2440e40e80221af3ce632f57ae267fec8dac5539
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104
105     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
106     ewtab            = fr->ic->tabq_coul_FDV0;
107     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
108     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
109
110     /* Setup water-specific parameters */
111     inr              = nlist->iinr[0];
112     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
113     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
114     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->rcoulomb;
118     rcutoff          = _mm_set1_ps(rcutoff_scalar);
119     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
120
121     rswitch_scalar   = fr->rcoulomb_switch;
122     rswitch          = _mm_set1_ps(rswitch_scalar);
123     /* Setup switch parameters */
124     d_scalar         = rcutoff_scalar-rswitch_scalar;
125     d                = _mm_set1_ps(d_scalar);
126     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
127     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
130     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }  
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
164                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165         
166         fix1             = _mm_setzero_ps();
167         fiy1             = _mm_setzero_ps();
168         fiz1             = _mm_setzero_ps();
169         fix2             = _mm_setzero_ps();
170         fiy2             = _mm_setzero_ps();
171         fiz2             = _mm_setzero_ps();
172         fix3             = _mm_setzero_ps();
173         fiy3             = _mm_setzero_ps();
174         fiz3             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
213
214             rinv10           = gmx_mm_invsqrt_ps(rsq10);
215             rinv20           = gmx_mm_invsqrt_ps(rsq20);
216             rinv30           = gmx_mm_invsqrt_ps(rsq30);
217
218             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
219             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
220             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225
226             fjx0             = _mm_setzero_ps();
227             fjy0             = _mm_setzero_ps();
228             fjz0             = _mm_setzero_ps();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm_any_lt(rsq10,rcutoff2))
235             {
236
237             r10              = _mm_mul_ps(rsq10,rinv10);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq10             = _mm_mul_ps(iq1,jq0);
241
242             /* EWALD ELECTROSTATICS */
243
244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245             ewrt             = _mm_mul_ps(r10,ewtabscale);
246             ewitab           = _mm_cvttps_epi32(ewrt);
247             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
248             ewitab           = _mm_slli_epi32(ewitab,2);
249             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
250             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
251             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
252             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
253             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
254             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
255             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
256             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
257             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
258
259             d                = _mm_sub_ps(r10,rswitch);
260             d                = _mm_max_ps(d,_mm_setzero_ps());
261             d2               = _mm_mul_ps(d,d);
262             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
263
264             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
265
266             /* Evaluate switch function */
267             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
268             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
269             velec            = _mm_mul_ps(velec,sw);
270             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _mm_and_ps(velec,cutoff_mask);
274             velecsum         = _mm_add_ps(velecsum,velec);
275
276             fscal            = felec;
277
278             fscal            = _mm_and_ps(fscal,cutoff_mask);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_ps(fscal,dx10);
282             ty               = _mm_mul_ps(fscal,dy10);
283             tz               = _mm_mul_ps(fscal,dz10);
284
285             /* Update vectorial force */
286             fix1             = _mm_add_ps(fix1,tx);
287             fiy1             = _mm_add_ps(fiy1,ty);
288             fiz1             = _mm_add_ps(fiz1,tz);
289
290             fjx0             = _mm_add_ps(fjx0,tx);
291             fjy0             = _mm_add_ps(fjy0,ty);
292             fjz0             = _mm_add_ps(fjz0,tz);
293             
294             }
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq20,rcutoff2))
301             {
302
303             r20              = _mm_mul_ps(rsq20,rinv20);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq20             = _mm_mul_ps(iq2,jq0);
307
308             /* EWALD ELECTROSTATICS */
309
310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
311             ewrt             = _mm_mul_ps(r20,ewtabscale);
312             ewitab           = _mm_cvttps_epi32(ewrt);
313             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
314             ewitab           = _mm_slli_epi32(ewitab,2);
315             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
316             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
317             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
318             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
319             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
320             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
321             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
322             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
323             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
