Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128i          ewitab;
90     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143         shX              = shiftvec[i_shift_offset+XX];
144         shY              = shiftvec[i_shift_offset+YY];
145         shZ              = shiftvec[i_shift_offset+ZZ];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
157         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
158         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
159         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
160         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
161         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
162         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
163         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
164         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169         fix1             = _mm_setzero_ps();
170         fiy1             = _mm_setzero_ps();
171         fiz1             = _mm_setzero_ps();
172         fix2             = _mm_setzero_ps();
173         fiy2             = _mm_setzero_ps();
174         fiz2             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204             dx10             = _mm_sub_ps(ix1,jx0);
205             dy10             = _mm_sub_ps(iy1,jy0);
206             dz10             = _mm_sub_ps(iz1,jz0);
207             dx20             = _mm_sub_ps(ix2,jx0);
208             dy20             = _mm_sub_ps(iy2,jy0);
209             dz20             = _mm_sub_ps(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm_invsqrt_ps(rsq00);
217             rinv10           = gmx_mm_invsqrt_ps(rsq10);
218             rinv20           = gmx_mm_invsqrt_ps(rsq20);
219
220             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
221             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
222             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_ps(iq0,jq0);
240             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,
242                                          vdwparam+vdwioffset0+vdwjidx0C,
243                                          vdwparam+vdwioffset0+vdwjidx0D,
244                                          &c6_00,&c12_00);
245
246             /* Calculate table index by multiplying r with table scale and truncate to integer */
247             rt               = _mm_mul_ps(r00,vftabscale);
248             vfitab           = _mm_cvttps_epi32(rt);
249             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
250             vfitab           = _mm_slli_epi32(vfitab,3);
251
252             /* EWALD ELECTROSTATICS */
253
254             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
255             ewrt             = _mm_mul_ps(r00,ewtabscale);
256             ewitab           = _mm_cvttps_epi32(ewrt);
257             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
258             ewitab           = _mm_slli_epi32(ewitab,2);
259             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
260             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
261             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
262             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
263             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
264             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
265             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
266             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
267             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
268
269             /* CUBIC SPLINE TABLE DISPERSION */
270             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
272             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
273             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
274             _MM_TRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm_mul_ps(vfeps,H);
276             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
277             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
278             vvdw6            = _mm_mul_ps(c6_00,VV);
279             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
280             fvdw6            = _mm_mul_ps(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             vfitab           = _mm_add_epi32(vfitab,ifour);
284             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Heps             = _mm_mul_ps(vfeps,H);
290             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
291             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
292             vvdw12           = _mm_mul_ps(c12_00,VV);
293             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
294             fvdw12           = _mm_mul_ps(c12_00,FF);
295             vvdw             = _mm_add_ps(vvdw12,vvdw6);
296             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_ps(velecsum,velec);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = _mm_add_ps(felec,fvdw);
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_ps(fscal,dx00);
306             ty               = _mm_mul_ps(fscal,dy00);
307             tz               = _mm_mul_ps(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm_add_ps(fix0,tx);
311             fiy0             = _mm_add_ps(fiy0,ty);
312             fiz0             = _mm_add_ps(fiz0,tz);
313
314             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
315                                                    f+j_coord_offsetC,f+j_coord_offsetD,
316                                                    tx,ty,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r10              = _mm_mul_ps(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm_mul_ps(iq1,jq0);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm_mul_ps(r10,ewtabscale);
331             ewitab           = _mm_cvttps_epi32(ewrt);
332             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
336             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
337             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
338             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
339             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
340             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
341             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
342             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx10);
351             ty               = _mm_mul_ps(fscal,dy10);
352             tz               = _mm_mul_ps(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm_add_ps(fix1,tx);
356             fiy1             = _mm_add_ps(fiy1,ty);
357             fiz1             = _mm_add_ps(fiz1,tz);
358
359             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
360                                                    f+j_coord_offsetC,f+j_coord_offsetD,
361                                                    tx,ty,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_ps(r20,ewtabscale);
376             ewitab           = _mm_cvttps_epi32(ewrt);
377             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
383             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
385             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
386             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
387             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm_add_ps(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_ps(fscal,dx20);
396             ty               = _mm_mul_ps(fscal,dy20);
397             tz               = _mm_mul_ps(fscal,dz20);
398
399             /* Update vectorial force */
400             fix2             = _mm_add_ps(fix2,tx);
401             fiy2             = _mm_add_ps(fiy2,ty);
402             fiz2             = _mm_add_ps(fiz2,tz);
403
404             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
405                                                    f+j_coord_offsetC,f+j_coord_offsetD,
406                                                    tx,ty,tz);
407
408             /* Inner loop uses 157 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             /* Get j neighbor index, and coordinate index */
415             jnrA             = jjnr[jidx];
416             jnrB             = jjnr[jidx+1];
417             jnrC             = jjnr[jidx+2];
418             jnrD             = jjnr[jidx+3];
419
420             /* Sign of each element will be negative for non-real atoms.
