Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128i          ewitab;
84     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     real             *ewtab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
109
110     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130         shX              = shiftvec[i_shift_offset+XX];
131         shY              = shiftvec[i_shift_offset+YY];
132         shZ              = shiftvec[i_shift_offset+ZZ];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
144         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
145         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
146
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_ps();
157         vvdwsum          = _mm_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_ps(ix0,jx0);
181             dy00             = _mm_sub_ps(iy0,jy0);
182             dz00             = _mm_sub_ps(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186
187             rinv00           = gmx_mm_invsqrt_ps(rsq00);
188
189             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
193                                                               charge+jnrC+0,charge+jnrD+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_ps(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_ps(iq0,jq0);
207             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,
209                                          vdwparam+vdwioffset0+vdwjidx0C,
210                                          vdwparam+vdwioffset0+vdwjidx0D,
211                                          &c6_00,&c12_00);
212
213             /* Calculate table index by multiplying r with table scale and truncate to integer */
214             rt               = _mm_mul_ps(r00,vftabscale);
215             vfitab           = _mm_cvttps_epi32(rt);
216             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
217             vfitab           = _mm_slli_epi32(vfitab,3);
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = _mm_mul_ps(r00,ewtabscale);
223             ewitab           = _mm_cvttps_epi32(ewrt);
224             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
228             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
229             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
230             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
231             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
232             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
233             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
234             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
240             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
241             _MM_TRANSPOSE4_PS(Y,F,G,H);
242             Heps             = _mm_mul_ps(vfeps,H);
243             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
244             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
245             vvdw6            = _mm_mul_ps(c6_00,VV);
246             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
247             fvdw6            = _mm_mul_ps(c6_00,FF);
248
249             /* CUBIC SPLINE TABLE REPULSION */
250             vfitab           = _mm_add_epi32(vfitab,ifour);
251             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
253             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
254             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
255             _MM_TRANSPOSE4_PS(Y,F,G,H);
256             Heps             = _mm_mul_ps(vfeps,H);
257             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
258             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
259             vvdw12           = _mm_mul_ps(c12_00,VV);
260             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
261             fvdw12           = _mm_mul_ps(c12_00,FF);
262             vvdw             = _mm_add_ps(vvdw12,vvdw6);
263             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_ps(fscal,dx00);
273             ty               = _mm_mul_ps(fscal,dy00);
274             tz               = _mm_mul_ps(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_ps(fix0,tx);
278             fiy0             = _mm_add_ps(fiy0,ty);
279             fiz0             = _mm_add_ps(fiz0,tz);
280
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
282                                                    f+j_coord_offsetC,f+j_coord_offsetD,
283                                                    tx,ty,tz);
284
285             /* Inner loop uses 75 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             /* Get j neighbor index, and coordinate index */
292             jnrA             = jjnr[jidx];
293             jnrB             = jjnr[jidx+1];
294             jnrC             = jjnr[jidx+2];
295             jnrD             = jjnr[jidx+3];
296
297             /* Sign of each element will be negative for non-real atoms.
