f19fdb6e274a87540abb44600c5803baa37e1def
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          ewitab;
77     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
78     real             *ewtab;
79     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
80     real             rswitch_scalar,d_scalar;
81     __m128           dummy_mask,cutoff_mask;
82     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
83     __m128           one     = _mm_set1_ps(1.0);
84     __m128           two     = _mm_set1_ps(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_ps(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
100     ewtab            = fr->ic->tabq_coul_FDV0;
101     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
102     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
103
104     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105     rcutoff_scalar   = fr->rcoulomb;
106     rcutoff          = _mm_set1_ps(rcutoff_scalar);
107     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
108
109     rswitch_scalar   = fr->rcoulomb_switch;
110     rswitch          = _mm_set1_ps(rswitch_scalar);
111     /* Setup switch parameters */
112     d_scalar         = rcutoff_scalar-rswitch_scalar;
113     d                = _mm_set1_ps(d_scalar);
114     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
115     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
116     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
117     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
118     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
119     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }  
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152         
153         fix0             = _mm_setzero_ps();
154         fiy0             = _mm_setzero_ps();
155         fiz0             = _mm_setzero_ps();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_ps();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             jnrC             = jjnr[jidx+2];
171             jnrD             = jjnr[jidx+3];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_ps(ix0,jx0);
184             dy00             = _mm_sub_ps(iy0,jy0);
185             dz00             = _mm_sub_ps(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_ps(rsq00);
191
192             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
196                                                               charge+jnrC+0,charge+jnrD+0);
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_mm_any_lt(rsq00,rcutoff2))
203             {
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_ps(iq0,jq0);
209
210             /* EWALD ELECTROSTATICS */
211
212             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
213             ewrt             = _mm_mul_ps(r00,ewtabscale);
214             ewitab           = _mm_cvttps_epi32(ewrt);
215             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
216             ewitab           = _mm_slli_epi32(ewitab,2);
217             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
218             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
219             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
220             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
221             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
222             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
223             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
224             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
225             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
226
227             d                = _mm_sub_ps(r00,rswitch);
228             d                = _mm_max_ps(d,_mm_setzero_ps());
229             d2               = _mm_mul_ps(d,d);
230             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
231
232             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
233
234             /* Evaluate switch function */
235             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
236             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
237             velec            = _mm_mul_ps(velec,sw);
238             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velec            = _mm_and_ps(velec,cutoff_mask);
242             velecsum         = _mm_add_ps(velecsum,velec);
243
244             fscal            = felec;
245
246             fscal            = _mm_and_ps(fscal,cutoff_mask);
247
248             /* Calculate temporary vectorial force */
249             tx               = _mm_mul_ps(fscal,dx00);
250             ty               = _mm_mul_ps(fscal,dy00);
251             tz               = _mm_mul_ps(fscal,dz00);
252
253             /* Update vectorial force */
254             fix0             = _mm_add_ps(fix0,tx);
255             fiy0             = _mm_add_ps(fiy0,ty);
256             fiz0             = _mm_add_ps(fiz0,tz);
257
258             fjptrA             = f+j_coord_offsetA;
259             fjptrB             = f+j_coord_offsetB;
260             fjptrC             = f+j_coord_offsetC;
261             fjptrD             = f+j_coord_offsetD;
262             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
263             
264             }
265
266             /* Inner loop uses 65 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             /* Get j neighbor index, and coordinate index */
273             jnrlistA         = jjnr[jidx];
274             jnrlistB         = jjnr[jidx+1];
275             jnrlistC         = jjnr[jidx+2];
276             jnrlistD         = jjnr[jidx+3];
277             /* Sign of each element will be negative for non-real atoms.
