Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          ewitab;
86     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     __m128           dummy_mask,cutoff_mask;
89     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
90     __m128           one     = _mm_set1_ps(1.0);
91     __m128           two     = _mm_set1_ps(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_ps(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
112     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136         shX              = shiftvec[i_shift_offset+XX];
137         shY              = shiftvec[i_shift_offset+YY];
138         shZ              = shiftvec[i_shift_offset+ZZ];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
150         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
151         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
152         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
153         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
154         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
155         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
156         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
157         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197             dx10             = _mm_sub_ps(ix1,jx0);
198             dy10             = _mm_sub_ps(iy1,jy0);
199             dz10             = _mm_sub_ps(iz1,jz0);
200             dx20             = _mm_sub_ps(ix2,jx0);
201             dy20             = _mm_sub_ps(iy2,jy0);
202             dz20             = _mm_sub_ps(iz2,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
208
209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
210             rinv10           = gmx_mm_invsqrt_ps(rsq10);
211             rinv20           = gmx_mm_invsqrt_ps(rsq20);
212
213             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
214             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
215             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                               charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* EWALD ELECTROSTATICS */
240
241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
242             ewrt             = _mm_mul_ps(r00,ewtabscale);
243             ewitab           = _mm_cvttps_epi32(ewrt);
244             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
245             ewitab           = _mm_slli_epi32(ewitab,2);
246             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
247             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
248             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
249             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
250             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
251             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
252             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
253             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
254             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
260             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
262             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_ps(velecsum,velec);
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = _mm_add_ps(felec,fvdw);
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_ps(fscal,dx00);
272             ty               = _mm_mul_ps(fscal,dy00);
273             tz               = _mm_mul_ps(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_ps(fix0,tx);
277             fiy0             = _mm_add_ps(fiy0,ty);
278             fiz0             = _mm_add_ps(fiz0,tz);
279
280             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
281                                                    f+j_coord_offsetC,f+j_coord_offsetD,
282                                                    tx,ty,tz);
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             r10              = _mm_mul_ps(rsq10,rinv10);
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq10             = _mm_mul_ps(iq1,jq0);
292
293             /* EWALD ELECTROSTATICS */
294
295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296             ewrt             = _mm_mul_ps(r10,ewtabscale);
297             ewitab           = _mm_cvttps_epi32(ewrt);
298             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
299             ewitab           = _mm_slli_epi32(ewitab,2);
300             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
301             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
302             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
303             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
304             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
305             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
306             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
307             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
308             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_ps(velecsum,velec);
312
313             fscal            = felec;
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_ps(fscal,dx10);
317             ty               = _mm_mul_ps(fscal,dy10);
318             tz               = _mm_mul_ps(fscal,dz10);
319
320             /* Update vectorial force */
321             fix1             = _mm_add_ps(fix1,tx);
322             fiy1             = _mm_add_ps(fiy1,ty);
323             fiz1             = _mm_add_ps(fiz1,tz);
324
325             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
326                                                    f+j_coord_offsetC,f+j_coord_offsetD,
327                                                    tx,ty,tz);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r20              = _mm_mul_ps(rsq20,rinv20);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq20             = _mm_mul_ps(iq2,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_ps(r20,ewtabscale);
342             ewitab           = _mm_cvttps_epi32(ewrt);
343             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
349             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
351             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
352             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
353             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_ps(fscal,dx20);
362             ty               = _mm_mul_ps(fscal,dy20);
363             tz               = _mm_mul_ps(fscal,dz20);
364
365             /* Update vectorial force */
366             fix2             = _mm_add_ps(fix2,tx);
367             fiy2             = _mm_add_ps(fiy2,ty);
368             fiz2             = _mm_add_ps(fiz2,tz);
369
370             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
371                                                    f+j_coord_offsetC,f+j_coord_offsetD,
372                                                    tx,ty,tz);
373
374             /* Inner loop uses 135 flops */
375         }
376
377         if(jidx<j_index_end)
378         {
379
380             /* Get j neighbor index, and coordinate index */
381             jnrA             = jjnr[jidx];
382             jnrB             = jjnr[jidx+1];
383             jnrC             = jjnr[jidx+2];
384             jnrD             = jjnr[jidx+3];
385
386             /* Sign of each element will be negative for non-real atoms.