298              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
299              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
300              */
301             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
302             jnrA       = (jnrA>=0) ? jnrA : 0;
303             jnrB       = (jnrB>=0) ? jnrB : 0;
304             jnrC       = (jnrC>=0) ? jnrC : 0;
305             jnrD       = (jnrD>=0) ? jnrD : 0;
306
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                               x+j_coord_offsetC,x+j_coord_offsetD,
315                                               &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm_sub_ps(ix0,jx0);
319             dy00             = _mm_sub_ps(iy0,jy0);
320             dz00             = _mm_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm_invsqrt_ps(rsq00);
326
327             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                               charge+jnrC+0,charge+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r00              = _mm_mul_ps(rsq00,rinv00);
342             r00              = _mm_andnot_ps(dummy_mask,r00);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq00             = _mm_mul_ps(iq0,jq0);
346             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
347                                          vdwparam+vdwioffset0+vdwjidx0B,
348                                          vdwparam+vdwioffset0+vdwjidx0C,
349                                          vdwparam+vdwioffset0+vdwjidx0D,
350                                          &c6_00,&c12_00);
351
352             /* Calculate table index by multiplying r with table scale and truncate to integer */
353             rt               = _mm_mul_ps(r00,vftabscale);
354             vfitab           = _mm_cvttps_epi32(rt);
355             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
356             vfitab           = _mm_slli_epi32(vfitab,3);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
361             ewrt             = _mm_mul_ps(r00,ewtabscale);
362             ewitab           = _mm_cvttps_epi32(ewrt);
363             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
364             ewitab           = _mm_slli_epi32(ewitab,2);
365             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
366             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
367             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
368             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
369             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
370             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
371             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
372             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
373             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
374
375             /* CUBIC SPLINE TABLE DISPERSION */
376             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
377             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
378             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
379             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
380             _MM_TRANSPOSE4_PS(Y,F,G,H);
381             Heps             = _mm_mul_ps(vfeps,H);
382             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
383             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
384             vvdw6            = _mm_mul_ps(c6_00,VV);
385             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
386             fvdw6            = _mm_mul_ps(c6_00,FF);
387
388             /* CUBIC SPLINE TABLE REPULSION */
389             vfitab           = _mm_add_epi32(vfitab,ifour);
390             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
391             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
392             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
393             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
394             _MM_TRANSPOSE4_PS(Y,F,G,H);
395             Heps             = _mm_mul_ps(vfeps,H);
396             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
397             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
398             vvdw12           = _mm_mul_ps(c12_00,VV);
399             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
400             fvdw12           = _mm_mul_ps(c12_00,FF);
401             vvdw             = _mm_add_ps(vvdw12,vvdw6);
402             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_andnot_ps(dummy_mask,velec);
406             velecsum         = _mm_add_ps(velecsum,velec);
407             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
408             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
409
410             fscal            = _mm_add_ps(felec,fvdw);
411
412             fscal            = _mm_andnot_ps(dummy_mask,fscal);
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm_mul_ps(fscal,dx00);
416             ty               = _mm_mul_ps(fscal,dy00);
417             tz               = _mm_mul_ps(fscal,dz00);
418
419             /* Update vectorial force */
420             fix0             = _mm_add_ps(fix0,tx);
421             fiy0             = _mm_add_ps(fiy0,ty);
422             fiz0             = _mm_add_ps(fiz0,tz);
423
424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
425                                                    f+j_coord_offsetC,f+j_coord_offsetD,
426                                                    tx,ty,tz);
427
428             /* Inner loop uses 76 flops */
429         }
430
431         /* End of innermost loop */
432
433         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
434                                               f+i_coord_offset,fshift+i_shift_offset);
435
436         ggid                        = gid[iidx];
437         /* Update potential energies */
438         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
439         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
440
441         /* Increment number of inner iterations */
442         inneriter                  += j_index_end - j_index_start;
443
444         /* Outer loop uses 12 flops */
445     }
446
447     /* Increment number of outer iterations */
448     outeriter        += nri;
449
450     /* Update outer/inner flops */
451
452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*76);
453 }
454 /*
455  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse2_single
456  * Electrostatics interaction: Ewald
457  * VdW interaction:            CubicSplineTable
458  * Geometry:                   Particle-Particle
459  * Calculate force/pot:        Force
460  */
461 void
462 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse2_single
463                     (t_nblist * gmx_restrict                nlist,
464                      rvec * gmx_restrict                    xx,
465                      rvec * gmx_restrict                    ff,
466                      t_forcerec * gmx_restrict              fr,
467                      t_mdatoms * gmx_restrict               mdatoms,
468                      nb_kernel_data_t * gmx_restrict        kernel_data,
469                      t_nrnb * gmx_restrict                  nrnb)
470 {
471     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
472      * just 0 for non-waters.