278              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
279              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
280              */
281             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
282             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
283             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
284             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
285             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
286             j_coord_offsetA  = DIM*jnrA;
287             j_coord_offsetB  = DIM*jnrB;
288             j_coord_offsetC  = DIM*jnrC;
289             j_coord_offsetD  = DIM*jnrD;
290
291             /* load j atom coordinates */
292             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
293                                               x+j_coord_offsetC,x+j_coord_offsetD,
294                                               &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm_sub_ps(ix0,jx0);
298             dy00             = _mm_sub_ps(iy0,jy0);
299             dz00             = _mm_sub_ps(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
303
304             rinv00           = gmx_mm_invsqrt_ps(rsq00);
305
306             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
310                                                               charge+jnrC+0,charge+jnrD+0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq00,rcutoff2))
317             {
318
319             r00              = _mm_mul_ps(rsq00,rinv00);
320             r00              = _mm_andnot_ps(dummy_mask,r00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm_mul_ps(iq0,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_ps(r00,ewtabscale);
329             ewitab           = _mm_cvttps_epi32(ewrt);
330             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
334             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
335             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
336             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
337             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
338             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
339             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
340             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
341
342             d                = _mm_sub_ps(r00,rswitch);
343             d                = _mm_max_ps(d,_mm_setzero_ps());
344             d2               = _mm_mul_ps(d,d);
345             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
346
347             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
348
349             /* Evaluate switch function */
350             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
351             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
352             velec            = _mm_mul_ps(velec,sw);
353             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm_and_ps(velec,cutoff_mask);
357             velec            = _mm_andnot_ps(dummy_mask,velec);
358             velecsum         = _mm_add_ps(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_ps(fscal,cutoff_mask);
363
364             fscal            = _mm_andnot_ps(dummy_mask,fscal);
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_ps(fscal,dx00);
368             ty               = _mm_mul_ps(fscal,dy00);
369             tz               = _mm_mul_ps(fscal,dz00);
370
371             /* Update vectorial force */
372             fix0             = _mm_add_ps(fix0,tx);
373             fiy0             = _mm_add_ps(fiy0,ty);
374             fiz0             = _mm_add_ps(fiz0,tz);
375
376             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
377             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
378             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
379             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
381             
382             }
383
384             /* Inner loop uses 66 flops */
385         }
386
387         /* End of innermost loop */
388
389         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
390                                               f+i_coord_offset,fshift+i_shift_offset);
391
392         ggid                        = gid[iidx];
393         /* Update potential energies */
394         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 8 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
411  * Electrostatics interaction: Ewald
412  * VdW interaction:            None
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
418                     (t_nblist * gmx_restrict                nlist,
419                      rvec * gmx_restrict                    xx,
420                      rvec * gmx_restrict                    ff,
421                      t_forcerec * gmx_restrict              fr,
422                      t_mdatoms * gmx_restrict               mdatoms,
423                      nb_kernel_data_t * gmx_restrict        kernel_data,
424                      t_nrnb * gmx_restrict                  nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
427      * just 0 for non-waters.
428      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB,jnrC,jnrD;
434     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
435     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
440     real             scratch[4*DIM];
441     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
442     int              vdwioffset0;
443     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
445     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
446     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
447     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
448     real             *charge;
449     __m128i          ewitab;
450     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
451     real             *ewtab;
452     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
453     real             rswitch_scalar,d_scalar;
454     __m128           dummy_mask,cutoff_mask;
455     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
456     __m128           one     = _mm_set1_ps(1.0);
457     __m128           two     = _mm_set1_ps(2.0);
458     x                = xx[0];
459     f                = ff[0];
460
461     nri              = nlist->nri;
462     iinr             = nlist->iinr;
463     jindex           = nlist->jindex;
464     jjnr             = nlist->jjnr;
465     shiftidx         = nlist->shift;
466     gid              = nlist->gid;
467     shiftvec         = fr->shift_vec[0];
468     fshift           = fr->fshift[0];
469     facel            = _mm_set1_ps(fr->epsfac);
470     charge           = mdatoms->chargeA;
471
472     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
473     ewtab            = fr->ic->tabq_coul_FDV0;
474     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
475     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
476
477     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
478     rcutoff_scalar   = fr->rcoulomb;
479     rcutoff          = _mm_set1_ps(rcutoff_scalar);
480     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
481
482     rswitch_scalar   = fr->rcoulomb_switch;
483     rswitch          = _mm_set1_ps(rswitch_scalar);
484     /* Setup switch parameters */
485     d_scalar         = rcutoff_scalar-rswitch_scalar;
486     d                = _mm_set1_ps(d_scalar);
487     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
488     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
489     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
490     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
491     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
492     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = jnrC = jnrD = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498     j_coord_offsetC = 0;
499     j_coord_offsetD = 0;
500
501     outeriter        = 0;
502     inneriter        = 0;
503
504     for(iidx=0;iidx<4*DIM;iidx++)
505     {
506         scratch[iidx] = 0.0;
507     }  
508
509     /* Start outer loop over neighborlists */
510     for(iidx=0; iidx<nri; iidx++)
511     {
512         /* Load shift vector for this list */
513         i_shift_offset   = DIM*shiftidx[iidx];
514
515         /* Load limits for loop over neighbors */
516         j_index_start    = jindex[iidx];
517         j_index_end      = jindex[iidx+1];
518
519         /* Get outer coordinate index */
520         inr              = iinr[iidx];
521         i_coord_offset   = DIM*inr;
522
523         /* Load i particle coords and add shift vector */
524         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
525         
526         fix0             = _mm_setzero_ps();
527         fiy0             = _mm_setzero_ps();
528         fiz0             = _mm_setzero_ps();
529
