Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83     real             rswitch_scalar,d_scalar;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
103     ewtab            = fr->ic->tabq_coul_FDV0;
104     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
105     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
106
107     /* Setup water-specific parameters */
108     inr              = nlist->iinr[0];
109     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
110     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
111     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
117
118     rswitch_scalar   = fr->rcoulomb_switch;
119     rswitch          = _mm_set1_ps(rswitch_scalar);
120     /* Setup switch parameters */
121     d_scalar         = rcutoff_scalar-rswitch_scalar;
122     d                = _mm_set1_ps(d_scalar);
123     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
124     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
127     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145         shX              = shiftvec[i_shift_offset+XX];
146         shY              = shiftvec[i_shift_offset+YY];
147         shZ              = shiftvec[i_shift_offset+ZZ];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
159         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
160         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
161         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
162         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
163         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
164         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
165         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
166         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
167
168         fix1             = _mm_setzero_ps();
169         fiy1             = _mm_setzero_ps();
170         fiz1             = _mm_setzero_ps();
171         fix2             = _mm_setzero_ps();
172         fiy2             = _mm_setzero_ps();
173         fiz2             = _mm_setzero_ps();
174         fix3             = _mm_setzero_ps();
175         fiy3             = _mm_setzero_ps();
176         fiz3             = _mm_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208             dx30             = _mm_sub_ps(ix3,jx0);
209             dy30             = _mm_sub_ps(iy3,jy0);
210             dz30             = _mm_sub_ps(iz3,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
216
217             rinv10           = gmx_mm_invsqrt_ps(rsq10);
218             rinv20           = gmx_mm_invsqrt_ps(rsq20);
219             rinv30           = gmx_mm_invsqrt_ps(rsq30);
220
221             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
222             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
223             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq10,rcutoff2))
234             {
235
236             r10              = _mm_mul_ps(rsq10,rinv10);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq10             = _mm_mul_ps(iq1,jq0);
240
241             /* EWALD ELECTROSTATICS */
242
243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
244             ewrt             = _mm_mul_ps(r10,ewtabscale);
245             ewitab           = _mm_cvttps_epi32(ewrt);
246             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
247             ewitab           = _mm_slli_epi32(ewitab,2);
248             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
249             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
250             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
251             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
252             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
253             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
254             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
255             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
256             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
257
258             d                = _mm_sub_ps(r10,rswitch);
259             d                = _mm_max_ps(d,_mm_setzero_ps());
260             d2               = _mm_mul_ps(d,d);
261             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
262
263             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
264
265             /* Evaluate switch function */
266             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
267             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
268             velec            = _mm_mul_ps(velec,sw);
269             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velec            = _mm_and_ps(velec,cutoff_mask);
273             velecsum         = _mm_add_ps(velecsum,velec);
274
275             fscal            = felec;
276
277             fscal            = _mm_and_ps(fscal,cutoff_mask);
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_ps(fscal,dx10);
281             ty               = _mm_mul_ps(fscal,dy10);
282             tz               = _mm_mul_ps(fscal,dz10);
283
284             /* Update vectorial force */
285             fix1             = _mm_add_ps(fix1,tx);
286             fiy1             = _mm_add_ps(fiy1,ty);
287             fiz1             = _mm_add_ps(fiz1,tz);
288
289             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
290                                                    f+j_coord_offsetC,f+j_coord_offsetD,
291                                                    tx,ty,tz);
292
293             }
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             if (gmx_mm_any_lt(rsq20,rcutoff2))
300             {
301
302             r20              = _mm_mul_ps(rsq20,rinv20);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq20             = _mm_mul_ps(iq2,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_ps(r20,ewtabscale);
311             ewitab           = _mm_cvttps_epi32(ewrt);
312             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
316             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
317             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
318             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
319             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
320             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