473      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
474      * jnr indices corresponding to data put in the four positions in the SIMD register.
475      */
476     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
477     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
478     int              jnrA,jnrB,jnrC,jnrD;
479     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
480     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
481     real             shX,shY,shZ,rcutoff_scalar;
482     real             *shiftvec,*fshift,*x,*f;
483     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
484     int              vdwioffset0;
485     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
486     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
487     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
488     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
489     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
490     real             *charge;
491     int              nvdwtype;
492     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
493     int              *vdwtype;
494     real             *vdwparam;
495     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
496     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
497     __m128i          vfitab;
498     __m128i          ifour       = _mm_set1_epi32(4);
499     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
500     real             *vftab;
501     __m128i          ewitab;
502     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
503     real             *ewtab;
504     __m128           dummy_mask,cutoff_mask;
505     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
506     __m128           one     = _mm_set1_ps(1.0);
507     __m128           two     = _mm_set1_ps(2.0);
508     x                = xx[0];
509     f                = ff[0];
510
511     nri              = nlist->nri;
512     iinr             = nlist->iinr;
513     jindex           = nlist->jindex;
514     jjnr             = nlist->jjnr;
515     shiftidx         = nlist->shift;
516     gid              = nlist->gid;
517     shiftvec         = fr->shift_vec[0];
518     fshift           = fr->fshift[0];
519     facel            = _mm_set1_ps(fr->epsfac);
520     charge           = mdatoms->chargeA;
521     nvdwtype         = fr->ntype;
522     vdwparam         = fr->nbfp;
523     vdwtype          = mdatoms->typeA;
524
525     vftab            = kernel_data->table_vdw->data;
526     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
527
528     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
529     ewtab            = fr->ic->tabq_coul_F;
530     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
531     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
532
533     /* Avoid stupid compiler warnings */
534     jnrA = jnrB = jnrC = jnrD = 0;
535     j_coord_offsetA = 0;
536     j_coord_offsetB = 0;
537     j_coord_offsetC = 0;
538     j_coord_offsetD = 0;
539
540     outeriter        = 0;
541     inneriter        = 0;
542
543     /* Start outer loop over neighborlists */
544     for(iidx=0; iidx<nri; iidx++)
545     {
546         /* Load shift vector for this list */
547         i_shift_offset   = DIM*shiftidx[iidx];
548         shX              = shiftvec[i_shift_offset+XX];
549         shY              = shiftvec[i_shift_offset+YY];
550         shZ              = shiftvec[i_shift_offset+ZZ];
551
552         /* Load limits for loop over neighbors */
553         j_index_start    = jindex[iidx];
554         j_index_end      = jindex[iidx+1];
555
556         /* Get outer coordinate index */
557         inr              = iinr[iidx];
558         i_coord_offset   = DIM*inr;
559
560         /* Load i particle coords and add shift vector */
561         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
562         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
563         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
564
565         fix0             = _mm_setzero_ps();
566         fiy0             = _mm_setzero_ps();
567         fiz0             = _mm_setzero_ps();
568
569         /* Load parameters for i particles */
570         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
571         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
572
573         /* Start inner kernel loop */
574         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
575         {
576
577             /* Get j neighbor index, and coordinate index */
578             jnrA             = jjnr[jidx];
579             jnrB             = jjnr[jidx+1];
580             jnrC             = jjnr[jidx+2];
581             jnrD             = jjnr[jidx+3];
582
583             j_coord_offsetA  = DIM*jnrA;
584             j_coord_offsetB  = DIM*jnrB;
585             j_coord_offsetC  = DIM*jnrC;
586             j_coord_offsetD  = DIM*jnrD;
587
588             /* load j atom coordinates */
589             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
590                                               x+j_coord_offsetC,x+j_coord_offsetD,