324
325             d                = _mm_sub_ps(r20,rswitch);
326             d                = _mm_max_ps(d,_mm_setzero_ps());
327             d2               = _mm_mul_ps(d,d);
328             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
329
330             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
331
332             /* Evaluate switch function */
333             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
334             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
335             velec            = _mm_mul_ps(velec,sw);
336             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_and_ps(velec,cutoff_mask);
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm_and_ps(fscal,cutoff_mask);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx20);
348             ty               = _mm_mul_ps(fscal,dy20);
349             tz               = _mm_mul_ps(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_ps(fix2,tx);
353             fiy2             = _mm_add_ps(fiy2,ty);
354             fiz2             = _mm_add_ps(fiz2,tz);
355
356             fjx0             = _mm_add_ps(fjx0,tx);
357             fjy0             = _mm_add_ps(fjy0,ty);
358             fjz0             = _mm_add_ps(fjz0,tz);
359             
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq30,rcutoff2))
367             {
368
369             r30              = _mm_mul_ps(rsq30,rinv30);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq30             = _mm_mul_ps(iq3,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r30,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
390
391             d                = _mm_sub_ps(r30,rswitch);
392             d                = _mm_max_ps(d,_mm_setzero_ps());
393             d2               = _mm_mul_ps(d,d);
394             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
395
396             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
397
398             /* Evaluate switch function */
399             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
400             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
401             velec            = _mm_mul_ps(velec,sw);
402             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_and_ps(velec,cutoff_mask);
406             velecsum         = _mm_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm_and_ps(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_ps(fscal,dx30);
414             ty               = _mm_mul_ps(fscal,dy30);
415             tz               = _mm_mul_ps(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_ps(fix3,tx);
419             fiy3             = _mm_add_ps(fiy3,ty);
420             fiz3             = _mm_add_ps(fiz3,tz);
421
422             fjx0             = _mm_add_ps(fjx0,tx);
423             fjy0             = _mm_add_ps(fjy0,ty);
424             fjz0             = _mm_add_ps(fjz0,tz);
425             
426             }
427
428             fjptrA             = f+j_coord_offsetA;
429             fjptrB             = f+j_coord_offsetB;
430             fjptrC             = f+j_coord_offsetC;
431             fjptrD             = f+j_coord_offsetD;
432
433             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
434
435             /* Inner loop uses 195 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrlistA         = jjnr[jidx];
443             jnrlistB         = jjnr[jidx+1];
444             jnrlistC         = jjnr[jidx+2];
445             jnrlistD         = jjnr[jidx+3];
446             /* Sign of each element will be negative for non-real atoms.
447              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
448              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
449              */
450             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
451             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
452             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
453             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
454             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457             j_coord_offsetC  = DIM*jnrC;
458             j_coord_offsetD  = DIM*jnrD;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                               x+j_coord_offsetC,x+j_coord_offsetD,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx10             = _mm_sub_ps(ix1,jx0);
467             dy10             = _mm_sub_ps(iy1,jy0);
468             dz10             = _mm_sub_ps(iz1,jz0);
469             dx20             = _mm_sub_ps(ix2,jx0);
470             dy20             = _mm_sub_ps(iy2,jy0);
471             dz20             = _mm_sub_ps(iz2,jz0);
472             dx30             = _mm_sub_ps(ix3,jx0);
473             dy30             = _mm_sub_ps(iy3,jy0);
474             dz30             = _mm_sub_ps(iz3,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
478             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
479             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
480
481             rinv10           = gmx_mm_invsqrt_ps(rsq10);
482             rinv20           = gmx_mm_invsqrt_ps(rsq20);
483             rinv30           = gmx_mm_invsqrt_ps(rsq30);
484
485             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
486             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
487             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                               charge+jnrC+0,charge+jnrD+0);
492
493             fjx0             = _mm_setzero_ps();
494             fjy0             = _mm_setzero_ps();
495             fjz0             = _mm_setzero_ps();
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             if (gmx_mm_any_lt(rsq10,rcutoff2))
502             {
503
504             r10              = _mm_mul_ps(rsq10,rinv10);
505             r10              = _mm_andnot_ps(dummy_mask,r10);
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq10             = _mm_mul_ps(iq1,jq0);
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = _mm_mul_ps(r10,ewtabscale);
514             ewitab           = _mm_cvttps_epi32(ewrt);
515             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
516             ewitab           = _mm_slli_epi32(ewitab,2);