321             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
322             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
323
324             d                = _mm_sub_ps(r20,rswitch);
325             d                = _mm_max_ps(d,_mm_setzero_ps());
326             d2               = _mm_mul_ps(d,d);
327             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
328
329             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
330
331             /* Evaluate switch function */
332             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
333             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
334             velec            = _mm_mul_ps(velec,sw);
335             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_and_ps(velec,cutoff_mask);
339             velecsum         = _mm_add_ps(velecsum,velec);
340
341             fscal            = felec;
342
343             fscal            = _mm_and_ps(fscal,cutoff_mask);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_ps(fscal,dx20);
347             ty               = _mm_mul_ps(fscal,dy20);
348             tz               = _mm_mul_ps(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm_add_ps(fix2,tx);
352             fiy2             = _mm_add_ps(fiy2,ty);
353             fiz2             = _mm_add_ps(fiz2,tz);
354
355             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
356                                                    f+j_coord_offsetC,f+j_coord_offsetD,
357                                                    tx,ty,tz);
358
359             }
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq30,rcutoff2))
366             {
367
368             r30              = _mm_mul_ps(rsq30,rinv30);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq30             = _mm_mul_ps(iq3,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_ps(r30,ewtabscale);
377             ewitab           = _mm_cvttps_epi32(ewrt);
378             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
384             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
386             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
387             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
388             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
389
390             d                = _mm_sub_ps(r30,rswitch);
391             d                = _mm_max_ps(d,_mm_setzero_ps());
392             d2               = _mm_mul_ps(d,d);
393             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
394
395             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
396
397             /* Evaluate switch function */
398             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
399             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
400             velec            = _mm_mul_ps(velec,sw);
401             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm_and_ps(velec,cutoff_mask);
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409             fscal            = _mm_and_ps(fscal,cutoff_mask);
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm_mul_ps(fscal,dx30);
413             ty               = _mm_mul_ps(fscal,dy30);
414             tz               = _mm_mul_ps(fscal,dz30);
415
416             /* Update vectorial force */
417             fix3             = _mm_add_ps(fix3,tx);
418             fiy3             = _mm_add_ps(fiy3,ty);
419             fiz3             = _mm_add_ps(fiz3,tz);
420
421             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
422                                                    f+j_coord_offsetC,f+j_coord_offsetD,
423                                                    tx,ty,tz);
424
425             }
426
427             /* Inner loop uses 195 flops */
428         }
429
430         if(jidx<j_index_end)
431         {
432
433             /* Get j neighbor index, and coordinate index */
434             jnrA             = jjnr[jidx];
435             jnrB             = jjnr[jidx+1];
436             jnrC             = jjnr[jidx+2];
437             jnrD             = jjnr[jidx+3];
438
439             /* Sign of each element will be negative for non-real atoms.
440              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
441              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
442              */
443             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
444             jnrA       = (jnrA>=0) ? jnrA : 0;
445             jnrB       = (jnrB>=0) ? jnrB : 0;
446             jnrC       = (jnrC>=0) ? jnrC : 0;
447             jnrD       = (jnrD>=0) ? jnrD : 0;
448
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453
454             /* load j atom coordinates */
455             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
456                                               x+j_coord_offsetC,x+j_coord_offsetD,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx10             = _mm_sub_ps(ix1,jx0);
461             dy10             = _mm_sub_ps(iy1,jy0);
462             dz10             = _mm_sub_ps(iz1,jz0);
463             dx20             = _mm_sub_ps(ix2,jx0);
464             dy20             = _mm_sub_ps(iy2,jy0);
465             dz20             = _mm_sub_ps(iz2,jz0);
466             dx30             = _mm_sub_ps(ix3,jx0);
467             dy30             = _mm_sub_ps(iy3,jy0);
468             dz30             = _mm_sub_ps(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
472             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
473             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
474
475             rinv10           = gmx_mm_invsqrt_ps(rsq10);
476             rinv20           = gmx_mm_invsqrt_ps(rsq20);
477             rinv30           = gmx_mm_invsqrt_ps(rsq30);
478
479             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
480             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
481             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
485                                                               charge+jnrC+0,charge+jnrD+0);
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             if (gmx_mm_any_lt(rsq10,rcutoff2))
492             {
493
494             r10              = _mm_mul_ps(rsq10,rinv10);
495             r10              = _mm_andnot_ps(dummy_mask,r10);
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq10             = _mm_mul_ps(iq1,jq0);
499