591                                               &jx0,&jy0,&jz0);
592
593             /* Calculate displacement vector */
594             dx00             = _mm_sub_ps(ix0,jx0);
595             dy00             = _mm_sub_ps(iy0,jy0);
596             dz00             = _mm_sub_ps(iz0,jz0);
597
598             /* Calculate squared distance and things based on it */
599             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
600
601             rinv00           = gmx_mm_invsqrt_ps(rsq00);
602
603             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
604
605             /* Load parameters for j particles */
606             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
607                                                               charge+jnrC+0,charge+jnrD+0);
608             vdwjidx0A        = 2*vdwtype[jnrA+0];
609             vdwjidx0B        = 2*vdwtype[jnrB+0];
610             vdwjidx0C        = 2*vdwtype[jnrC+0];
611             vdwjidx0D        = 2*vdwtype[jnrD+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r00              = _mm_mul_ps(rsq00,rinv00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq00             = _mm_mul_ps(iq0,jq0);
621             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
622                                          vdwparam+vdwioffset0+vdwjidx0B,
623                                          vdwparam+vdwioffset0+vdwjidx0C,
624                                          vdwparam+vdwioffset0+vdwjidx0D,
625                                          &c6_00,&c12_00);
626
627             /* Calculate table index by multiplying r with table scale and truncate to integer */
628             rt               = _mm_mul_ps(r00,vftabscale);
629             vfitab           = _mm_cvttps_epi32(rt);
630             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
631             vfitab           = _mm_slli_epi32(vfitab,3);
632
633             /* EWALD ELECTROSTATICS */
634
635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
636             ewrt             = _mm_mul_ps(r00,ewtabscale);
637             ewitab           = _mm_cvttps_epi32(ewrt);
638             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
639             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
640                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
641                                          &ewtabF,&ewtabFn);
642             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
643             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
644
645             /* CUBIC SPLINE TABLE DISPERSION */
646             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
647             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
648             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
649             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
650             _MM_TRANSPOSE4_PS(Y,F,G,H);
651             Heps             = _mm_mul_ps(vfeps,H);
652             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
653             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
654             fvdw6            = _mm_mul_ps(c6_00,FF);
655
656             /* CUBIC SPLINE TABLE REPULSION */
657             vfitab           = _mm_add_epi32(vfitab,ifour);
658             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
659             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
660             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
661             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
662             _MM_TRANSPOSE4_PS(Y,F,G,H);
663             Heps             = _mm_mul_ps(vfeps,H);
664             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
665             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
666             fvdw12           = _mm_mul_ps(c12_00,FF);
667             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
668
669             fscal            = _mm_add_ps(felec,fvdw);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm_mul_ps(fscal,dx00);
673             ty               = _mm_mul_ps(fscal,dy00);
674             tz               = _mm_mul_ps(fscal,dz00);
675
676             /* Update vectorial force */
677             fix0             = _mm_add_ps(fix0,tx);
678             fiy0             = _mm_add_ps(fiy0,ty);
679             fiz0             = _mm_add_ps(fiz0,tz);
680
681             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
682                                                    f+j_coord_offsetC,f+j_coord_offsetD,
683                                                    tx,ty,tz);
684
685             /* Inner loop uses 62 flops */
686         }
687
688         if(jidx<j_index_end)
689         {
690
691             /* Get j neighbor index, and coordinate index */
692             jnrA             = jjnr[jidx];
693             jnrB             = jjnr[jidx+1];
694             jnrC             = jjnr[jidx+2];
695             jnrD             = jjnr[jidx+3];
696
697             /* Sign of each element will be negative for non-real atoms.