517             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
518             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
519             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
520             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
521             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
522             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
523             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
524             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
525             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
526
527             d                = _mm_sub_ps(r10,rswitch);
528             d                = _mm_max_ps(d,_mm_setzero_ps());
529             d2               = _mm_mul_ps(d,d);
530             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
531
532             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
533
534             /* Evaluate switch function */
535             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
536             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
537             velec            = _mm_mul_ps(velec,sw);
538             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_and_ps(velec,cutoff_mask);
542             velec            = _mm_andnot_ps(dummy_mask,velec);
543             velecsum         = _mm_add_ps(velecsum,velec);
544
545             fscal            = felec;
546
547             fscal            = _mm_and_ps(fscal,cutoff_mask);
548
549             fscal            = _mm_andnot_ps(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm_mul_ps(fscal,dx10);
553             ty               = _mm_mul_ps(fscal,dy10);
554             tz               = _mm_mul_ps(fscal,dz10);
555
556             /* Update vectorial force */
557             fix1             = _mm_add_ps(fix1,tx);
558             fiy1             = _mm_add_ps(fiy1,ty);
559             fiz1             = _mm_add_ps(fiz1,tz);
560
561             fjx0             = _mm_add_ps(fjx0,tx);
562             fjy0             = _mm_add_ps(fjy0,ty);
563             fjz0             = _mm_add_ps(fjz0,tz);
564             
565             }
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             if (gmx_mm_any_lt(rsq20,rcutoff2))
572             {
573
574             r20              = _mm_mul_ps(rsq20,rinv20);
575             r20              = _mm_andnot_ps(dummy_mask,r20);
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq20             = _mm_mul_ps(iq2,jq0);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_ps(r20,ewtabscale);
584             ewitab           = _mm_cvttps_epi32(ewrt);
585             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
589             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
590             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
591             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
592             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
593             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
594             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
595             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
596
597             d                = _mm_sub_ps(r20,rswitch);
598             d                = _mm_max_ps(d,_mm_setzero_ps());
599             d2               = _mm_mul_ps(d,d);
600             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
601
602             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
603
604             /* Evaluate switch function */
605             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
606             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
607             velec            = _mm_mul_ps(velec,sw);
608             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm_and_ps(velec,cutoff_mask);
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_and_ps(fscal,cutoff_mask);
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx20);
623             ty               = _mm_mul_ps(fscal,dy20);
624             tz               = _mm_mul_ps(fscal,dz20);
625
626             /* Update vectorial force */
627             fix2             = _mm_add_ps(fix2,tx);
628             fiy2             = _mm_add_ps(fiy2,ty);
629             fiz2             = _mm_add_ps(fiz2,tz);
630
631             fjx0             = _mm_add_ps(fjx0,tx);
632             fjy0             = _mm_add_ps(fjy0,ty);
633             fjz0             = _mm_add_ps(fjz0,tz);
634             
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq30,rcutoff2))
642             {
643
644             r30              = _mm_mul_ps(rsq30,rinv30);
645             r30              = _mm_andnot_ps(dummy_mask,r30);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq30             = _mm_mul_ps(iq3,jq0);
649
650             /* EWALD ELECTROSTATICS */
651
652             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
653             ewrt             = _mm_mul_ps(r30,ewtabscale);
654             ewitab           = _mm_cvttps_epi32(ewrt);
655             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
656             ewitab           = _mm_slli_epi32(ewitab,2);
657             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
658             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
659             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
660             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
661             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
662             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
663             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
664             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
665             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
666
667             d                = _mm_sub_ps(r30,rswitch);
668             d                = _mm_max_ps(d,_mm_setzero_ps());
669             d2               = _mm_mul_ps(d,d);
670             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
671
672             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
673
674             /* Evaluate switch function */
