Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77     real             rswitch_scalar,d_scalar;
78     __m128           dummy_mask,cutoff_mask;
79     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
80     __m128           one     = _mm_set1_ps(1.0);
81     __m128           two     = _mm_set1_ps(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm_set1_ps(fr->epsfac);
94     charge           = mdatoms->chargeA;
95
96     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
97     ewtab            = fr->ic->tabq_coul_FDV0;
98     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
99     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
100
101     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
102     rcutoff_scalar   = fr->rcoulomb;
103     rcutoff          = _mm_set1_ps(rcutoff_scalar);
104     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
105
106     rswitch_scalar   = fr->rcoulomb_switch;
107     rswitch          = _mm_set1_ps(rswitch_scalar);
108     /* Setup switch parameters */
109     d_scalar         = rcutoff_scalar-rswitch_scalar;
110     d                = _mm_set1_ps(d_scalar);
111     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
112     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
113     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
114     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
115     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
116     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133         shX              = shiftvec[i_shift_offset+XX];
134         shY              = shiftvec[i_shift_offset+YY];
135         shZ              = shiftvec[i_shift_offset+ZZ];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
147         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
148         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
149
150         fix0             = _mm_setzero_ps();
151         fiy0             = _mm_setzero_ps();
152         fiz0             = _mm_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               x+j_coord_offsetC,x+j_coord_offsetD,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_ps(ix0,jx0);
182             dy00             = _mm_sub_ps(iy0,jy0);
183             dz00             = _mm_sub_ps(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_ps(rsq00);
189
190             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
194                                                               charge+jnrC+0,charge+jnrD+0);
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             r00              = _mm_mul_ps(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_ps(iq0,jq0);
207
208             /* EWALD ELECTROSTATICS */
209
210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
211             ewrt             = _mm_mul_ps(r00,ewtabscale);
212             ewitab           = _mm_cvttps_epi32(ewrt);
213             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
214             ewitab           = _mm_slli_epi32(ewitab,2);
215             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
216             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
217             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
218             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
219             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
220             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
221             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
222             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
223             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
224
225             d                = _mm_sub_ps(r00,rswitch);
226             d                = _mm_max_ps(d,_mm_setzero_ps());
227             d2               = _mm_mul_ps(d,d);
228             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
229
230             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
231
232             /* Evaluate switch function */
233             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
234             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
235             velec            = _mm_mul_ps(velec,sw);
236             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
237
238             /* Update potential sum for this i atom from the interaction with this j atom. */
239             velec            = _mm_and_ps(velec,cutoff_mask);
240             velecsum         = _mm_add_ps(velecsum,velec);
241
242             fscal            = felec;
243
244             fscal            = _mm_and_ps(fscal,cutoff_mask);
245
246             /* Calculate temporary vectorial force */
247             tx               = _mm_mul_ps(fscal,dx00);
248             ty               = _mm_mul_ps(fscal,dy00);
249             tz               = _mm_mul_ps(fscal,dz00);
250
251             /* Update vectorial force */
252             fix0             = _mm_add_ps(fix0,tx);
253             fiy0             = _mm_add_ps(fiy0,ty);
254             fiz0             = _mm_add_ps(fiz0,tz);
255
256             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
257                                                    f+j_coord_offsetC,f+j_coord_offsetD,
258                                                    tx,ty,tz);
259
260             }
261
262             /* Inner loop uses 65 flops */
263         }
264
265         if(jidx<j_index_end)
266         {
267
268             /* Get j neighbor index, and coordinate index */
269             jnrA             = jjnr[jidx];
270             jnrB             = jjnr[jidx+1];
271             jnrC             = jjnr[jidx+2];
272             jnrD             = jjnr[jidx+3];
273
274             /* Sign of each element will be negative for non-real atoms.