387              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
388              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
389              */
390             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
391             jnrA       = (jnrA>=0) ? jnrA : 0;
392             jnrB       = (jnrB>=0) ? jnrB : 0;
393             jnrC       = (jnrC>=0) ? jnrC : 0;
394             jnrD       = (jnrD>=0) ? jnrD : 0;
395
396             j_coord_offsetA  = DIM*jnrA;
397             j_coord_offsetB  = DIM*jnrB;
398             j_coord_offsetC  = DIM*jnrC;
399             j_coord_offsetD  = DIM*jnrD;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
403                                               x+j_coord_offsetC,x+j_coord_offsetD,
404                                               &jx0,&jy0,&jz0);
405
406             /* Calculate displacement vector */
407             dx00             = _mm_sub_ps(ix0,jx0);
408             dy00             = _mm_sub_ps(iy0,jy0);
409             dz00             = _mm_sub_ps(iz0,jz0);
410             dx10             = _mm_sub_ps(ix1,jx0);
411             dy10             = _mm_sub_ps(iy1,jy0);
412             dz10             = _mm_sub_ps(iz1,jz0);
413             dx20             = _mm_sub_ps(ix2,jx0);
414             dy20             = _mm_sub_ps(iy2,jy0);
415             dz20             = _mm_sub_ps(iz2,jz0);
416
417             /* Calculate squared distance and things based on it */
418             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
419             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
420             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
421
422             rinv00           = gmx_mm_invsqrt_ps(rsq00);
423             rinv10           = gmx_mm_invsqrt_ps(rsq10);
424             rinv20           = gmx_mm_invsqrt_ps(rsq20);
425
426             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
427             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
428             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
429
430             /* Load parameters for j particles */
431             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
432                                                               charge+jnrC+0,charge+jnrD+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434             vdwjidx0B        = 2*vdwtype[jnrB+0];
435             vdwjidx0C        = 2*vdwtype[jnrC+0];
436             vdwjidx0D        = 2*vdwtype[jnrD+0];
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm_mul_ps(rsq00,rinv00);
443             r00              = _mm_andnot_ps(dummy_mask,r00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_ps(iq0,jq0);
447             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
448                                          vdwparam+vdwioffset0+vdwjidx0B,
449                                          vdwparam+vdwioffset0+vdwjidx0C,
450                                          vdwparam+vdwioffset0+vdwjidx0D,
451                                          &c6_00,&c12_00);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm_mul_ps(r00,ewtabscale);
457             ewitab           = _mm_cvttps_epi32(ewrt);
458             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
462             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
463             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
464             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
465             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
466             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
467             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
468             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
469
470             /* LENNARD-JONES DISPERSION/REPULSION */
471
472             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
473             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
474             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
475             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
476             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
477
478             /* Update potential sum for this i atom from the interaction with this j atom. */
479             velec            = _mm_andnot_ps(dummy_mask,velec);
480             velecsum         = _mm_add_ps(velecsum,velec);
481             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
482             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
483
484             fscal            = _mm_add_ps(felec,fvdw);
485
486             fscal            = _mm_andnot_ps(dummy_mask,fscal);
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm_mul_ps(fscal,dx00);
490             ty               = _mm_mul_ps(fscal,dy00);
491             tz               = _mm_mul_ps(fscal,dz00);
492
493             /* Update vectorial force */
494             fix0             = _mm_add_ps(fix0,tx);
495             fiy0             = _mm_add_ps(fiy0,ty);
496             fiz0             = _mm_add_ps(fiz0,tz);
497
498             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
499                                                    f+j_coord_offsetC,f+j_coord_offsetD,
500                                                    tx,ty,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r10              = _mm_mul_ps(rsq10,rinv10);
507             r10              = _mm_andnot_ps(dummy_mask,r10);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq10             = _mm_mul_ps(iq1,jq0);
511
512             /* EWALD ELECTROSTATICS */
513
514             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
515             ewrt             = _mm_mul_ps(r10,ewtabscale);
516             ewitab           = _mm_cvttps_epi32(ewrt);
517             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
518             ewitab           = _mm_slli_epi32(ewitab,2);
519             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
520             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
521             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
522             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
523             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
524             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
525             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
526             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