675             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
676             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
677             velec            = _mm_mul_ps(velec,sw);
678             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm_and_ps(velec,cutoff_mask);
682             velec            = _mm_andnot_ps(dummy_mask,velec);
683             velecsum         = _mm_add_ps(velecsum,velec);
684
685             fscal            = felec;
686
687             fscal            = _mm_and_ps(fscal,cutoff_mask);
688
689             fscal            = _mm_andnot_ps(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_ps(fscal,dx30);
693             ty               = _mm_mul_ps(fscal,dy30);
694             tz               = _mm_mul_ps(fscal,dz30);
695
696             /* Update vectorial force */
697             fix3             = _mm_add_ps(fix3,tx);
698             fiy3             = _mm_add_ps(fiy3,ty);
699             fiz3             = _mm_add_ps(fiz3,tz);
700
701             fjx0             = _mm_add_ps(fjx0,tx);
702             fjy0             = _mm_add_ps(fjy0,ty);
703             fjz0             = _mm_add_ps(fjz0,tz);
704             
705             }
706
707             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
708             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
709             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
710             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
711
712             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
713
714             /* Inner loop uses 198 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
720                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
721
722         ggid                        = gid[iidx];
723         /* Update potential energies */
724         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 19 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*198);
738 }
739 /*
740  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
741  * Electrostatics interaction: Ewald
742  * VdW interaction:            None
743  * Geometry:                   Water4-Particle
744  * Calculate force/pot:        Force
745  */
746 void
747 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
748                     (t_nblist * gmx_restrict                nlist,
749                      rvec * gmx_restrict                    xx,
750                      rvec * gmx_restrict                    ff,
751                      t_forcerec * gmx_restrict              fr,
752                      t_mdatoms * gmx_restrict               mdatoms,
753                      nb_kernel_data_t * gmx_restrict        kernel_data,
754                      t_nrnb * gmx_restrict                  nrnb)
755 {
756     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
757      * just 0 for non-waters.
758      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
759      * jnr indices corresponding to data put in the four positions in the SIMD register.
760      */
761     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
762     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
763     int              jnrA,jnrB,jnrC,jnrD;
764     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
765     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
766     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
767     real             rcutoff_scalar;
768     real             *shiftvec,*fshift,*x,*f;
769     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
770     real             scratch[4*DIM];
771     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
772     int              vdwioffset1;
773     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
774     int              vdwioffset2;
775     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
776     int              vdwioffset3;
777     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
778     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
779     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
780     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
783     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
784     real             *charge;
785     __m128i          ewitab;
786     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
787     real             *ewtab;
788     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
789     real             rswitch_scalar,d_scalar;
790     __m128           dummy_mask,cutoff_mask;
791     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
792     __m128           one     = _mm_set1_ps(1.0);
793     __m128           two     = _mm_set1_ps(2.0);
794     x                = xx[0];
795     f                = ff[0];
796
797     nri              = nlist->nri;
798     iinr             = nlist->iinr;
799     jindex           = nlist->jindex;
800     jjnr             = nlist->jjnr;
801     shiftidx         = nlist->shift;
802     gid              = nlist->gid;
803     shiftvec         = fr->shift_vec[0];
804     fshift           = fr->fshift[0];
805     facel            = _mm_set1_ps(fr->epsfac);
806     charge           = mdatoms->chargeA;
807
808     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
809     ewtab            = fr->ic->tabq_coul_FDV0;
810     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
811     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
812
813     /* Setup water-specific parameters */
814     inr              = nlist->iinr[0];
815     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
816     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
817     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
818
819     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
820     rcutoff_scalar   = fr->rcoulomb;
821     rcutoff          = _mm_set1_ps(rcutoff_scalar);
822     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
823
824     rswitch_scalar   = fr->rcoulomb_switch;
825     rswitch          = _mm_set1_ps(rswitch_scalar);
826     /* Setup switch parameters */
827     d_scalar         = rcutoff_scalar-rswitch_scalar;
828     d                = _mm_set1_ps(d_scalar);
829     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
830     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