500             /* EWALD ELECTROSTATICS */
501
502             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
503             ewrt             = _mm_mul_ps(r10,ewtabscale);
504             ewitab           = _mm_cvttps_epi32(ewrt);
505             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
506             ewitab           = _mm_slli_epi32(ewitab,2);
507             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
508             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
509             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
510             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
511             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
512             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
513             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
514             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
515             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
516
517             d                = _mm_sub_ps(r10,rswitch);
518             d                = _mm_max_ps(d,_mm_setzero_ps());
519             d2               = _mm_mul_ps(d,d);
520             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
521
522             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
523
524             /* Evaluate switch function */
525             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
526             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
527             velec            = _mm_mul_ps(velec,sw);
528             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_and_ps(velec,cutoff_mask);
532             velec            = _mm_andnot_ps(dummy_mask,velec);
533             velecsum         = _mm_add_ps(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm_and_ps(fscal,cutoff_mask);
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx10);
543             ty               = _mm_mul_ps(fscal,dy10);
544             tz               = _mm_mul_ps(fscal,dz10);
545
546             /* Update vectorial force */
547             fix1             = _mm_add_ps(fix1,tx);
548             fiy1             = _mm_add_ps(fiy1,ty);
549             fiz1             = _mm_add_ps(fiz1,tz);
550
551             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
552                                                    f+j_coord_offsetC,f+j_coord_offsetD,
553                                                    tx,ty,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq20,rcutoff2))
562             {
563
564             r20              = _mm_mul_ps(rsq20,rinv20);
565             r20              = _mm_andnot_ps(dummy_mask,r20);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq20             = _mm_mul_ps(iq2,jq0);
569
570             /* EWALD ELECTROSTATICS */
571
572             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
573             ewrt             = _mm_mul_ps(r20,ewtabscale);
574             ewitab           = _mm_cvttps_epi32(ewrt);
575             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
576             ewitab           = _mm_slli_epi32(ewitab,2);
577             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
578             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
579             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
580             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
581             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
582             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
583             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
584             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
585             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
586
587             d                = _mm_sub_ps(r20,rswitch);
588             d                = _mm_max_ps(d,_mm_setzero_ps());
589             d2               = _mm_mul_ps(d,d);
590             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
591
592             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
593
594             /* Evaluate switch function */
595             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
596             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
597             velec            = _mm_mul_ps(velec,sw);
598             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_and_ps(velec,cutoff_mask);
602             velec            = _mm_andnot_ps(dummy_mask,velec);
603             velecsum         = _mm_add_ps(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_and_ps(fscal,cutoff_mask);
608
609             fscal            = _mm_andnot_ps(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_ps(fscal,dx20);
613             ty               = _mm_mul_ps(fscal,dy20);
614             tz               = _mm_mul_ps(fscal,dz20);
615
616             /* Update vectorial force */
617             fix2             = _mm_add_ps(fix2,tx);
618             fiy2             = _mm_add_ps(fiy2,ty);
619             fiz2             = _mm_add_ps(fiz2,tz);
620
621             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
622                                                    f+j_coord_offsetC,f+j_coord_offsetD,
623                                                    tx,ty,tz);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm_any_lt(rsq30,rcutoff2))
632             {
633
634             r30              = _mm_mul_ps(rsq30,rinv30);
635             r30              = _mm_andnot_ps(dummy_mask,r30);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq30             = _mm_mul_ps(iq3,jq0);
639
640             /* EWALD ELECTROSTATICS */
641
642             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
643             ewrt             = _mm_mul_ps(r30,ewtabscale);
644             ewitab           = _mm_cvttps_epi32(ewrt);
645             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
646             ewitab           = _mm_slli_epi32(ewitab,2);
647             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
648             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
649             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
650             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
651             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
652             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