421              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
422              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
423              */
424             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
425             jnrA       = (jnrA>=0) ? jnrA : 0;
426             jnrB       = (jnrB>=0) ? jnrB : 0;
427             jnrC       = (jnrC>=0) ? jnrC : 0;
428             jnrD       = (jnrD>=0) ? jnrD : 0;
429
430             j_coord_offsetA  = DIM*jnrA;
431             j_coord_offsetB  = DIM*jnrB;
432             j_coord_offsetC  = DIM*jnrC;
433             j_coord_offsetD  = DIM*jnrD;
434
435             /* load j atom coordinates */
436             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
437                                               x+j_coord_offsetC,x+j_coord_offsetD,
438                                               &jx0,&jy0,&jz0);
439
440             /* Calculate displacement vector */
441             dx00             = _mm_sub_ps(ix0,jx0);
442             dy00             = _mm_sub_ps(iy0,jy0);
443             dz00             = _mm_sub_ps(iz0,jz0);
444             dx10             = _mm_sub_ps(ix1,jx0);
445             dy10             = _mm_sub_ps(iy1,jy0);
446             dz10             = _mm_sub_ps(iz1,jz0);
447             dx20             = _mm_sub_ps(ix2,jx0);
448             dy20             = _mm_sub_ps(iy2,jy0);
449             dz20             = _mm_sub_ps(iz2,jz0);
450
451             /* Calculate squared distance and things based on it */
452             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
453             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
454             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
455
456             rinv00           = gmx_mm_invsqrt_ps(rsq00);
457             rinv10           = gmx_mm_invsqrt_ps(rsq10);
458             rinv20           = gmx_mm_invsqrt_ps(rsq20);
459
460             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
461             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
462             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
463
464             /* Load parameters for j particles */
465             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
466                                                               charge+jnrC+0,charge+jnrD+0);
467             vdwjidx0A        = 2*vdwtype[jnrA+0];
468             vdwjidx0B        = 2*vdwtype[jnrB+0];
469             vdwjidx0C        = 2*vdwtype[jnrC+0];
470             vdwjidx0D        = 2*vdwtype[jnrD+0];
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r00              = _mm_mul_ps(rsq00,rinv00);
477             r00              = _mm_andnot_ps(dummy_mask,r00);
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq00             = _mm_mul_ps(iq0,jq0);
481             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
482                                          vdwparam+vdwioffset0+vdwjidx0B,
483                                          vdwparam+vdwioffset0+vdwjidx0C,
484                                          vdwparam+vdwioffset0+vdwjidx0D,
485                                          &c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _mm_mul_ps(r00,vftabscale);
489             vfitab           = _mm_cvttps_epi32(rt);
490             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
491             vfitab           = _mm_slli_epi32(vfitab,3);
492
493             /* EWALD ELECTROSTATICS */
494
495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
496             ewrt             = _mm_mul_ps(r00,ewtabscale);
497             ewitab           = _mm_cvttps_epi32(ewrt);
498             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
499             ewitab           = _mm_slli_epi32(ewitab,2);
500             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
501             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
502             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
503             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
504             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
505             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
506             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
507             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
508             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
509
510             /* CUBIC SPLINE TABLE DISPERSION */
511             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
512             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
513             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
514             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
515             _MM_TRANSPOSE4_PS(Y,F,G,H);
516             Heps             = _mm_mul_ps(vfeps,H);
517             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
518             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
519             vvdw6            = _mm_mul_ps(c6_00,VV);
520             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
521             fvdw6            = _mm_mul_ps(c6_00,FF);
522
523             /* CUBIC SPLINE TABLE REPULSION */
524             vfitab           = _mm_add_epi32(vfitab,ifour);
525             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
526             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
527             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
528             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
529             _MM_TRANSPOSE4_PS(Y,F,G,H);
530             Heps             = _mm_mul_ps(vfeps,H);
531             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
532             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
533             vvdw12           = _mm_mul_ps(c12_00,VV);
534             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
535             fvdw12           = _mm_mul_ps(c12_00,FF);
536             vvdw             = _mm_add_ps(vvdw12,vvdw6);
537             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             velec            = _mm_andnot_ps(dummy_mask,velec);
541             velecsum         = _mm_add_ps(velecsum,velec);
542             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
543             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
544
545             fscal            = _mm_add_ps(felec,fvdw);
546