530         /* Load parameters for i particles */
531         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             jnrC             = jjnr[jidx+2];
541             jnrD             = jjnr[jidx+3];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544             j_coord_offsetC  = DIM*jnrC;
545             j_coord_offsetD  = DIM*jnrD;
546
547             /* load j atom coordinates */
548             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                               x+j_coord_offsetC,x+j_coord_offsetD,
550                                               &jx0,&jy0,&jz0);
551
552             /* Calculate displacement vector */
553             dx00             = _mm_sub_ps(ix0,jx0);
554             dy00             = _mm_sub_ps(iy0,jy0);
555             dz00             = _mm_sub_ps(iz0,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
559
560             rinv00           = gmx_mm_invsqrt_ps(rsq00);
561
562             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
563
564             /* Load parameters for j particles */
565             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
566                                                               charge+jnrC+0,charge+jnrD+0);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq00,rcutoff2))
573             {
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq00             = _mm_mul_ps(iq0,jq0);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_ps(r00,ewtabscale);
584             ewitab           = _mm_cvttps_epi32(ewrt);
585             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
589             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
590             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
591             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
592             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
593             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
594             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
595             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
596
597             d                = _mm_sub_ps(r00,rswitch);
598             d                = _mm_max_ps(d,_mm_setzero_ps());
599             d2               = _mm_mul_ps(d,d);
600             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
601
602             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
603
604             /* Evaluate switch function */
605             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
606             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
607             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
608
609             fscal            = felec;
610
611             fscal            = _mm_and_ps(fscal,cutoff_mask);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_ps(fscal,dx00);
615             ty               = _mm_mul_ps(fscal,dy00);
616             tz               = _mm_mul_ps(fscal,dz00);
617
618             /* Update vectorial force */
619             fix0             = _mm_add_ps(fix0,tx);
620             fiy0             = _mm_add_ps(fiy0,ty);
621             fiz0             = _mm_add_ps(fiz0,tz);
622
623             fjptrA             = f+j_coord_offsetA;
624             fjptrB             = f+j_coord_offsetB;
625             fjptrC             = f+j_coord_offsetC;
626             fjptrD             = f+j_coord_offsetD;
627             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
628             
629             }
630
631             /* Inner loop uses 62 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             /* Get j neighbor index, and coordinate index */
638             jnrlistA         = jjnr[jidx];
639             jnrlistB         = jjnr[jidx+1];
640             jnrlistC         = jjnr[jidx+2];
641             jnrlistD         = jjnr[jidx+3];
642             /* Sign of each element will be negative for non-real atoms.
643              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
644              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
645              */
646             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
647             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
648             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
649             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
650             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655
656             /* load j atom coordinates */
657             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
658                                               x+j_coord_offsetC,x+j_coord_offsetD,
659                                               &jx0,&jy0,&jz0);
660
661             /* Calculate displacement vector */
662             dx00             = _mm_sub_ps(ix0,jx0);
663             dy00             = _mm_sub_ps(iy0,jy0);
664             dz00             = _mm_sub_ps(iz0,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
668
669             rinv00           = gmx_mm_invsqrt_ps(rsq00);
670
671             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
672
673             /* Load parameters for j particles */
674             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
675                                                               charge+jnrC+0,charge+jnrD+0);
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm_any_lt(rsq00,rcutoff2))
682             {
683
684             r00              = _mm_mul_ps(rsq00,rinv00);
685             r00              = _mm_andnot_ps(dummy_mask,r00);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq00             = _mm_mul_ps(iq0,jq0);
689
690             /* EWALD ELECTROSTATICS */
691
692             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
693             ewrt             = _mm_mul_ps(r00,ewtabscale);
694             ewitab           = _mm_cvttps_epi32(ewrt);
695             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
696             ewitab           = _mm_slli_epi32(ewitab,2);
697             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
698             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
699             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
700             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
701             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
702             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
703             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
704             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
705             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
706
707             d                = _mm_sub_ps(r00,rswitch);
708             d                = _mm_max_ps(d,_mm_setzero_ps());
709             d2               = _mm_mul_ps(d,d);
710             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
711
712             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
713
714             /* Evaluate switch function */
715             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
716             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
717             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
718
719             fscal            = felec;
720
721             fscal            = _mm_and_ps(fscal,cutoff_mask);
722
723             fscal            = _mm_andnot_ps(dummy_mask,fscal);
724
725             /* Calculate temporary vectorial force */
726             tx               = _mm_mul_ps(fscal,dx00);
727             ty               = _mm_mul_ps(fscal,dy00);
728             tz               = _mm_mul_ps(fscal,dz00);
729
730             /* Update vectorial force */
731             fix0             = _mm_add_ps(fix0,tx);
732             fiy0             = _mm_add_ps(fiy0,ty);
733             fiz0             = _mm_add_ps(fiz0,tz);
734
735             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
736             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
737             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
738             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
739             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
740             
741             }
742
743             /* Inner loop uses 63 flops */
744         }
745
746         /* End of innermost loop */
747
748         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
749                                               f+i_coord_offset,fshift+i_shift_offset);
750
751         /* Increment number of inner iterations */
752         inneriter                  += j_index_end - j_index_start;
753
754         /* Outer loop uses 7 flops */
755     }
756
757     /* Increment number of outer iterations */
758     outeriter        += nri;
759
760     /* Update outer/inner flops */
761
762     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
763 }