps(fscal,dz30);
659
660             /* Update vectorial force */
661             fix3             = _mm_add_ps(fix3,tx);
662             fiy3             = _mm_add_ps(fiy3,ty);
663             fiz3             = _mm_add_ps(fiz3,tz);
664
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
666                                                    f+j_coord_offsetC,f+j_coord_offsetD,
667                                                    tx,ty,tz);
668
669             /* Inner loop uses 158 flops */
670         }
671
672         /* End of innermost loop */
673
674         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
675                                               f+i_coord_offset,fshift+i_shift_offset);
676
677         ggid                        = gid[iidx];
678         /* Update potential energies */
679         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
680         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 38 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*38 + inneriter*158);
694 }
695 /*
696  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
697  * Electrostatics interaction: Ewald
698  * VdW interaction:            LennardJones
699  * Geometry:                   Water4-Particle
700  * Calculate force/pot:        Force
701  */
702 void
703 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
704                     (t_nblist * gmx_restrict                nlist,
705                      rvec * gmx_restrict                    xx,
706                      rvec * gmx_restrict                    ff,
707                      t_forcerec * gmx_restrict              fr,
708                      t_mdatoms * gmx_restrict               mdatoms,
709                      nb_kernel_data_t * gmx_restrict        kernel_data,
710                      t_nrnb * gmx_restrict                  nrnb)
711 {
712     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
713      * just 0 for non-waters.
714      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
715      * jnr indices corresponding to data put in the four positions in the SIMD register.
716      */
717     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
718     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
719     int              jnrA,jnrB,jnrC,jnrD;
720     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             shX,shY,shZ,rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
725     int              vdwioffset0;
726     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
727     int              vdwioffset1;
728     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729     int              vdwioffset2;
730     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731     int              vdwioffset3;
732     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
734     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
739     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
740     real             *charge;
741     int              nvdwtype;
742     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
743     int              *vdwtype;
744     real             *vdwparam;
745     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
746     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
747     __m128i          ewitab;
748     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
749     real             *ewtab;
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     nvdwtype         = fr->ntype;
768     vdwparam         = fr->nbfp;
769     vdwtype          = mdatoms->typeA;
770
771     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
772     ewtab            = fr->ic->tabq_coul_F;
773     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
774     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
779     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
780     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
781     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
782
783     /* Avoid stupid compiler warnings */
784     jnrA = jnrB = jnrC = jnrD = 0;
785     j_coord_offsetA = 0;
786     j_coord_offsetB = 0;
787     j_coord_offsetC = 0;
788     j_coord_offsetD = 0;
789
790     outeriter        = 0;
791     inneriter        = 0;
792
793     /* Start outer loop over neighborlists */
794     for(iidx=0; iidx<nri; iidx++)
795     {
796         /* Load shift vector for this list */
797         i_shift_offset   = DIM*shiftidx[iidx];
798         shX              = shiftvec[i_shift_offset+XX];
799         shY              = shiftvec[i_shift_offset+YY];
800         shZ              = shiftvec[i_shift_offset+ZZ];
801
802         /* Load limits for loop over neighbors */
803         j_index_start    = jindex[iidx];
804         j_index_end      = jindex[iidx+1];
805
806         /* Get outer coordinate index */
807         inr              = iinr[iidx];
808         i_coord_offset   = DIM*inr;
809
810         /* Load i particle coords and add shift vector */
811         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
812         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
813         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
814         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
815         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
816         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
817         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
818         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
819         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
820         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
821         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
822         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
823
824         fix0             = _mm_setzero_ps();
825         fiy0             = _mm_setzero_ps();
826         fiz0             = _mm_setzero_ps();
827         fix1             = _mm_setzero_ps();
828         fiy1             = _mm_setzero_ps();
829         fiz1             = _mm_setzero_ps();
830         fix2             = _mm_setzero_ps();
831         fiy2             = _mm_setzero_ps();
832         fiz2             = _mm_setzero_ps();
833         fix3             = _mm_setzero_ps();