653             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
654             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
655             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
656
657             d                = _mm_sub_ps(r30,rswitch);
658             d                = _mm_max_ps(d,_mm_setzero_ps());
659             d2               = _mm_mul_ps(d,d);
660             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
661
662             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
663
664             /* Evaluate switch function */
665             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
666             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
667             velec            = _mm_mul_ps(velec,sw);
668             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
669
670             /* Update potential sum for this i atom from the interaction with this j atom. */
671             velec            = _mm_and_ps(velec,cutoff_mask);
672             velec            = _mm_andnot_ps(dummy_mask,velec);
673             velecsum         = _mm_add_ps(velecsum,velec);
674
675             fscal            = felec;
676
677             fscal            = _mm_and_ps(fscal,cutoff_mask);
678
679             fscal            = _mm_andnot_ps(dummy_mask,fscal);
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm_mul_ps(fscal,dx30);
683             ty               = _mm_mul_ps(fscal,dy30);
684             tz               = _mm_mul_ps(fscal,dz30);
685
686             /* Update vectorial force */
687             fix3             = _mm_add_ps(fix3,tx);
688             fiy3             = _mm_add_ps(fiy3,ty);
689             fiz3             = _mm_add_ps(fiz3,tz);
690
691             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
692                                                    f+j_coord_offsetC,f+j_coord_offsetD,
693                                                    tx,ty,tz);
694
695             }
696
697             /* Inner loop uses 198 flops */
698         }
699
700         /* End of innermost loop */
701
702         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
703                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
704
705         ggid                        = gid[iidx];
706         /* Update potential energies */
707         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 28 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*28 + inneriter*198);
721 }
722 /*
723  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
724  * Electrostatics interaction: Ewald
725  * VdW interaction:            None
726  * Geometry:                   Water4-Particle
727  * Calculate force/pot:        Force
728  */
729 void
730 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
731                     (t_nblist * gmx_restrict                nlist,
732                      rvec * gmx_restrict                    xx,
733                      rvec * gmx_restrict                    ff,
734                      t_forcerec * gmx_restrict              fr,
735                      t_mdatoms * gmx_restrict               mdatoms,
736                      nb_kernel_data_t * gmx_restrict        kernel_data,
737                      t_nrnb * gmx_restrict                  nrnb)
738 {
739     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
740      * just 0 for non-waters.
741      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
742      * jnr indices corresponding to data put in the four positions in the SIMD register.
743      */
744     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
745     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
746     int              jnrA,jnrB,jnrC,jnrD;
747     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
748     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
749     real             shX,shY,shZ,rcutoff_scalar;
750     real             *shiftvec,*fshift,*x,*f;
751     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
752     int              vdwioffset1;
753     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
754     int              vdwioffset2;
755     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
756     int              vdwioffset3;
757     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
758     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
759     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
760     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
761     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
762     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
763     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
764     real             *charge;
765     __m128i          ewitab;
766     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
767     real             *ewtab;
768     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
769     real             rswitch_scalar,d_scalar;
770     __m128           dummy_mask,cutoff_mask;
771     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
772     __m128           one     = _mm_set1_ps(1.0);
773     __m128           two     = _mm_set1_ps(2.0);
774     x                = xx[0];
775     f                = ff[0];
776
777     nri              = nlist->nri;
778     iinr             = nlist->iinr;
779     jindex           = nlist->jindex;
780     jjnr             = nlist->jjnr;
781     shiftidx         = nlist->shift;
782     gid              = nlist->gid;
783     shiftvec         = fr->shift_vec[0];
784     fshift           = fr->fshift[0];
785     facel            = _mm_set1_ps(fr->epsfac);
786     charge           = mdatoms->chargeA;
787
788     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
789     ewtab            = fr->ic->tabq_coul_FDV0;
790     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
791     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
796     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
797     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
798
799     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
800     rcutoff_scalar   = fr->rcoulomb;
801     rcutoff          = _mm_set1_ps(rcutoff_scalar);
802     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
803
804     rswitch_scalar   = fr->rcoulomb_switch;
805     rswitch          = _mm_set1_ps(rswitch_scalar);
806     /* Setup switch parameters */
807     d_scalar         = rcutoff_scalar-rswitch_scalar;