527             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_andnot_ps(dummy_mask,velec);
531             velecsum         = _mm_add_ps(velecsum,velec);
532
533             fscal            = felec;
534
535             fscal            = _mm_andnot_ps(dummy_mask,fscal);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm_mul_ps(fscal,dx10);
539             ty               = _mm_mul_ps(fscal,dy10);
540             tz               = _mm_mul_ps(fscal,dz10);
541
542             /* Update vectorial force */
543             fix1             = _mm_add_ps(fix1,tx);
544             fiy1             = _mm_add_ps(fiy1,ty);
545             fiz1             = _mm_add_ps(fiz1,tz);
546
547             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
548                                                    f+j_coord_offsetC,f+j_coord_offsetD,
549                                                    tx,ty,tz);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r20              = _mm_mul_ps(rsq20,rinv20);
556             r20              = _mm_andnot_ps(dummy_mask,r20);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm_mul_ps(iq2,jq0);
560
561             /* EWALD ELECTROSTATICS */
562
563             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
564             ewrt             = _mm_mul_ps(r20,ewtabscale);
565             ewitab           = _mm_cvttps_epi32(ewrt);
566             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
567             ewitab           = _mm_slli_epi32(ewitab,2);
568             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
569             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
570             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
571             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
572             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
573             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
574             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
575             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
576             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm_add_ps(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_andnot_ps(dummy_mask,fscal);
585
586             /* Calculate temporary vectorial force */
587             tx               = _mm_mul_ps(fscal,dx20);
588             ty               = _mm_mul_ps(fscal,dy20);
589             tz               = _mm_mul_ps(fscal,dz20);
590
591             /* Update vectorial force */
592             fix2             = _mm_add_ps(fix2,tx);
593             fiy2             = _mm_add_ps(fiy2,ty);
594             fiz2             = _mm_add_ps(fiz2,tz);
595
596             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
597                                                    f+j_coord_offsetC,f+j_coord_offsetD,
598                                                    tx,ty,tz);
599
600             /* Inner loop uses 138 flops */
601         }
602
603         /* End of innermost loop */
604
605         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
606                                               f+i_coord_offset,fshift+i_shift_offset);
607
608         ggid                        = gid[iidx];
609         /* Update potential energies */
610         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
611         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
612
613         /* Increment number of inner iterations */
614         inneriter                  += j_index_end - j_index_start;
615
616         /* Outer loop uses 29 flops */
617     }
618
619     /* Increment number of outer iterations */
620     outeriter        += nri;
621
622     /* Update outer/inner flops */
623
624     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*138);
625 }
626 /*
627  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
628  * Electrostatics interaction: Ewald
629  * VdW interaction:            LennardJones
630  * Geometry:                   Water3-Particle
631  * Calculate force/pot:        Force
632  */
633 void
634 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
635                     (t_nblist * gmx_restrict                nlist,
636                      rvec * gmx_restrict                    xx,
637                      rvec * gmx_restrict                    ff,
638                      t_forcerec * gmx_restrict              fr,
639                      t_mdatoms * gmx_restrict               mdatoms,
640                      nb_kernel_data_t * gmx_restrict        kernel_data,
641                      t_nrnb * gmx_restrict                  nrnb)
642 {
643     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
644      * just 0 for non-waters.
645      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
646      * jnr indices corresponding to data put in the four positions in the SIMD register.
647      */
648     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
649     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
650     int              jnrA,jnrB,jnrC,jnrD;
651     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
652     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
653     real             shX,shY,shZ,rcutoff_scalar;
654     real             *shiftvec,*fshift,*x,*f;
655     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
656     int              vdwioffset0;
657     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
658     int              vdwioffset1;
659     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
660     int              vdwioffset2;
661     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
662     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
663     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
664     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
665     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
666     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
667     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
668     real             *charge;
669     int              nvdwtype;
670     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
671     int              *vdwtype;
672     real             *vdwparam;
673     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
674     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
675     __m128i          ewitab;
676     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
677     real             *ewtab;
678     __m128           dummy_mask,cutoff_mask;
679     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