275              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
276              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
277              */
278             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
279             jnrA       = (jnrA>=0) ? jnrA : 0;
280             jnrB       = (jnrB>=0) ? jnrB : 0;
281             jnrC       = (jnrC>=0) ? jnrC : 0;
282             jnrD       = (jnrD>=0) ? jnrD : 0;
283
284             j_coord_offsetA  = DIM*jnrA;
285             j_coord_offsetB  = DIM*jnrB;
286             j_coord_offsetC  = DIM*jnrC;
287             j_coord_offsetD  = DIM*jnrD;
288
289             /* load j atom coordinates */
290             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
291                                               x+j_coord_offsetC,x+j_coord_offsetD,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _mm_sub_ps(ix0,jx0);
296             dy00             = _mm_sub_ps(iy0,jy0);
297             dz00             = _mm_sub_ps(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
301
302             rinv00           = gmx_mm_invsqrt_ps(rsq00);
303
304             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
308                                                               charge+jnrC+0,charge+jnrD+0);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq00,rcutoff2))
315             {
316
317             r00              = _mm_mul_ps(rsq00,rinv00);
318             r00              = _mm_andnot_ps(dummy_mask,r00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq00             = _mm_mul_ps(iq0,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_ps(r00,ewtabscale);
327             ewitab           = _mm_cvttps_epi32(ewrt);
328             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
333             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
334             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
335             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
336             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
337             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
338             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
339
340             d                = _mm_sub_ps(r00,rswitch);
341             d                = _mm_max_ps(d,_mm_setzero_ps());
342             d2               = _mm_mul_ps(d,d);
343             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
344
345             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
346
347             /* Evaluate switch function */
348             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
349             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
350             velec            = _mm_mul_ps(velec,sw);
351             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_and_ps(velec,cutoff_mask);
355             velec            = _mm_andnot_ps(dummy_mask,velec);
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_ps(fscal,cutoff_mask);
361
362             fscal            = _mm_andnot_ps(dummy_mask,fscal);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx00);
366             ty               = _mm_mul_ps(fscal,dy00);
367             tz               = _mm_mul_ps(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm_add_ps(fix0,tx);
371             fiy0             = _mm_add_ps(fiy0,ty);
372             fiz0             = _mm_add_ps(fiz0,tz);
373
374             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
375                                                    f+j_coord_offsetC,f+j_coord_offsetD,
376                                                    tx,ty,tz);
377
378             }
379
380             /* Inner loop uses 66 flops */
381         }
382
383         /* End of innermost loop */
384
385         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
386                                               f+i_coord_offset,fshift+i_shift_offset);
387
388         ggid                        = gid[iidx];
389         /* Update potential energies */
390         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 11 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*11 + inneriter*66);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
407  * Electrostatics interaction: Ewald
408  * VdW interaction:            None
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
414                     (t_nblist * gmx_restrict                nlist,
415                      rvec * gmx_restrict                    xx,
416                      rvec * gmx_restrict                    ff,
417                      t_forcerec * gmx_restrict              fr,
418                      t_mdatoms * gmx_restrict               mdatoms,
419                      nb_kernel_data_t * gmx_restrict        kernel_data,
420                      t_nrnb * gmx_restrict                  nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
423      * just 0 for non-waters.
424      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB,jnrC,jnrD;
430     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
431     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
432     real             shX,shY,shZ,rcutoff_scalar;
433     real             *shiftvec,*fshift,*x,*f;
434     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
435     int              vdwioffset0;
436     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
438     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
439     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
440     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
441     real             *charge;
442     __m128i          ewitab;
443     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
444     real             *ewtab;
445     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
446     real             rswitch_scalar,d_scalar;
447     __m128           dummy_mask,cutoff_mask;
448     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
449     __m128           one     = _mm_set1_ps(1.0);
450     __m128           two     = _mm_set1_ps(2.0);
451     x                = xx[0];
452     f                = ff[0];
453
454     nri              = nlist->nri;
455     iinr             = nlist->iinr;
456     jindex           = nlist->jindex;
457     jjnr             = nlist->jjnr;
458     shiftidx         = nlist->shift;
459     gid              = nlist->gid;
460     shiftvec         = fr->shift_vec[0];
461     fshift           = fr->fshift[0];
462     facel            = _mm_set1_ps(fr->epsfac);
463     charge           = mdatoms->chargeA;
464
465     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
466     ewtab            = fr->ic->tabq_coul_FDV0;
467     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
468     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
469
470     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
471     rcutoff_scalar   = fr->rcoulomb;
472     rcutoff          = _mm_set1_ps(rcutoff_scalar);
473     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
474
475     rswitch_scalar   = fr->rcoulomb_switch;
476     rswitch          = _mm_set1_ps(rswitch_scalar);
477     /* Setup switch parameters */
478     d_scalar         = rcutoff_scalar-rswitch_scalar;
479     d                = _mm_set1_ps(d_scalar);
480     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
481     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
482     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
483     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
484     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
485     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
486
487     /* Avoid stupid compiler warnings */
488     jnrA = jnrB = jnrC = jnrD = 0;
489     j_coord_offsetA = 0;
490     j_coord_offsetB = 0;
491     j_coord_offsetC = 0;
492     j_coord_offsetD = 0;
493
494     outeriter        = 0;
495     inneriter        = 0;
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502         shX              = shiftvec[i_shift_offset+XX];