808     d                = _mm_set1_ps(d_scalar);
809     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
810     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
811     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
812     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
813     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
814     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = jnrC = jnrD = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820     j_coord_offsetC = 0;
821     j_coord_offsetD = 0;
822
823     outeriter        = 0;
824     inneriter        = 0;
825
826     /* Start outer loop over neighborlists */
827     for(iidx=0; iidx<nri; iidx++)
828     {
829         /* Load shift vector for this list */
830         i_shift_offset   = DIM*shiftidx[iidx];
831         shX              = shiftvec[i_shift_offset+XX];
832         shY              = shiftvec[i_shift_offset+YY];
833         shZ              = shiftvec[i_shift_offset+ZZ];
834
835         /* Load limits for loop over neighbors */
836         j_index_start    = jindex[iidx];
837         j_index_end      = jindex[iidx+1];
838
839         /* Get outer coordinate index */
840         inr              = iinr[iidx];
841         i_coord_offset   = DIM*inr;
842
843         /* Load i particle coords and add shift vector */
844         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
845         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
846         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
847         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
848         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
849         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
850         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
851         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
852         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
853
854         fix1             = _mm_setzero_ps();
855         fiy1             = _mm_setzero_ps();
856         fiz1             = _mm_setzero_ps();
857         fix2             = _mm_setzero_ps();
858         fiy2             = _mm_setzero_ps();
859         fiz2             = _mm_setzero_ps();
860         fix3             = _mm_setzero_ps();
861         fiy3             = _mm_setzero_ps();
862         fiz3             = _mm_setzero_ps();
863
864         /* Start inner kernel loop */
865         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
866         {
867
868             /* Get j neighbor index, and coordinate index */
869             jnrA             = jjnr[jidx];
870             jnrB             = jjnr[jidx+1];
871             jnrC             = jjnr[jidx+2];
872             jnrD             = jjnr[jidx+3];
873
874             j_coord_offsetA  = DIM*jnrA;
875             j_coord_offsetB  = DIM*jnrB;
876             j_coord_offsetC  = DIM*jnrC;
877             j_coord_offsetD  = DIM*jnrD;
878
879             /* load j atom coordinates */
880             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
881                                               x+j_coord_offsetC,x+j_coord_offsetD,
882                                               &jx0,&jy0,&jz0);
883
884             /* Calculate displacement vector */
885             dx10             = _mm_sub_ps(ix1,jx0);
886             dy10             = _mm_sub_ps(iy1,jy0);
887             dz10             = _mm_sub_ps(iz1,jz0);
888             dx20             = _mm_sub_ps(ix2,jx0);
889             dy20             = _mm_sub_ps(iy2,jy0);
890             dz20             = _mm_sub_ps(iz2,jz0);
891             dx30             = _mm_sub_ps(ix3,jx0);
892             dy30             = _mm_sub_ps(iy3,jy0);
893             dz30             = _mm_sub_ps(iz3,jz0);
894
895             /* Calculate squared distance and things based on it */
896             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
897             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
898             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
899
900             rinv10           = gmx_mm_invsqrt_ps(rsq10);
901             rinv20           = gmx_mm_invsqrt_ps(rsq20);
902             rinv30           = gmx_mm_invsqrt_ps(rsq30);
903
904             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
905             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
906             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
907
908             /* Load parameters for j particles */
909             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
910                                                               charge+jnrC+0,charge+jnrD+0);
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             if (gmx_mm_any_lt(rsq10,rcutoff2))
917             {
918
919             r10              = _mm_mul_ps(rsq10,rinv10);
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq10             = _mm_mul_ps(iq1,jq0);
923
924             /* EWALD ELECTROSTATICS */
925
926             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
927             ewrt             = _mm_mul_ps(r10,ewtabscale);
928             ewitab           = _mm_cvttps_epi32(ewrt);
929             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
930             ewitab           = _mm_slli_epi32(ewitab,2);
931             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
932             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
933             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
934             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
935             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
936             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
937             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
938             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
939             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
940
941             d                = _mm_sub_ps(r10,rswitch);
942             d                = _mm_max_ps(d,_mm_setzero_ps());
943             d2               = _mm_mul_ps(d,d);
944             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
945
946             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
947
948             /* Evaluate switch function */
949             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
950             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