547             fscal            = _mm_andnot_ps(dummy_mask,fscal);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm_mul_ps(fscal,dx00);
551             ty               = _mm_mul_ps(fscal,dy00);
552             tz               = _mm_mul_ps(fscal,dz00);
553
554             /* Update vectorial force */
555             fix0             = _mm_add_ps(fix0,tx);
556             fiy0             = _mm_add_ps(fiy0,ty);
557             fiz0             = _mm_add_ps(fiz0,tz);
558
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
560                                                    f+j_coord_offsetC,f+j_coord_offsetD,
561                                                    tx,ty,tz);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             r10              = _mm_mul_ps(rsq10,rinv10);
568             r10              = _mm_andnot_ps(dummy_mask,r10);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq10             = _mm_mul_ps(iq1,jq0);
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = _mm_mul_ps(r10,ewtabscale);
577             ewitab           = _mm_cvttps_epi32(ewrt);
578             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
579             ewitab           = _mm_slli_epi32(ewitab,2);
580             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
581             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
582             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
583             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
584             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
585             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
586             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
587             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
588             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_andnot_ps(dummy_mask,velec);
592             velecsum         = _mm_add_ps(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_andnot_ps(dummy_mask,fscal);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm_mul_ps(fscal,dx10);
600             ty               = _mm_mul_ps(fscal,dy10);
601             tz               = _mm_mul_ps(fscal,dz10);
602
603             /* Update vectorial force */
604             fix1             = _mm_add_ps(fix1,tx);
605             fiy1             = _mm_add_ps(fiy1,ty);
606             fiz1             = _mm_add_ps(fiz1,tz);
607
608             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
609                                                    f+j_coord_offsetC,f+j_coord_offsetD,
610                                                    tx,ty,tz);
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             r20              = _mm_mul_ps(rsq20,rinv20);
617             r20              = _mm_andnot_ps(dummy_mask,r20);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq20             = _mm_mul_ps(iq2,jq0);
621
622             /* EWALD ELECTROSTATICS */
623
624             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625             ewrt             = _mm_mul_ps(r20,ewtabscale);
626             ewitab           = _mm_cvttps_epi32(ewrt);
627             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
628             ewitab           = _mm_slli_epi32(ewitab,2);
629             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
630             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
631             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
632             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
633             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
634             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
635             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
636             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
637             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm_andnot_ps(dummy_mask,velec);
641             velecsum         = _mm_add_ps(velecsum,velec);
642
643             fscal            = felec;
644
645             fscal            = _mm_andnot_ps(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm_mul_ps(fscal,dx20);
649             ty               = _mm_mul_ps(fscal,dy20);
650             tz               = _mm_mul_ps(fscal,dz20);
651
652             /* Update vectorial force */
653             fix2             = _mm_add_ps(fix2,tx);
654             fiy2             = _mm_add_ps(fiy2,ty);
655             fiz2             = _mm_add_ps(fiz2,tz);
656
657             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
658                                                    f+j_coord_offsetC,f+j_coord_offsetD,
659                                                    tx,ty,tz);
660
661             /* Inner loop uses 160 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
667                                               f+i_coord_offset,fshift+i_shift_offset);
668
669         ggid                        = gid[iidx];
670         /* Update potential energies */
671         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
672         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
673
674         /* Increment number of inner iterations */
675         inneriter                  += j_index_end - j_index_start;
676
677         /* Outer loop uses 29 flops */
678     }
679
680     /* Increment number of outer iterations */
681     outeriter        += nri;
682
683     /* Update outer/inner flops */
684
685     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*160);
686 }
687 /*
688  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
689  * Electrostatics interaction: Ewald
690  * VdW interaction:            CubicSplineTable
691  * Geometry:                   Water3-Particle
692  * Calculate force/pot:        Force
693  */
694 void
695 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
696                     (t_nblist * gmx_restrict                nlist,
697                      rvec * gmx_restrict                    xx,
698                      rvec * gmx_restrict                    ff,
699                      t_forcerec * gmx_restrict              fr,
700                      t_mdatoms * gmx_restrict               mdatoms,
701                      nb_kernel_data_t * gmx_restrict        kernel_data,
702                      t_nrnb * gmx_restrict                  nrnb)
703 {
704     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
705      * just 0 for non-waters.