831     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
832     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
833     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
834     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
835
836     /* Avoid stupid compiler warnings */
837     jnrA = jnrB = jnrC = jnrD = 0;
838     j_coord_offsetA = 0;
839     j_coord_offsetB = 0;
840     j_coord_offsetC = 0;
841     j_coord_offsetD = 0;
842
843     outeriter        = 0;
844     inneriter        = 0;
845
846     for(iidx=0;iidx<4*DIM;iidx++)
847     {
848         scratch[iidx] = 0.0;
849     }  
850
851     /* Start outer loop over neighborlists */
852     for(iidx=0; iidx<nri; iidx++)
853     {
854         /* Load shift vector for this list */
855         i_shift_offset   = DIM*shiftidx[iidx];
856
857         /* Load limits for loop over neighbors */
858         j_index_start    = jindex[iidx];
859         j_index_end      = jindex[iidx+1];
860
861         /* Get outer coordinate index */
862         inr              = iinr[iidx];
863         i_coord_offset   = DIM*inr;
864
865         /* Load i particle coords and add shift vector */
866         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
867                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
868         
869         fix1             = _mm_setzero_ps();
870         fiy1             = _mm_setzero_ps();
871         fiz1             = _mm_setzero_ps();
872         fix2             = _mm_setzero_ps();
873         fiy2             = _mm_setzero_ps();
874         fiz2             = _mm_setzero_ps();
875         fix3             = _mm_setzero_ps();
876         fiy3             = _mm_setzero_ps();
877         fiz3             = _mm_setzero_ps();
878
879         /* Start inner kernel loop */
880         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
881         {
882
883             /* Get j neighbor index, and coordinate index */
884             jnrA             = jjnr[jidx];
885             jnrB             = jjnr[jidx+1];
886             jnrC             = jjnr[jidx+2];
887             jnrD             = jjnr[jidx+3];
888             j_coord_offsetA  = DIM*jnrA;
889             j_coord_offsetB  = DIM*jnrB;
890             j_coord_offsetC  = DIM*jnrC;
891             j_coord_offsetD  = DIM*jnrD;
892
893             /* load j atom coordinates */
894             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
895                                               x+j_coord_offsetC,x+j_coord_offsetD,
896                                               &jx0,&jy0,&jz0);
897
898             /* Calculate displacement vector */
899             dx10             = _mm_sub_ps(ix1,jx0);
900             dy10             = _mm_sub_ps(iy1,jy0);
901             dz10             = _mm_sub_ps(iz1,jz0);
902             dx20             = _mm_sub_ps(ix2,jx0);
903             dy20             = _mm_sub_ps(iy2,jy0);
904             dz20             = _mm_sub_ps(iz2,jz0);
905             dx30             = _mm_sub_ps(ix3,jx0);
906             dy30             = _mm_sub_ps(iy3,jy0);
907             dz30             = _mm_sub_ps(iz3,jz0);
908
909             /* Calculate squared distance and things based on it */
910             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
911             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
912             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
913
914             rinv10           = gmx_mm_invsqrt_ps(rsq10);
915             rinv20           = gmx_mm_invsqrt_ps(rsq20);
916             rinv30           = gmx_mm_invsqrt_ps(rsq30);
917
918             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
919             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
920             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
921
922             /* Load parameters for j particles */
923             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
924                                                               charge+jnrC+0,charge+jnrD+0);
925
926             fjx0             = _mm_setzero_ps();
927             fjy0             = _mm_setzero_ps();
928             fjz0             = _mm_setzero_ps();
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             if (gmx_mm_any_lt(rsq10,rcutoff2))
935             {
936
937             r10              = _mm_mul_ps(rsq10,rinv10);
938
939             /* Compute parameters for interactions between i and j atoms */
940             qq10             = _mm_mul_ps(iq1,jq0);
941
942             /* EWALD ELECTROSTATICS */
943
944             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
945             ewrt             = _mm_mul_ps(r10,ewtabscale);
946             ewitab           = _mm_cvttps_epi32(ewrt);
947             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
948             ewitab           = _mm_slli_epi32(ewitab,2);
949             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
950             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
951             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
952             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
953             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
954             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
955             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
956             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
957             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
958
959             d                = _mm_sub_ps(r10,rswitch);
960             d                = _mm_max_ps(d,_mm_setzero_ps());
961             d2               = _mm_mul_ps(d,d);
962             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
963
964             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
965
966             /* Evaluate switch function */
967             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
968             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
969             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
970
971             fscal            = felec;
972
973             fscal            = _mm_and_ps(fscal,cutoff_mask);
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm_mul_ps(fscal,dx10);