680     __m128           one     = _mm_set1_ps(1.0);
681     __m128           two     = _mm_set1_ps(2.0);
682     x                = xx[0];
683     f                = ff[0];
684
685     nri              = nlist->nri;
686     iinr             = nlist->iinr;
687     jindex           = nlist->jindex;
688     jjnr             = nlist->jjnr;
689     shiftidx         = nlist->shift;
690     gid              = nlist->gid;
691     shiftvec         = fr->shift_vec[0];
692     fshift           = fr->fshift[0];
693     facel            = _mm_set1_ps(fr->epsfac);
694     charge           = mdatoms->chargeA;
695     nvdwtype         = fr->ntype;
696     vdwparam         = fr->nbfp;
697     vdwtype          = mdatoms->typeA;
698
699     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
700     ewtab            = fr->ic->tabq_coul_F;
701     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
702     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
703
704     /* Setup water-specific parameters */
705     inr              = nlist->iinr[0];
706     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
707     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
708     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
709     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
710
711     /* Avoid stupid compiler warnings */
712     jnrA = jnrB = jnrC = jnrD = 0;
713     j_coord_offsetA = 0;
714     j_coord_offsetB = 0;
715     j_coord_offsetC = 0;
716     j_coord_offsetD = 0;
717
718     outeriter        = 0;
719     inneriter        = 0;
720
721     /* Start outer loop over neighborlists */
722     for(iidx=0; iidx<nri; iidx++)
723     {
724         /* Load shift vector for this list */
725         i_shift_offset   = DIM*shiftidx[iidx];
726         shX              = shiftvec[i_shift_offset+XX];
727         shY              = shiftvec[i_shift_offset+YY];
728         shZ              = shiftvec[i_shift_offset+ZZ];
729
730         /* Load limits for loop over neighbors */
731         j_index_start    = jindex[iidx];
732         j_index_end      = jindex[iidx+1];
733
734         /* Get outer coordinate index */
735         inr              = iinr[iidx];
736         i_coord_offset   = DIM*inr;
737
738         /* Load i particle coords and add shift vector */
739         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
740         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
741         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
742         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
743         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
744         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
745         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
746         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
747         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
748
749         fix0             = _mm_setzero_ps();
750         fiy0             = _mm_setzero_ps();
751         fiz0             = _mm_setzero_ps();
752         fix1             = _mm_setzero_ps();
753         fiy1             = _mm_setzero_ps();
754         fiz1             = _mm_setzero_ps();
755         fix2             = _mm_setzero_ps();
756         fiy2             = _mm_setzero_ps();
757         fiz2             = _mm_setzero_ps();
758
759         /* Start inner kernel loop */
760         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
761         {
762
763             /* Get j neighbor index, and coordinate index */
764             jnrA             = jjnr[jidx];
765             jnrB             = jjnr[jidx+1];
766             jnrC             = jjnr[jidx+2];
767             jnrD             = jjnr[jidx+3];
768
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773
774             /* load j atom coordinates */
775             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
776                                               x+j_coord_offsetC,x+j_coord_offsetD,
777                                               &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm_sub_ps(ix0,jx0);
781             dy00             = _mm_sub_ps(iy0,jy0);
782             dz00             = _mm_sub_ps(iz0,jz0);
783             dx10             = _mm_sub_ps(ix1,jx0);
784             dy10             = _mm_sub_ps(iy1,jy0);
785             dz10             = _mm_sub_ps(iz1,jz0);
786             dx20             = _mm_sub_ps(ix2,jx0);
787             dy20             = _mm_sub_ps(iy2,jy0);
788             dz20             = _mm_sub_ps(iz2,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
792             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
793             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
794
795             rinv00           = gmx_mm_invsqrt_ps(rsq00);
796             rinv10           = gmx_mm_invsqrt_ps(rsq10);
797             rinv20           = gmx_mm_invsqrt_ps(rsq20);
798
799             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
800             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
801             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
805                                                               charge+jnrC+0,charge+jnrD+0);
806             vdwjidx0A        = 2*vdwtype[jnrA+0];
807             vdwjidx0B        = 2*vdwtype[jnrB+0];
808             vdwjidx0C        = 2*vdwtype[jnrC+0];
809             vdwjidx0D        = 2*vdwtype[jnrD+0];
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             r00              = _mm_mul_ps(rsq00,rinv00);
816
817             /* Compute parameters for interactions between i and j atoms */
818             qq00             = _mm_mul_ps(iq0,jq0);
819             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
820                                          vdwparam+vdwioffset0+vdwjidx0B,
821                                          vdwparam+vdwioffset0+vdwjidx0C,
822                                          vdwparam+vdwioffset0+vdwjidx0D,
823                                          &c6_00,&c12_00);
824
825             /* EWALD ELECTROSTATICS */
826
827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
828             ewrt             = _mm_mul_ps(r00,ewtabscale);
829             ewitab           = _mm_cvttps_epi32(ewrt);
830             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
831             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
832                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
833                                          &ewtabF,&ewtabFn);