951             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
952
953             fscal            = felec;
954
955             fscal            = _mm_and_ps(fscal,cutoff_mask);
956
957             /* Calculate temporary vectorial force */
958             tx               = _mm_mul_ps(fscal,dx10);
959             ty               = _mm_mul_ps(fscal,dy10);
960             tz               = _mm_mul_ps(fscal,dz10);
961
962             /* Update vectorial force */
963             fix1             = _mm_add_ps(fix1,tx);
964             fiy1             = _mm_add_ps(fiy1,ty);
965             fiz1             = _mm_add_ps(fiz1,tz);
966
967             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
968                                                    f+j_coord_offsetC,f+j_coord_offsetD,
969                                                    tx,ty,tz);
970
971             }
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             if (gmx_mm_any_lt(rsq20,rcutoff2))
978             {
979
980             r20              = _mm_mul_ps(rsq20,rinv20);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _mm_mul_ps(iq2,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_ps(r20,ewtabscale);
989             ewitab           = _mm_cvttps_epi32(ewrt);
990             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
991             ewitab           = _mm_slli_epi32(ewitab,2);
992             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
993             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
994             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
995             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
996             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
997             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
998             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
999             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1000             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1001
1002             d                = _mm_sub_ps(r20,rswitch);
1003             d                = _mm_max_ps(d,_mm_setzero_ps());
1004             d2               = _mm_mul_ps(d,d);
1005             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1006
1007             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1008
1009             /* Evaluate switch function */
1010             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1011             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1012             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1013
1014             fscal            = felec;
1015
1016             fscal            = _mm_and_ps(fscal,cutoff_mask);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_ps(fscal,dx20);
1020             ty               = _mm_mul_ps(fscal,dy20);
1021             tz               = _mm_mul_ps(fscal,dz20);
1022
1023             /* Update vectorial force */
1024             fix2             = _mm_add_ps(fix2,tx);
1025             fiy2             = _mm_add_ps(fiy2,ty);
1026             fiz2             = _mm_add_ps(fiz2,tz);
1027
1028             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1029                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1030                                                    tx,ty,tz);
1031
1032             }
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             if (gmx_mm_any_lt(rsq30,rcutoff2))
1039             {
1040
1041             r30              = _mm_mul_ps(rsq30,rinv30);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq30             = _mm_mul_ps(iq3,jq0);
1045
1046             /* EWALD ELECTROSTATICS */
1047
1048             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1049             ewrt             = _mm_mul_ps(r30,ewtabscale);
1050             ewitab           = _mm_cvttps_epi32(ewrt);
1051             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1052             ewitab           = _mm_slli_epi32(ewitab,2);
1053             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1054             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1055             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1056             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1057             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1058             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1059             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1060             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1061             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1062
1063             d                = _mm_sub_ps(r30,rswitch);
1064             d                = _mm_max_ps(d,_mm_setzero_ps());
1065             d2               = _mm_mul_ps(d,d);
1066             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1067
1068             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1069
1070             /* Evaluate switch function */
1071             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1072             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1073             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_and_ps(fscal,cutoff_mask);
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm_mul_ps(fscal,dx30);
1081             ty               = _mm_mul_ps(fscal,dy30);
1082             tz               = _mm_mul_ps(fscal,dz30);
1083
1084             /* Update vectorial force */
1085             fix3             = _mm_add_ps(fix3,tx);
1086             fiy3             = _mm_add_ps(fiy3,ty);
1087             fiz3             = _mm_add_ps(fiz3,tz);
1088
1089             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1090                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1091                                                    tx,ty,tz);
1092
1093             }
1094
1095             /* Inner loop uses 186 flops */
1096         }
1097
1098         if(jidx<j_index_end)
1099         {
1100
1101             /* Get j neighbor index, and coordinate index */
1102             jnrA             = jjnr[jidx];
1103             jnrB             = jjnr[jidx+1];
1104             jnrC             = jjnr[jidx+2];
1105             jnrD             = jjnr[jidx+3];
1106
1107             /* Sign of each element will be negative for non-real atoms.