977             ty               = _mm_mul_ps(fscal,dy10);
978             tz               = _mm_mul_ps(fscal,dz10);
979
980             /* Update vectorial force */
981             fix1             = _mm_add_ps(fix1,tx);
982             fiy1             = _mm_add_ps(fiy1,ty);
983             fiz1             = _mm_add_ps(fiz1,tz);
984
985             fjx0             = _mm_add_ps(fjx0,tx);
986             fjy0             = _mm_add_ps(fjy0,ty);
987             fjz0             = _mm_add_ps(fjz0,tz);
988             
989             }
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             if (gmx_mm_any_lt(rsq20,rcutoff2))
996             {
997
998             r20              = _mm_mul_ps(rsq20,rinv20);
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq20             = _mm_mul_ps(iq2,jq0);
1002
1003             /* EWALD ELECTROSTATICS */
1004
1005             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1006             ewrt             = _mm_mul_ps(r20,ewtabscale);
1007             ewitab           = _mm_cvttps_epi32(ewrt);
1008             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1009             ewitab           = _mm_slli_epi32(ewitab,2);
1010             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1011             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1012             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1013             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1014             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1015             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1016             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1017             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1018             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1019
1020             d                = _mm_sub_ps(r20,rswitch);
1021             d                = _mm_max_ps(d,_mm_setzero_ps());
1022             d2               = _mm_mul_ps(d,d);
1023             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1024
1025             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1026
1027             /* Evaluate switch function */
1028             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1029             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1030             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm_and_ps(fscal,cutoff_mask);
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm_mul_ps(fscal,dx20);
1038             ty               = _mm_mul_ps(fscal,dy20);
1039             tz               = _mm_mul_ps(fscal,dz20);
1040
1041             /* Update vectorial force */
1042             fix2             = _mm_add_ps(fix2,tx);
1043             fiy2             = _mm_add_ps(fiy2,ty);
1044             fiz2             = _mm_add_ps(fiz2,tz);
1045
1046             fjx0             = _mm_add_ps(fjx0,tx);
1047             fjy0             = _mm_add_ps(fjy0,ty);
1048             fjz0             = _mm_add_ps(fjz0,tz);
1049             
1050             }
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             if (gmx_mm_any_lt(rsq30,rcutoff2))
1057             {
1058
1059             r30              = _mm_mul_ps(rsq30,rinv30);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq30             = _mm_mul_ps(iq3,jq0);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_ps(r30,ewtabscale);
1068             ewitab           = _mm_cvttps_epi32(ewrt);
1069             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1070             ewitab           = _mm_slli_epi32(ewitab,2);
1071             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1072             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1073             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1074             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1075             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1076             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1077             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1078             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1079             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1080
1081             d                = _mm_sub_ps(r30,rswitch);
1082             d                = _mm_max_ps(d,_mm_setzero_ps());
1083             d2               = _mm_mul_ps(d,d);
1084             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1085
1086             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1087
1088             /* Evaluate switch function */
1089             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1090             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1091             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm_and_ps(fscal,cutoff_mask);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_ps(fscal,dx30);
1099             ty               = _mm_mul_ps(fscal,dy30);
1100             tz               = _mm_mul_ps(fscal,dz30);
1101
1102             /* Update vectorial force */
1103             fix3             = _mm_add_ps(fix3,tx);
1104             fiy3             = _mm_add_ps(fiy3,ty);
1105             fiz3             = _mm_add_ps(fiz3,tz);
1106
1107             fjx0             = _mm_add_ps(fjx0,tx);
1108             fjy0             = _mm_add_ps(fjy0,ty);
1109             fjz0             = _mm_add_ps(fjz0,tz);
1110             
1111             }
1112
1113             fjptrA             = f+j_coord_offsetA;
1114             fjptrB             = f+j_coord_offsetB;
1115             fjptrC             = f+j_coord_offsetC;
1116             fjptrD             = f+j_coord_offsetD;
1117
1118             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1119
1120             /* Inner loop uses 186 flops */
1121         }
1122
1123         if(jidx<j_index_end)
1124         {
1125
1126             /* Get j neighbor index, and coordinate index */
1127             jnrlistA         = jjnr[jidx];
1128             jnrlistB         = jjnr[jidx+1];
1129             jnrlistC         = jjnr[jidx+2];
1130             jnrlistD         = jjnr[jidx+3];
1131             /* Sign of each element will be negative for non-real atoms.