834             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
835             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
836
837             /* LENNARD-JONES DISPERSION/REPULSION */
838
839             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
840             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
841
842             fscal            = _mm_add_ps(felec,fvdw);
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm_mul_ps(fscal,dx00);
846             ty               = _mm_mul_ps(fscal,dy00);
847             tz               = _mm_mul_ps(fscal,dz00);
848
849             /* Update vectorial force */
850             fix0             = _mm_add_ps(fix0,tx);
851             fiy0             = _mm_add_ps(fiy0,ty);
852             fiz0             = _mm_add_ps(fiz0,tz);
853
854             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
855                                                    f+j_coord_offsetC,f+j_coord_offsetD,
856                                                    tx,ty,tz);
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             r10              = _mm_mul_ps(rsq10,rinv10);
863
864             /* Compute parameters for interactions between i and j atoms */
865             qq10             = _mm_mul_ps(iq1,jq0);
866
867             /* EWALD ELECTROSTATICS */
868
869             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
870             ewrt             = _mm_mul_ps(r10,ewtabscale);
871             ewitab           = _mm_cvttps_epi32(ewrt);
872             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
873             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
874                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
875                                          &ewtabF,&ewtabFn);
876             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
877             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
878
879             fscal            = felec;
880
881             /* Calculate temporary vectorial force */
882             tx               = _mm_mul_ps(fscal,dx10);
883             ty               = _mm_mul_ps(fscal,dy10);
884             tz               = _mm_mul_ps(fscal,dz10);
885
886             /* Update vectorial force */
887             fix1             = _mm_add_ps(fix1,tx);
888             fiy1             = _mm_add_ps(fiy1,ty);
889             fiz1             = _mm_add_ps(fiz1,tz);
890
891             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
892                                                    f+j_coord_offsetC,f+j_coord_offsetD,
893                                                    tx,ty,tz);
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             r20              = _mm_mul_ps(rsq20,rinv20);
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq20             = _mm_mul_ps(iq2,jq0);
903
904             /* EWALD ELECTROSTATICS */
905
906             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
907             ewrt             = _mm_mul_ps(r20,ewtabscale);
908             ewitab           = _mm_cvttps_epi32(ewrt);
909             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
910             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
911                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
912                                          &ewtabF,&ewtabFn);
913             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
914             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
915
916             fscal            = felec;
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_ps(fscal,dx20);
920             ty               = _mm_mul_ps(fscal,dy20);
921             tz               = _mm_mul_ps(fscal,dz20);
922
923             /* Update vectorial force */
924             fix2             = _mm_add_ps(fix2,tx);
925             fiy2             = _mm_add_ps(fiy2,ty);
926             fiz2             = _mm_add_ps(fiz2,tz);
927
928             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
929                                                    f+j_coord_offsetC,f+j_coord_offsetD,
930                                                    tx,ty,tz);
931
932             /* Inner loop uses 115 flops */
933         }
934
935         if(jidx<j_index_end)
936         {
937
938             /* Get j neighbor index, and coordinate index */
939             jnrA             = jjnr[jidx];
940             jnrB             = jjnr[jidx+1];
941             jnrC             = jjnr[jidx+2];
942             jnrD             = jjnr[jidx+3];
943
944             /* Sign of each element will be negative for non-real atoms.
945              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
946              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
947              */
948             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
949             jnrA       = (jnrA>=0) ? jnrA : 0;
950             jnrB       = (jnrB>=0) ? jnrB : 0;
951             jnrC       = (jnrC>=0) ? jnrC : 0;
952             jnrD       = (jnrD>=0) ? jnrD : 0;
953
954             j_coord_offsetA  = DIM*jnrA;
955             j_coord_offsetB  = DIM*jnrB;
956             j_coord_offsetC  = DIM*jnrC;
957             j_coord_offsetD  = DIM*jnrD;
958
959             /* load j atom coordinates */
960             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
961                                               x+j_coord_offsetC,x+j_coord_offsetD,
962                                               &jx0,&jy0,&jz0);
963
964             /* Calculate displacement vector */
965             dx00             = _mm_sub_ps(ix0,jx0);
966             dy00             = _mm_sub_ps(iy0,jy0);
967             dz00             = _mm_sub_ps(iz0,jz0);
968             dx10             = _mm_sub_ps(ix1,jx0);
969             dy10             = _mm_sub_ps(iy1,jy0);
970             dz10             = _mm_sub_ps(iz1,jz0);
971             dx20             = _mm_sub_ps(ix2,jx0);
972             dy20             = _mm_sub_ps(iy2,jy0);
973             dz20             = _mm_sub_ps(iz2,jz0);
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
977             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
978             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
979
980             rinv00           = gmx_mm_invsqrt_ps(rsq00);
981             rinv10           = gmx_mm_invsqrt_ps(rsq10);
982             rinv20           = gmx_mm_invsqrt_ps(rsq20);
983