1108              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1109              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1110              */
1111             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1112             jnrA       = (jnrA>=0) ? jnrA : 0;
1113             jnrB       = (jnrB>=0) ? jnrB : 0;
1114             jnrC       = (jnrC>=0) ? jnrC : 0;
1115             jnrD       = (jnrD>=0) ? jnrD : 0;
1116
1117             j_coord_offsetA  = DIM*jnrA;
1118             j_coord_offsetB  = DIM*jnrB;
1119             j_coord_offsetC  = DIM*jnrC;
1120             j_coord_offsetD  = DIM*jnrD;
1121
1122             /* load j atom coordinates */
1123             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1124                                               x+j_coord_offsetC,x+j_coord_offsetD,
1125                                               &jx0,&jy0,&jz0);
1126
1127             /* Calculate displacement vector */
1128             dx10             = _mm_sub_ps(ix1,jx0);
1129             dy10             = _mm_sub_ps(iy1,jy0);
1130             dz10             = _mm_sub_ps(iz1,jz0);
1131             dx20             = _mm_sub_ps(ix2,jx0);
1132             dy20             = _mm_sub_ps(iy2,jy0);
1133             dz20             = _mm_sub_ps(iz2,jz0);
1134             dx30             = _mm_sub_ps(ix3,jx0);
1135             dy30             = _mm_sub_ps(iy3,jy0);
1136             dz30             = _mm_sub_ps(iz3,jz0);
1137
1138             /* Calculate squared distance and things based on it */
1139             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1140             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1141             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1142
1143             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1144             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1145             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1146
1147             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1148             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1149             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1150
1151             /* Load parameters for j particles */
1152             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1153                                                               charge+jnrC+0,charge+jnrD+0);
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             if (gmx_mm_any_lt(rsq10,rcutoff2))
1160             {
1161
1162             r10              = _mm_mul_ps(rsq10,rinv10);
1163             r10              = _mm_andnot_ps(dummy_mask,r10);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq10             = _mm_mul_ps(iq1,jq0);
1167
1168             /* EWALD ELECTROSTATICS */
1169
1170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171             ewrt             = _mm_mul_ps(r10,ewtabscale);
1172             ewitab           = _mm_cvttps_epi32(ewrt);
1173             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1174             ewitab           = _mm_slli_epi32(ewitab,2);
1175             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1176             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1177             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1178             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1179             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1180             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1181             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1182             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1183             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1184
1185             d                = _mm_sub_ps(r10,rswitch);
1186             d                = _mm_max_ps(d,_mm_setzero_ps());
1187             d2               = _mm_mul_ps(d,d);
1188             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1189
1190             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1191
1192             /* Evaluate switch function */
1193             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1194             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1195             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_and_ps(fscal,cutoff_mask);
1200
1201             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm_mul_ps(fscal,dx10);
1205             ty               = _mm_mul_ps(fscal,dy10);
1206             tz               = _mm_mul_ps(fscal,dz10);
1207
1208             /* Update vectorial force */
1209             fix1             = _mm_add_ps(fix1,tx);
1210             fiy1             = _mm_add_ps(fiy1,ty);
1211             fiz1             = _mm_add_ps(fiz1,tz);
1212
1213             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1214                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1215                                                    tx,ty,tz);
1216
1217             }
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm_any_lt(rsq20,rcutoff2))
1224             {
1225
1226             r20              = _mm_mul_ps(rsq20,rinv20);
1227             r20              = _mm_andnot_ps(dummy_mask,r20);
1228
1229             /* Compute parameters for interactions between i and j atoms */
1230             qq20             = _mm_mul_ps(iq2,jq0);
1231
1232             /* EWALD ELECTROSTATICS */
1233
1234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1235             ewrt             = _mm_mul_ps(r20,ewtabscale);
1236             ewitab           = _mm_cvttps_epi32(ewrt);