1132              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1133              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1134              */
1135             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1136             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1137             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1138             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1139             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1140             j_coord_offsetA  = DIM*jnrA;
1141             j_coord_offsetB  = DIM*jnrB;
1142             j_coord_offsetC  = DIM*jnrC;
1143             j_coord_offsetD  = DIM*jnrD;
1144
1145             /* load j atom coordinates */
1146             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1147                                               x+j_coord_offsetC,x+j_coord_offsetD,
1148                                               &jx0,&jy0,&jz0);
1149
1150             /* Calculate displacement vector */
1151             dx10             = _mm_sub_ps(ix1,jx0);
1152             dy10             = _mm_sub_ps(iy1,jy0);
1153             dz10             = _mm_sub_ps(iz1,jz0);
1154             dx20             = _mm_sub_ps(ix2,jx0);
1155             dy20             = _mm_sub_ps(iy2,jy0);
1156             dz20             = _mm_sub_ps(iz2,jz0);
1157             dx30             = _mm_sub_ps(ix3,jx0);
1158             dy30             = _mm_sub_ps(iy3,jy0);
1159             dz30             = _mm_sub_ps(iz3,jz0);
1160
1161             /* Calculate squared distance and things based on it */
1162             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1163             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1164             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1165
1166             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1167             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1168             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1169
1170             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1171             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1172             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1173
1174             /* Load parameters for j particles */
1175             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1176                                                               charge+jnrC+0,charge+jnrD+0);
1177
1178             fjx0             = _mm_setzero_ps();
1179             fjy0             = _mm_setzero_ps();
1180             fjz0             = _mm_setzero_ps();
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             if (gmx_mm_any_lt(rsq10,rcutoff2))
1187             {
1188
1189             r10              = _mm_mul_ps(rsq10,rinv10);
1190             r10              = _mm_andnot_ps(dummy_mask,r10);
1191
1192             /* Compute parameters for interactions between i and j atoms */
1193             qq10             = _mm_mul_ps(iq1,jq0);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _mm_mul_ps(r10,ewtabscale);
1199             ewitab           = _mm_cvttps_epi32(ewrt);
1200             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1201             ewitab           = _mm_slli_epi32(ewitab,2);
1202             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1203             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1204             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1205             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1206             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1207             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1208             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1209             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1210             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1211
1212             d                = _mm_sub_ps(r10,rswitch);
1213             d                = _mm_max_ps(d,_mm_setzero_ps());
1214             d2               = _mm_mul_ps(d,d);
1215             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1216
1217             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1218
1219             /* Evaluate switch function */
1220             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1221             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1222             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm_and_ps(fscal,cutoff_mask);
1227
1228             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_ps(fscal,dx10);
1232             ty               = _mm_mul_ps(fscal,dy10);
1233             tz               = _mm_mul_ps(fscal,dz10);
1234
1235             /* Update vectorial force */
1236             fix1             = _mm_add_ps(fix1,tx);
1237             fiy1             = _mm_add_ps(fiy1,ty);
1238             fiz1             = _mm_add_ps(fiz1,tz);
1239
1240             fjx0             = _mm_add_ps(fjx0,tx);
1241             fjy0             = _mm_add_ps(fjy0,ty);
1242             fjz0             = _mm_add_ps(fjz0,tz);
1243             
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (gmx_mm_any_lt(rsq20,rcutoff2))
1251             {
1252
1253             r20              = _mm_mul_ps(rsq20,rinv20);
1254             r20              = _mm_andnot_ps(dummy_mask,r20);
1255
1256             /* Compute parameters for interactions between i and j atoms */
1257             qq20             = _mm_mul_ps(iq2,jq0);
1258
1259             /* EWALD ELECTROSTATICS */
1260
1261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1262             ewrt             = _mm_mul_ps(r20,ewtabscale);
1263             ewitab           = _mm_cvttps_epi32(ewrt);
1264             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1265             ewitab           = _mm_slli_epi32(ewitab,2);