698              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
699              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
700              */
701             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
702             jnrA       = (jnrA>=0) ? jnrA : 0;
703             jnrB       = (jnrB>=0) ? jnrB : 0;
704             jnrC       = (jnrC>=0) ? jnrC : 0;
705             jnrD       = (jnrD>=0) ? jnrD : 0;
706
707             j_coord_offsetA  = DIM*jnrA;
708             j_coord_offsetB  = DIM*jnrB;
709             j_coord_offsetC  = DIM*jnrC;
710             j_coord_offsetD  = DIM*jnrD;
711
712             /* load j atom coordinates */
713             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
714                                               x+j_coord_offsetC,x+j_coord_offsetD,
715                                               &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx00             = _mm_sub_ps(ix0,jx0);
719             dy00             = _mm_sub_ps(iy0,jy0);
720             dz00             = _mm_sub_ps(iz0,jz0);
721
722             /* Calculate squared distance and things based on it */
723             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
724
725             rinv00           = gmx_mm_invsqrt_ps(rsq00);
726
727             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
728
729             /* Load parameters for j particles */
730             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
731                                                               charge+jnrC+0,charge+jnrD+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734             vdwjidx0C        = 2*vdwtype[jnrC+0];
735             vdwjidx0D        = 2*vdwtype[jnrD+0];
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             r00              = _mm_mul_ps(rsq00,rinv00);
742             r00              = _mm_andnot_ps(dummy_mask,r00);
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq00             = _mm_mul_ps(iq0,jq0);
746             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
747                                          vdwparam+vdwioffset0+vdwjidx0B,
748                                          vdwparam+vdwioffset0+vdwjidx0C,
749                                          vdwparam+vdwioffset0+vdwjidx0D,
750                                          &c6_00,&c12_00);
751
752             /* Calculate table index by multiplying r with table scale and truncate to integer */
753             rt               = _mm_mul_ps(r00,vftabscale);
754             vfitab           = _mm_cvttps_epi32(rt);
755             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
756             vfitab           = _mm_slli_epi32(vfitab,3);
757
758             /* EWALD ELECTROSTATICS */
759
760             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
761             ewrt             = _mm_mul_ps(r00,ewtabscale);
762             ewitab           = _mm_cvttps_epi32(ewrt);
763             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
764             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
765                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
766                                          &ewtabF,&ewtabFn);
767             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
768             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
769
770             /* CUBIC SPLINE TABLE DISPERSION */
771             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
772             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
773             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
774             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
775             _MM_TRANSPOSE4_PS(Y,F,G,H);
776             Heps             = _mm_mul_ps(vfeps,H);
777             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
778             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
779             fvdw6            = _mm_mul_ps(c6_00,FF);
780
781             /* CUBIC SPLINE TABLE REPULSION */
782             vfitab           = _mm_add_epi32(vfitab,ifour);
783             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
784             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
785             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
786             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
787             _MM_TRANSPOSE4_PS(Y,F,G,H);
788             Heps             = _mm_mul_ps(vfeps,H);
789             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
790             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
791             fvdw12           = _mm_mul_ps(c12_00,FF);
792             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
793
794             fscal            = _mm_add_ps(felec,fvdw);
795
796             fscal            = _mm_andnot_ps(dummy_mask,fscal);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm_mul_ps(fscal,dx00);
800             ty               = _mm_mul_ps(fscal,dy00);
801             tz               = _mm_mul_ps(fscal,dz00);
802
803             /* Update vectorial force */
804             fix0             = _mm_add_ps(fix0,tx);
805             fiy0             = _mm_add_ps(fiy0,ty);
806             fiz0             = _mm_add_ps(fiz0,tz);
807
808             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
809                                                    f+j_coord_offsetC,f+j_coord_offsetD,
810                                                    tx,ty,tz);
811
812             /* Inner loop uses 63 flops */
813         }
814
815         /* End of innermost loop */
816
817         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
818                                               f+i_coord_offset,fshift+i_shift_offset);
819
820         /* Increment number of inner iterations */
821         inneriter                  += j_index_end - j_index_start;
822
823         /* Outer loop uses 10 flops */
824     }
825
826     /* Increment number of outer iterations */
827     outeriter        += nri;
828
829     /* Update outer/inner flops */
830
831     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*63);
832 }