706      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
707      * jnr indices corresponding to data put in the four positions in the SIMD register.
708      */
709     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
710     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
711     int              jnrA,jnrB,jnrC,jnrD;
712     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
713     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
714     real             shX,shY,shZ,rcutoff_scalar;
715     real             *shiftvec,*fshift,*x,*f;
716     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
717     int              vdwioffset0;
718     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
719     int              vdwioffset1;
720     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
721     int              vdwioffset2;
722     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
723     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
724     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
725     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
726     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
727     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
728     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
729     real             *charge;
730     int              nvdwtype;
731     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
732     int              *vdwtype;
733     real             *vdwparam;
734     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
735     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
736     __m128i          vfitab;
737     __m128i          ifour       = _mm_set1_epi32(4);
738     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
739     real             *vftab;
740     __m128i          ewitab;
741     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
742     real             *ewtab;
743     __m128           dummy_mask,cutoff_mask;
744     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
745     __m128           one     = _mm_set1_ps(1.0);
746     __m128           two     = _mm_set1_ps(2.0);
747     x                = xx[0];
748     f                = ff[0];
749
750     nri              = nlist->nri;
751     iinr             = nlist->iinr;
752     jindex           = nlist->jindex;
753     jjnr             = nlist->jjnr;
754     shiftidx         = nlist->shift;
755     gid              = nlist->gid;
756     shiftvec         = fr->shift_vec[0];
757     fshift           = fr->fshift[0];
758     facel            = _mm_set1_ps(fr->epsfac);
759     charge           = mdatoms->chargeA;
760     nvdwtype         = fr->ntype;
761     vdwparam         = fr->nbfp;
762     vdwtype          = mdatoms->typeA;
763
764     vftab            = kernel_data->table_vdw->data;
765     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
766
767     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
768     ewtab            = fr->ic->tabq_coul_F;
769     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
770     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
771
772     /* Setup water-specific parameters */
773     inr              = nlist->iinr[0];
774     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
775     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
776     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
777     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
778
779     /* Avoid stupid compiler warnings */
780     jnrA = jnrB = jnrC = jnrD = 0;
781     j_coord_offsetA = 0;
782     j_coord_offsetB = 0;
783     j_coord_offsetC = 0;
784     j_coord_offsetD = 0;
785
786     outeriter        = 0;
787     inneriter        = 0;
788
789     /* Start outer loop over neighborlists */
790     for(iidx=0; iidx<nri; iidx++)
791     {
792         /* Load shift vector for this list */
793         i_shift_offset   = DIM*shiftidx[iidx];
794         shX              = shiftvec[i_shift_offset+XX];
795         shY              = shiftvec[i_shift_offset+YY];
796         shZ              = shiftvec[i_shift_offset+ZZ];
797
798         /* Load limits for loop over neighbors */
799         j_index_start    = jindex[iidx];
800         j_index_end      = jindex[iidx+1];
801
802         /* Get outer coordinate index */
803         inr              = iinr[iidx];
804         i_coord_offset   = DIM*inr;
805
806         /* Load i particle coords and add shift vector */
807         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
808         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
809         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
810         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
811         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
812         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
813         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
814         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
815         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
816
817         fix0             = _mm_setzero_ps();
818         fiy0             = _mm_setzero_ps();
819         fiz0             = _mm_setzero_ps();
820         fix1             = _mm_setzero_ps();
821         fiy1             = _mm_setzero_ps();
822         fiz1             = _mm_setzero_ps();
823         fix2             = _mm_setzero_ps();
824         fiy2             = _mm_setzero_ps();
825         fiz2             = _mm_setzero_ps();
826
827         /* Start inner kernel loop */
828         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
829         {
830
831             /* Get j neighbor index, and coordinate index */
832             jnrA             = jjnr[jidx];
833             jnrB             = jjnr[jidx+1];
834             jnrC             = jjnr[jidx+2];
835             jnrD             = jjnr[jidx+3];
836
837             j_coord_offsetA  = DIM*jnrA;
838             j_coord_offsetB  = DIM*jnrB;
839             j_coord_offsetC  = DIM*jnrC;
840             j_coord_offsetD  = DIM*jnrD;
841
842             /* load j atom coordinates */
843             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
844                                               x+j_coord_offsetC,x+j_coord_offsetD,