984             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
985             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
986             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
987
988             /* Load parameters for j particles */
989             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
990                                                               charge+jnrC+0,charge+jnrD+0);
991             vdwjidx0A        = 2*vdwtype[jnrA+0];
992             vdwjidx0B        = 2*vdwtype[jnrB+0];
993             vdwjidx0C        = 2*vdwtype[jnrC+0];
994             vdwjidx0D        = 2*vdwtype[jnrD+0];
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             r00              = _mm_mul_ps(rsq00,rinv00);
1001             r00              = _mm_andnot_ps(dummy_mask,r00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq00             = _mm_mul_ps(iq0,jq0);
1005             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1006                                          vdwparam+vdwioffset0+vdwjidx0B,
1007                                          vdwparam+vdwioffset0+vdwjidx0C,
1008                                          vdwparam+vdwioffset0+vdwjidx0D,
1009                                          &c6_00,&c12_00);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_ps(r00,ewtabscale);
1015             ewitab           = _mm_cvttps_epi32(ewrt);
1016             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1017             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1018                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1019                                          &ewtabF,&ewtabFn);
1020             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1021             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1022
1023             /* LENNARD-JONES DISPERSION/REPULSION */
1024
1025             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1026             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1027
1028             fscal            = _mm_add_ps(felec,fvdw);
1029
1030             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1031
1032             /* Calculate temporary vectorial force */
1033             tx               = _mm_mul_ps(fscal,dx00);
1034             ty               = _mm_mul_ps(fscal,dy00);
1035             tz               = _mm_mul_ps(fscal,dz00);
1036
1037             /* Update vectorial force */
1038             fix0             = _mm_add_ps(fix0,tx);
1039             fiy0             = _mm_add_ps(fiy0,ty);
1040             fiz0             = _mm_add_ps(fiz0,tz);
1041
1042             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1043                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1044                                                    tx,ty,tz);
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             r10              = _mm_mul_ps(rsq10,rinv10);
1051             r10              = _mm_andnot_ps(dummy_mask,r10);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq10             = _mm_mul_ps(iq1,jq0);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm_mul_ps(r10,ewtabscale);
1060             ewitab           = _mm_cvttps_epi32(ewrt);
1061             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1062             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1063                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1064                                          &ewtabF,&ewtabFn);
1065             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1066             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1067
1068             fscal            = felec;
1069
1070             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_ps(fscal,dx10);
1074             ty               = _mm_mul_ps(fscal,dy10);
1075             tz               = _mm_mul_ps(fscal,dz10);
1076
1077             /* Update vectorial force */
1078             fix1             = _mm_add_ps(fix1,tx);
1079             fiy1             = _mm_add_ps(fiy1,ty);
1080             fiz1             = _mm_add_ps(fiz1,tz);
1081
1082             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1083                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1084                                                    tx,ty,tz);
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             r20              = _mm_mul_ps(rsq20,rinv20);
1091             r20              = _mm_andnot_ps(dummy_mask,r20);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq20             = _mm_mul_ps(iq2,jq0);
1095
1096             /* EWALD ELECTROSTATICS */
1097
1098             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1099             ewrt             = _mm_mul_ps(r20,ewtabscale);
1100             ewitab           = _mm_cvttps_epi32(ewrt);
1101             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1102             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1103                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1104                                          &ewtabF,&ewtabFn);
1105             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1106             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx20);
1114             ty               = _mm_mul_ps(fscal,dy20);
1115             tz               = _mm_mul_ps(fscal,dz20);
1116
1117             /* Update vectorial force */
1118             fix2             = _mm_add_ps(fix2,tx);
1119             fiy2             = _mm_add_ps(fiy2,ty);
1120             fiz2             = _mm_add_ps(fiz2,tz);
1121
1122             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1123                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1124                                                    tx,ty,tz);
1125
1126             /* Inner loop uses 118 flops */
1127         }
1128
1129         /* End of innermost loop */
1130
1131         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1132                                               f+i_coord_offset,fshift+i_shift_offset);
1133
1134         /* Increment number of inner iterations */
1135         inneriter                  += j_index_end - j_index_start;
1136
1137         /* Outer loop uses 27 flops */
1138     }
1139
1140     /* Increment number of outer iterations */
1141     outeriter        += nri;
1142
1143     /* Update outer/inner flops */
1144
1145     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*118);
1146 }