1237             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1238             ewitab           = _mm_slli_epi32(ewitab,2);
1239             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1240             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1241             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1242             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1243             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1244             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1245             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1246             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1247             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1248
1249             d                = _mm_sub_ps(r20,rswitch);
1250             d                = _mm_max_ps(d,_mm_setzero_ps());
1251             d2               = _mm_mul_ps(d,d);
1252             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1253
1254             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1255
1256             /* Evaluate switch function */
1257             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1258             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1259             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1260
1261             fscal            = felec;
1262
1263             fscal            = _mm_and_ps(fscal,cutoff_mask);
1264
1265             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1266
1267             /* Calculate temporary vectorial force */
1268             tx               = _mm_mul_ps(fscal,dx20);
1269             ty               = _mm_mul_ps(fscal,dy20);
1270             tz               = _mm_mul_ps(fscal,dz20);
1271
1272             /* Update vectorial force */
1273             fix2             = _mm_add_ps(fix2,tx);
1274             fiy2             = _mm_add_ps(fiy2,ty);
1275             fiz2             = _mm_add_ps(fiz2,tz);
1276
1277             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1278                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1279                                                    tx,ty,tz);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_mm_any_lt(rsq30,rcutoff2))
1288             {
1289
1290             r30              = _mm_mul_ps(rsq30,rinv30);
1291             r30              = _mm_andnot_ps(dummy_mask,r30);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq30             = _mm_mul_ps(iq3,jq0);
1295
1296             /* EWALD ELECTROSTATICS */
1297
1298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1299             ewrt             = _mm_mul_ps(r30,ewtabscale);
1300             ewitab           = _mm_cvttps_epi32(ewrt);
1301             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1302             ewitab           = _mm_slli_epi32(ewitab,2);
1303             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1304             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1305             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1306             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1307             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1308             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1309             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1310             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1311             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1312
1313             d                = _mm_sub_ps(r30,rswitch);
1314             d                = _mm_max_ps(d,_mm_setzero_ps());
1315             d2               = _mm_mul_ps(d,d);
1316             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1317
1318             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1319
1320             /* Evaluate switch function */
1321             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1322             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1323             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1324
1325             fscal            = felec;
1326
1327             fscal            = _mm_and_ps(fscal,cutoff_mask);
1328
1329             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1330
1331             /* Calculate temporary vectorial force */
1332             tx               = _mm_mul_ps(fscal,dx30);
1333             ty               = _mm_mul_ps(fscal,dy30);
1334             tz               = _mm_mul_ps(fscal,dz30);
1335
1336             /* Update vectorial force */
1337             fix3             = _mm_add_ps(fix3,tx);
1338             fiy3             = _mm_add_ps(fiy3,ty);
1339             fiz3             = _mm_add_ps(fiz3,tz);
1340
1341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1342                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1343                                                    tx,ty,tz);
1344
1345             }
1346
1347             /* Inner loop uses 189 flops */
1348         }
1349
1350         /* End of innermost loop */
1351
1352         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1353                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1354
1355         /* Increment number of inner iterations */
1356         inneriter                  += j_index_end - j_index_start;
1357
1358         /* Outer loop uses 27 flops */
1359     }
1360
1361     /* Increment number of outer iterations */
1362     outeriter        += nri;
1363
1364     /* Update outer/inner flops */
1365
1366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*27 + inneriter*189);
1367 }