845                                               &jx0,&jy0,&jz0);
846
847             /* Calculate displacement vector */
848             dx00             = _mm_sub_ps(ix0,jx0);
849             dy00             = _mm_sub_ps(iy0,jy0);
850             dz00             = _mm_sub_ps(iz0,jz0);
851             dx10             = _mm_sub_ps(ix1,jx0);
852             dy10             = _mm_sub_ps(iy1,jy0);
853             dz10             = _mm_sub_ps(iz1,jz0);
854             dx20             = _mm_sub_ps(ix2,jx0);
855             dy20             = _mm_sub_ps(iy2,jy0);
856             dz20             = _mm_sub_ps(iz2,jz0);
857
858             /* Calculate squared distance and things based on it */
859             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
860             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
861             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
862
863             rinv00           = gmx_mm_invsqrt_ps(rsq00);
864             rinv10           = gmx_mm_invsqrt_ps(rsq10);
865             rinv20           = gmx_mm_invsqrt_ps(rsq20);
866
867             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
868             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
869             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
870
871             /* Load parameters for j particles */
872             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
873                                                               charge+jnrC+0,charge+jnrD+0);
874             vdwjidx0A        = 2*vdwtype[jnrA+0];
875             vdwjidx0B        = 2*vdwtype[jnrB+0];
876             vdwjidx0C        = 2*vdwtype[jnrC+0];
877             vdwjidx0D        = 2*vdwtype[jnrD+0];
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r00              = _mm_mul_ps(rsq00,rinv00);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq00             = _mm_mul_ps(iq0,jq0);
887             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
888                                          vdwparam+vdwioffset0+vdwjidx0B,
889                                          vdwparam+vdwioffset0+vdwjidx0C,
890                                          vdwparam+vdwioffset0+vdwjidx0D,
891                                          &c6_00,&c12_00);
892
893             /* Calculate table index by multiplying r with table scale and truncate to integer */
894             rt               = _mm_mul_ps(r00,vftabscale);
895             vfitab           = _mm_cvttps_epi32(rt);
896             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
897             vfitab           = _mm_slli_epi32(vfitab,3);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _mm_mul_ps(r00,ewtabscale);
903             ewitab           = _mm_cvttps_epi32(ewrt);
904             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
905             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
906                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
907                                          &ewtabF,&ewtabFn);
908             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
909             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
910
911             /* CUBIC SPLINE TABLE DISPERSION */
912             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
913             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
914             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
915             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
916             _MM_TRANSPOSE4_PS(Y,F,G,H);
917             Heps             = _mm_mul_ps(vfeps,H);
918             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
919             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
920             fvdw6            = _mm_mul_ps(c6_00,FF);
921
922             /* CUBIC SPLINE TABLE REPULSION */
923             vfitab           = _mm_add_epi32(vfitab,ifour);
924             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
925             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
926             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
927             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
928             _MM_TRANSPOSE4_PS(Y,F,G,H);
929             Heps             = _mm_mul_ps(vfeps,H);
930             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
931             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
932             fvdw12           = _mm_mul_ps(c12_00,FF);
933             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
934
935             fscal            = _mm_add_ps(felec,fvdw);
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_ps(fscal,dx00);
939             ty               = _mm_mul_ps(fscal,dy00);
940             tz               = _mm_mul_ps(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm_add_ps(fix0,tx);
944             fiy0             = _mm_add_ps(fiy0,ty);
945             fiz0             = _mm_add_ps(fiz0,tz);
946
947             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
948                                                    f+j_coord_offsetC,f+j_coord_offsetD,
949                                                    tx,ty,tz);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             r10              = _mm_mul_ps(rsq10,rinv10);
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq10             = _mm_mul_ps(iq1,jq0);
959
960             /* EWALD ELECTROSTATICS */
961
962             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
963             ewrt             = _mm_mul_ps(r10,ewtabscale);
964             ewitab           = _mm_cvttps_epi32(ewrt);
965             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
966             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
967                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
968                                          &ewtabF,&ewtabFn);
969             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
970             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
971
972             fscal            = felec;
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_ps(fscal,dx10);
976             ty               = _mm_mul_ps(fscal,dy10);