1266             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1267             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1268             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1269             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1270             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1271             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1272             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1273             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1274             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1275
1276             d                = _mm_sub_ps(r20,rswitch);
1277             d                = _mm_max_ps(d,_mm_setzero_ps());
1278             d2               = _mm_mul_ps(d,d);
1279             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1280
1281             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1282
1283             /* Evaluate switch function */
1284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1285             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1286             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1287
1288             fscal            = felec;
1289
1290             fscal            = _mm_and_ps(fscal,cutoff_mask);
1291
1292             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1293
1294             /* Calculate temporary vectorial force */
1295             tx               = _mm_mul_ps(fscal,dx20);
1296             ty               = _mm_mul_ps(fscal,dy20);
1297             tz               = _mm_mul_ps(fscal,dz20);
1298
1299             /* Update vectorial force */
1300             fix2             = _mm_add_ps(fix2,tx);
1301             fiy2             = _mm_add_ps(fiy2,ty);
1302             fiz2             = _mm_add_ps(fiz2,tz);
1303
1304             fjx0             = _mm_add_ps(fjx0,tx);
1305             fjy0             = _mm_add_ps(fjy0,ty);
1306             fjz0             = _mm_add_ps(fjz0,tz);
1307             
1308             }
1309
1310             /**************************
1311              * CALCULATE INTERACTIONS *
1312              **************************/
1313
1314             if (gmx_mm_any_lt(rsq30,rcutoff2))
1315             {
1316
1317             r30              = _mm_mul_ps(rsq30,rinv30);
1318             r30              = _mm_andnot_ps(dummy_mask,r30);
1319
1320             /* Compute parameters for interactions between i and j atoms */
1321             qq30             = _mm_mul_ps(iq3,jq0);
1322
1323             /* EWALD ELECTROSTATICS */
1324
1325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1326             ewrt             = _mm_mul_ps(r30,ewtabscale);
1327             ewitab           = _mm_cvttps_epi32(ewrt);
1328             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1329             ewitab           = _mm_slli_epi32(ewitab,2);
1330             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1331             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1332             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1333             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1334             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1335             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1336             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1337             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1338             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1339
1340             d                = _mm_sub_ps(r30,rswitch);
1341             d                = _mm_max_ps(d,_mm_setzero_ps());
1342             d2               = _mm_mul_ps(d,d);
1343             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1344
1345             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1346
1347             /* Evaluate switch function */
1348             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1349             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1350             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1351
1352             fscal            = felec;
1353
1354             fscal            = _mm_and_ps(fscal,cutoff_mask);
1355
1356             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1357
1358             /* Calculate temporary vectorial force */
1359             tx               = _mm_mul_ps(fscal,dx30);
1360             ty               = _mm_mul_ps(fscal,dy30);
1361             tz               = _mm_mul_ps(fscal,dz30);
1362
1363             /* Update vectorial force */
1364             fix3             = _mm_add_ps(fix3,tx);
1365             fiy3             = _mm_add_ps(fiy3,ty);
1366             fiz3             = _mm_add_ps(fiz3,tz);
1367
1368             fjx0             = _mm_add_ps(fjx0,tx);
1369             fjy0             = _mm_add_ps(fjy0,ty);
1370             fjz0             = _mm_add_ps(fjz0,tz);
1371             
1372             }
1373
1374             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1375             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1376             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1377             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1378
1379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1380
1381             /* Inner loop uses 189 flops */
1382         }
1383
1384         /* End of innermost loop */
1385
1386         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1387                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1388
1389         /* Increment number of inner iterations */
1390         inneriter                  += j_index_end - j_index_start;
1391
1392         /* Outer loop uses 18 flops */
1393     }
1394
1395     /* Increment number of outer iterations */
1396     outeriter        += nri;
1397
1398     /* Update outer/inner flops */
1399
1400     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*189);
1401 }