834         fiy3             = _mm_setzero_ps();
835         fiz3             = _mm_setzero_ps();
836
837         /* Start inner kernel loop */
838         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
839         {
840
841             /* Get j neighbor index, and coordinate index */
842             jnrA             = jjnr[jidx];
843             jnrB             = jjnr[jidx+1];
844             jnrC             = jjnr[jidx+2];
845             jnrD             = jjnr[jidx+3];
846
847             j_coord_offsetA  = DIM*jnrA;
848             j_coord_offsetB  = DIM*jnrB;
849             j_coord_offsetC  = DIM*jnrC;
850             j_coord_offsetD  = DIM*jnrD;
851
852             /* load j atom coordinates */
853             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
854                                               x+j_coord_offsetC,x+j_coord_offsetD,
855                                               &jx0,&jy0,&jz0);
856
857             /* Calculate displacement vector */
858             dx00             = _mm_sub_ps(ix0,jx0);
859             dy00             = _mm_sub_ps(iy0,jy0);
860             dz00             = _mm_sub_ps(iz0,jz0);
861             dx10             = _mm_sub_ps(ix1,jx0);
862             dy10             = _mm_sub_ps(iy1,jy0);
863             dz10             = _mm_sub_ps(iz1,jz0);
864             dx20             = _mm_sub_ps(ix2,jx0);
865             dy20             = _mm_sub_ps(iy2,jy0);
866             dz20             = _mm_sub_ps(iz2,jz0);
867             dx30             = _mm_sub_ps(ix3,jx0);
868             dy30             = _mm_sub_ps(iy3,jy0);
869             dz30             = _mm_sub_ps(iz3,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
873             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
874             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
875             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
876
877             rinv10           = gmx_mm_invsqrt_ps(rsq10);
878             rinv20           = gmx_mm_invsqrt_ps(rsq20);
879             rinv30           = gmx_mm_invsqrt_ps(rsq30);
880
881             rinvsq00         = gmx_mm_inv_ps(rsq00);
882             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
883             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
884             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
885
886             /* Load parameters for j particles */
887             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
888                                                               charge+jnrC+0,charge+jnrD+0);
889             vdwjidx0A        = 2*vdwtype[jnrA+0];
890             vdwjidx0B        = 2*vdwtype[jnrB+0];
891             vdwjidx0C        = 2*vdwtype[jnrC+0];
892             vdwjidx0D        = 2*vdwtype[jnrD+0];
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
900                                          vdwparam+vdwioffset0+vdwjidx0B,
901                                          vdwparam+vdwioffset0+vdwjidx0C,
902                                          vdwparam+vdwioffset0+vdwjidx0D,
903                                          &c6_00,&c12_00);
904
905             /* LENNARD-JONES DISPERSION/REPULSION */
906
907             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
908             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
909
910             fscal            = fvdw;
911
912             /* Calculate temporary vectorial force */
913             tx               = _mm_mul_ps(fscal,dx00);
914             ty               = _mm_mul_ps(fscal,dy00);
915             tz               = _mm_mul_ps(fscal,dz00);
916
917             /* Update vectorial force */
918             fix0             = _mm_add_ps(fix0,tx);
919             fiy0             = _mm_add_ps(fiy0,ty);
920             fiz0             = _mm_add_ps(fiz0,tz);
921
922             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
923                                                    f+j_coord_offsetC,f+j_coord_offsetD,
924                                                    tx,ty,tz);
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             r10              = _mm_mul_ps(rsq10,rinv10);
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq10             = _mm_mul_ps(iq1,jq0);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _mm_mul_ps(r10,ewtabscale);
939             ewitab           = _mm_cvttps_epi32(ewrt);
940             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
941             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
942                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
943                                          &ewtabF,&ewtabFn);
944             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
945             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
946
947             fscal            = felec;
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_ps(fscal,dx10);
951             ty               = _mm_mul_ps(fscal,dy10);
952             tz               = _mm_mul_ps(fscal,dz10);
953
954             /* Update vectorial force */
955             fix1             = _mm_add_ps(fix1,tx);
956             fiy1             = _mm_add_ps(fiy1,ty);
957             fiz1             = _mm_add_ps(fiz1,tz);
958
959             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
960                                                    f+j_coord_offsetC,f+j_coord_offsetD,
961                                                    tx,ty,tz);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r20              = _mm_mul_ps(rsq20,rinv20);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq20             = _mm_mul_ps(iq2,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_ps(r20,ewtabscale);
976             ewitab           = _mm_cvttps_epi32(ewrt);
977             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
978             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
979                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
980                                          &ewtabF,&ewtabFn);
981             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
982             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
983