977             tz               = _mm_mul_ps(fscal,dz10);
978
979             /* Update vectorial force */
980             fix1             = _mm_add_ps(fix1,tx);
981             fiy1             = _mm_add_ps(fiy1,ty);
982             fiz1             = _mm_add_ps(fiz1,tz);
983
984             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
985                                                    f+j_coord_offsetC,f+j_coord_offsetD,
986                                                    tx,ty,tz);
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             r20              = _mm_mul_ps(rsq20,rinv20);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq20             = _mm_mul_ps(iq2,jq0);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm_mul_ps(r20,ewtabscale);
1001             ewitab           = _mm_cvttps_epi32(ewrt);
1002             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1003             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1004                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1005                                          &ewtabF,&ewtabFn);
1006             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1007             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1008
1009             fscal            = felec;
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_ps(fscal,dx20);
1013             ty               = _mm_mul_ps(fscal,dy20);
1014             tz               = _mm_mul_ps(fscal,dz20);
1015
1016             /* Update vectorial force */
1017             fix2             = _mm_add_ps(fix2,tx);
1018             fiy2             = _mm_add_ps(fiy2,ty);
1019             fiz2             = _mm_add_ps(fiz2,tz);
1020
1021             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1022                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1023                                                    tx,ty,tz);
1024
1025             /* Inner loop uses 134 flops */
1026         }
1027
1028         if(jidx<j_index_end)
1029         {
1030
1031             /* Get j neighbor index, and coordinate index */
1032             jnrA             = jjnr[jidx];
1033             jnrB             = jjnr[jidx+1];
1034             jnrC             = jjnr[jidx+2];
1035             jnrD             = jjnr[jidx+3];
1036
1037             /* Sign of each element will be negative for non-real atoms.
1038              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1039              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1040              */
1041             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1042             jnrA       = (jnrA>=0) ? jnrA : 0;
1043             jnrB       = (jnrB>=0) ? jnrB : 0;
1044             jnrC       = (jnrC>=0) ? jnrC : 0;
1045             jnrD       = (jnrD>=0) ? jnrD : 0;
1046
1047             j_coord_offsetA  = DIM*jnrA;
1048             j_coord_offsetB  = DIM*jnrB;
1049             j_coord_offsetC  = DIM*jnrC;
1050             j_coord_offsetD  = DIM*jnrD;
1051
1052             /* load j atom coordinates */
1053             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1054                                               x+j_coord_offsetC,x+j_coord_offsetD,
1055                                               &jx0,&jy0,&jz0);
1056
1057             /* Calculate displacement vector */
1058             dx00             = _mm_sub_ps(ix0,jx0);
1059             dy00             = _mm_sub_ps(iy0,jy0);
1060             dz00             = _mm_sub_ps(iz0,jz0);
1061             dx10             = _mm_sub_ps(ix1,jx0);
1062             dy10             = _mm_sub_ps(iy1,jy0);
1063             dz10             = _mm_sub_ps(iz1,jz0);
1064             dx20             = _mm_sub_ps(ix2,jx0);
1065             dy20             = _mm_sub_ps(iy2,jy0);
1066             dz20             = _mm_sub_ps(iz2,jz0);
1067
1068             /* Calculate squared distance and things based on it */
1069             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1070             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1071             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1072
1073             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1074             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1075             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1076
1077             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1078             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1079             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1080
1081             /* Load parameters for j particles */
1082             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1083                                                               charge+jnrC+0,charge+jnrD+0);
1084             vdwjidx0A        = 2*vdwtype[jnrA+0];
1085             vdwjidx0B        = 2*vdwtype[jnrB+0];
1086             vdwjidx0C        = 2*vdwtype[jnrC+0];
1087             vdwjidx0D        = 2*vdwtype[jnrD+0];
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             r00              = _mm_mul_ps(rsq00,rinv00);
1094             r00              = _mm_andnot_ps(dummy_mask,r00);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq00             = _mm_mul_ps(iq0,jq0);
1098             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1099                                          vdwparam+vdwioffset0+vdwjidx0B,
1100                                          vdwparam+vdwioffset0+vdwjidx0C,
1101                                          vdwparam+vdwioffset0+vdwjidx0D,
1102                                          &c6_00,&c12_00);
1103
1104             /* Calculate table index by multiplying r with table scale and truncate to integer */
1105             rt               = _mm_mul_ps(r00,vftabscale);
1106             vfitab           = _mm_cvttps_epi32(rt);
1107             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1108             vfitab           = _mm_slli_epi32(vfitab,3);
1109
1110             /* EWALD ELECTROSTATICS */
1111
1112             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1113             ewrt             = _mm_mul_ps(r00,ewtabscale);
1114             ewitab           = _mm_cvttps_epi32(ewrt);