984             fscal            = felec;
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm_mul_ps(fscal,dx20);
988             ty               = _mm_mul_ps(fscal,dy20);
989             tz               = _mm_mul_ps(fscal,dz20);
990
991             /* Update vectorial force */
992             fix2             = _mm_add_ps(fix2,tx);
993             fiy2             = _mm_add_ps(fiy2,ty);
994             fiz2             = _mm_add_ps(fiz2,tz);
995
996             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
997                                                    f+j_coord_offsetC,f+j_coord_offsetD,
998                                                    tx,ty,tz);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r30              = _mm_mul_ps(rsq30,rinv30);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq30             = _mm_mul_ps(iq3,jq0);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm_mul_ps(r30,ewtabscale);
1013             ewitab           = _mm_cvttps_epi32(ewrt);
1014             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1015             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1016                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1017                                          &ewtabF,&ewtabFn);
1018             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1019             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1020
1021             fscal            = felec;
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_ps(fscal,dx30);
1025             ty               = _mm_mul_ps(fscal,dy30);
1026             tz               = _mm_mul_ps(fscal,dz30);
1027
1028             /* Update vectorial force */
1029             fix3             = _mm_add_ps(fix3,tx);
1030             fiy3             = _mm_add_ps(fiy3,ty);
1031             fiz3             = _mm_add_ps(fiz3,tz);
1032
1033             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1034                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1035                                                    tx,ty,tz);
1036
1037             /* Inner loop uses 135 flops */
1038         }
1039
1040         if(jidx<j_index_end)
1041         {
1042
1043             /* Get j neighbor index, and coordinate index */
1044             jnrA             = jjnr[jidx];
1045             jnrB             = jjnr[jidx+1];
1046             jnrC             = jjnr[jidx+2];
1047             jnrD             = jjnr[jidx+3];
1048
1049             /* Sign of each element will be negative for non-real atoms.
1050              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1051              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1052              */
1053             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1054             jnrA       = (jnrA>=0) ? jnrA : 0;
1055             jnrB       = (jnrB>=0) ? jnrB : 0;
1056             jnrC       = (jnrC>=0) ? jnrC : 0;
1057             jnrD       = (jnrD>=0) ? jnrD : 0;
1058
1059             j_coord_offsetA  = DIM*jnrA;
1060             j_coord_offsetB  = DIM*jnrB;
1061             j_coord_offsetC  = DIM*jnrC;
1062             j_coord_offsetD  = DIM*jnrD;
1063
1064             /* load j atom coordinates */
1065             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1066                                               x+j_coord_offsetC,x+j_coord_offsetD,
1067                                               &jx0,&jy0,&jz0);
1068
1069             /* Calculate displacement vector */
1070             dx00             = _mm_sub_ps(ix0,jx0);
1071             dy00             = _mm_sub_ps(iy0,jy0);
1072             dz00             = _mm_sub_ps(iz0,jz0);
1073             dx10             = _mm_sub_ps(ix1,jx0);
1074             dy10             = _mm_sub_ps(iy1,jy0);
1075             dz10             = _mm_sub_ps(iz1,jz0);
1076             dx20             = _mm_sub_ps(ix2,jx0);
1077             dy20             = _mm_sub_ps(iy2,jy0);
1078             dz20             = _mm_sub_ps(iz2,jz0);
1079             dx30             = _mm_sub_ps(ix3,jx0);
1080             dy30             = _mm_sub_ps(iy3,jy0);
1081             dz30             = _mm_sub_ps(iz3,jz0);
1082
1083             /* Calculate squared distance and things based on it */
1084             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1085             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1086             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1087             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1088
1089             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1090             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1091             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1092
1093             rinvsq00         = gmx_mm_inv_ps(rsq00);
1094             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1095             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1096             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1097
1098             /* Load parameters for j particles */
1099             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1100                                                               charge+jnrC+0,charge+jnrD+0);
1101             vdwjidx0A        = 2*vdwtype[jnrA+0];
1102             vdwjidx0B        = 2*vdwtype[jnrB+0];
1103             vdwjidx0C        = 2*vdwtype[jnrC+0];
1104             vdwjidx0D        = 2*vdwtype[jnrD+0];
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1112                                          vdwparam+vdwioffset0+vdwjidx0B,
1113                                          vdwparam+vdwioffset0+vdwjidx0C,
1114                                          vdwparam+vdwioffset0+vdwjidx0D,
1115                                          &c6_00,&c12_00);
1116
1117             /* LENNARD-JONES DISPERSION/REPULSION */
1118
1119             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1120             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1121
1122             fscal            = fvdw;
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm_mul_ps(fscal,dx00);
1128             ty               = _mm_mul_ps(fscal,dy00);
1129             tz               = _mm_mul_ps(fscal,dz00);