1115             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1116             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1117                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1118                                          &ewtabF,&ewtabFn);
1119             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1120             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1121
1122             /* CUBIC SPLINE TABLE DISPERSION */
1123             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1124             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1125             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1126             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1127             _MM_TRANSPOSE4_PS(Y,F,G,H);
1128             Heps             = _mm_mul_ps(vfeps,H);
1129             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1130             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1131             fvdw6            = _mm_mul_ps(c6_00,FF);
1132
1133             /* CUBIC SPLINE TABLE REPULSION */
1134             vfitab           = _mm_add_epi32(vfitab,ifour);
1135             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1136             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1137             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1138             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1139             _MM_TRANSPOSE4_PS(Y,F,G,H);
1140             Heps             = _mm_mul_ps(vfeps,H);
1141             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1142             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1143             fvdw12           = _mm_mul_ps(c12_00,FF);
1144             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1145
1146             fscal            = _mm_add_ps(felec,fvdw);
1147
1148             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm_mul_ps(fscal,dx00);
1152             ty               = _mm_mul_ps(fscal,dy00);
1153             tz               = _mm_mul_ps(fscal,dz00);
1154
1155             /* Update vectorial force */
1156             fix0             = _mm_add_ps(fix0,tx);
1157             fiy0             = _mm_add_ps(fiy0,ty);
1158             fiz0             = _mm_add_ps(fiz0,tz);
1159
1160             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1161                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1162                                                    tx,ty,tz);
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             r10              = _mm_mul_ps(rsq10,rinv10);
1169             r10              = _mm_andnot_ps(dummy_mask,r10);
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             qq10             = _mm_mul_ps(iq1,jq0);
1173
1174             /* EWALD ELECTROSTATICS */
1175
1176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1177             ewrt             = _mm_mul_ps(r10,ewtabscale);
1178             ewitab           = _mm_cvttps_epi32(ewrt);
1179             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1180             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1181                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1182                                          &ewtabF,&ewtabFn);
1183             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1184             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm_mul_ps(fscal,dx10);
1192             ty               = _mm_mul_ps(fscal,dy10);
1193             tz               = _mm_mul_ps(fscal,dz10);
1194
1195             /* Update vectorial force */
1196             fix1             = _mm_add_ps(fix1,tx);
1197             fiy1             = _mm_add_ps(fiy1,ty);
1198             fiz1             = _mm_add_ps(fiz1,tz);
1199
1200             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1201                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1202                                                    tx,ty,tz);
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r20              = _mm_mul_ps(rsq20,rinv20);
1209             r20              = _mm_andnot_ps(dummy_mask,r20);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq20             = _mm_mul_ps(iq2,jq0);
1213
1214             /* EWALD ELECTROSTATICS */
1215
1216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1217             ewrt             = _mm_mul_ps(r20,ewtabscale);
1218             ewitab           = _mm_cvttps_epi32(ewrt);
1219             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1220             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1221                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1222                                          &ewtabF,&ewtabFn);
1223             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1224             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1225
1226             fscal            = felec;
1227
1228             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_ps(fscal,dx20);
1232             ty               = _mm_mul_ps(fscal,dy20);
1233             tz               = _mm_mul_ps(fscal,dz20);
1234
1235             /* Update vectorial force */
1236             fix2             = _mm_add_ps(fix2,tx);
1237             fiy2             = _mm_add_ps(fiy2,ty);
1238             fiz2             = _mm_add_ps(fiz2,tz);
1239
1240             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1241                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1242                                                    tx,ty,tz);
1243
1244             /* Inner loop uses 137 flops */
1245         }
1246
1247         /* End of innermost loop */
1248
1249         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1250                                               f+i_coord_offset,fshift+i_shift_offset);
1251
1252         /* Increment number of inner iterations */
1253         inneriter                  += j_index_end - j_index_start;
1254
1255         /* Outer loop uses 27 flops */
1256     }
1257
1258     /* Increment number of outer iterations */
1259     outeriter        += nri;
1260
1261     /* Update outer/inner flops */
1262
1263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*137);
1264 }