1130
1131             /* Update vectorial force */
1132             fix0             = _mm_add_ps(fix0,tx);
1133             fiy0             = _mm_add_ps(fiy0,ty);
1134             fiz0             = _mm_add_ps(fiz0,tz);
1135
1136             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1137                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1138                                                    tx,ty,tz);
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r10              = _mm_mul_ps(rsq10,rinv10);
1145             r10              = _mm_andnot_ps(dummy_mask,r10);
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             qq10             = _mm_mul_ps(iq1,jq0);
1149
1150             /* EWALD ELECTROSTATICS */
1151
1152             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1153             ewrt             = _mm_mul_ps(r10,ewtabscale);
1154             ewitab           = _mm_cvttps_epi32(ewrt);
1155             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1156             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1157                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1158                                          &ewtabF,&ewtabFn);
1159             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1160             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm_mul_ps(fscal,dx10);
1168             ty               = _mm_mul_ps(fscal,dy10);
1169             tz               = _mm_mul_ps(fscal,dz10);
1170
1171             /* Update vectorial force */
1172             fix1             = _mm_add_ps(fix1,tx);
1173             fiy1             = _mm_add_ps(fiy1,ty);
1174             fiz1             = _mm_add_ps(fiz1,tz);
1175
1176             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1177                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1178                                                    tx,ty,tz);
1179
1180             /**************************
1181              * CALCULATE INTERACTIONS *
1182              **************************/
1183
1184             r20              = _mm_mul_ps(rsq20,rinv20);
1185             r20              = _mm_andnot_ps(dummy_mask,r20);
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq20             = _mm_mul_ps(iq2,jq0);
1189
1190             /* EWALD ELECTROSTATICS */
1191
1192             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1193             ewrt             = _mm_mul_ps(r20,ewtabscale);
1194             ewitab           = _mm_cvttps_epi32(ewrt);
1195             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1196             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1197                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1198                                          &ewtabF,&ewtabFn);
1199             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1200             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1201
1202             fscal            = felec;
1203
1204             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1205
1206             /* Calculate temporary vectorial force */
1207             tx               = _mm_mul_ps(fscal,dx20);
1208             ty               = _mm_mul_ps(fscal,dy20);
1209             tz               = _mm_mul_ps(fscal,dz20);
1210
1211             /* Update vectorial force */
1212             fix2             = _mm_add_ps(fix2,tx);
1213             fiy2             = _mm_add_ps(fiy2,ty);
1214             fiz2             = _mm_add_ps(fiz2,tz);
1215
1216             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1217                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1218                                                    tx,ty,tz);
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             r30              = _mm_mul_ps(rsq30,rinv30);
1225             r30              = _mm_andnot_ps(dummy_mask,r30);
1226
1227             /* Compute parameters for interactions between i and j atoms */
1228             qq30             = _mm_mul_ps(iq3,jq0);
1229
1230             /* EWALD ELECTROSTATICS */
1231
1232             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1233             ewrt             = _mm_mul_ps(r30,ewtabscale);
1234             ewitab           = _mm_cvttps_epi32(ewrt);
1235             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1236             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1237                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1238                                          &ewtabF,&ewtabFn);
1239             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1240             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1241
1242             fscal            = felec;
1243
1244             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1245
1246             /* Calculate temporary vectorial force */
1247             tx               = _mm_mul_ps(fscal,dx30);
1248             ty               = _mm_mul_ps(fscal,dy30);
1249             tz               = _mm_mul_ps(fscal,dz30);
1250
1251             /* Update vectorial force */
1252             fix3             = _mm_add_ps(fix3,tx);
1253             fiy3             = _mm_add_ps(fiy3,ty);
1254             fiz3             = _mm_add_ps(fiz3,tz);
1255
1256             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1257                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1258                                                    tx,ty,tz);
1259
1260             /* Inner loop uses 138 flops */
1261         }
1262
1263         /* End of innermost loop */
1264
1265         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1266                                               f+i_coord_offset,fshift+i_shift_offset);
1267
1268         /* Increment number of inner iterations */
1269         inneriter                  += j_index_end - j_index_start;
1270
1271         /* Outer loop uses 36 flops */
1272     }
1273
1274     /* Increment number of outer iterations */
1275     outeriter        += nri;
1276
1277     /* Update outer/inner flops */
1278
1279     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*36 + inneriter*138);
1280 }