503         shY              = shiftvec[i_shift_offset+YY];
504         shZ              = shiftvec[i_shift_offset+ZZ];
505
506         /* Load limits for loop over neighbors */
507         j_index_start    = jindex[iidx];
508         j_index_end      = jindex[iidx+1];
509
510         /* Get outer coordinate index */
511         inr              = iinr[iidx];
512         i_coord_offset   = DIM*inr;
513
514         /* Load i particle coords and add shift vector */
515         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
516         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
517         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
518
519         fix0             = _mm_setzero_ps();
520         fiy0             = _mm_setzero_ps();
521         fiz0             = _mm_setzero_ps();
522
523         /* Load parameters for i particles */
524         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
525
526         /* Start inner kernel loop */
527         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
528         {
529
530             /* Get j neighbor index, and coordinate index */
531             jnrA             = jjnr[jidx];
532             jnrB             = jjnr[jidx+1];
533             jnrC             = jjnr[jidx+2];
534             jnrD             = jjnr[jidx+3];
535
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               x+j_coord_offsetC,x+j_coord_offsetD,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_ps(ix0,jx0);
548             dy00             = _mm_sub_ps(iy0,jy0);
549             dz00             = _mm_sub_ps(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554             rinv00           = gmx_mm_invsqrt_ps(rsq00);
555
556             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
557
558             /* Load parameters for j particles */
559             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
560                                                               charge+jnrC+0,charge+jnrD+0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm_any_lt(rsq00,rcutoff2))
567             {
568
569             r00              = _mm_mul_ps(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _mm_mul_ps(iq0,jq0);
573
574             /* EWALD ELECTROSTATICS */
575
576             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
577             ewrt             = _mm_mul_ps(r00,ewtabscale);
578             ewitab           = _mm_cvttps_epi32(ewrt);
579             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
580             ewitab           = _mm_slli_epi32(ewitab,2);
581             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
582             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
583             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
584             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
585             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
586             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
587             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
588             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
589             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
590
591             d                = _mm_sub_ps(r00,rswitch);
592             d                = _mm_max_ps(d,_mm_setzero_ps());
593             d2               = _mm_mul_ps(d,d);
594             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
595
596             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
597
598             /* Evaluate switch function */
599             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
600             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
601             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
602
603             fscal            = felec;
604
605             fscal            = _mm_and_ps(fscal,cutoff_mask);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx00);
609             ty               = _mm_mul_ps(fscal,dy00);
610             tz               = _mm_mul_ps(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm_add_ps(fix0,tx);
614             fiy0             = _mm_add_ps(fiy0,ty);
615             fiz0             = _mm_add_ps(fiz0,tz);
616
617             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
618                                                    f+j_coord_offsetC,f+j_coord_offsetD,
619                                                    tx,ty,tz);
620
621             }
622
623             /* Inner loop uses 62 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             /* Get j neighbor index, and coordinate index */
630             jnrA             = jjnr[jidx];
631             jnrB             = jjnr[jidx+1];
632             jnrC             = jjnr[jidx+2];
633             jnrD             = jjnr[jidx+3];
634
635             /* Sign of each element will be negative for non-real atoms.
636              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
637              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
638              */
639             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
640             jnrA       = (jnrA>=0) ? jnrA : 0;
641             jnrB       = (jnrB>=0) ? jnrB : 0;
642             jnrC       = (jnrC>=0) ? jnrC : 0;
643             jnrD       = (jnrD>=0) ? jnrD : 0;
644
645             j_coord_offsetA  = DIM*jnrA;
646             j_coord_offsetB  = DIM*jnrB;
647             j_coord_offsetC  = DIM*jnrC;
648             j_coord_offsetD  = DIM*jnrD;
649
650             /* load j atom coordinates */
651             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
652                                               x+j_coord_offsetC,x+j_coord_offsetD,
653                                               &jx0,&jy0,&jz0);
654
655             /* Calculate displacement vector */
656             dx00             = _mm_sub_ps(ix0,jx0);
657             dy00             = _mm_sub_ps(iy0,jy0);
658             dz00             = _mm_sub_ps(iz0,jz0);
659
660             /* Calculate squared distance and things based on it */
661             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
662
663             rinv00           = gmx_mm_invsqrt_ps(rsq00);
664
665             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
666
667             /* Load parameters for j particles */
668             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
669                                                               charge+jnrC+0,charge+jnrD+0);
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             if (gmx_mm_any_lt(rsq00,rcutoff2))
676             {
677
678             r00              = _mm_mul_ps(rsq00,rinv00);
679             r00              = _mm_andnot_ps(dummy_mask,r00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             qq00             = _mm_mul_ps(iq0,jq0);
683
684             /* EWALD ELECTROSTATICS */
685
686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
687             ewrt             = _mm_mul_ps(r00,ewtabscale);
688             ewitab           = _mm_cvttps_epi32(ewrt);
689             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
690             ewitab           = _mm_slli_epi32(ewitab,2);
691             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
692             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
693             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
694             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
695             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
696             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
697             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
698             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
699             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
700
701             d                = _mm_sub_ps(r00,rswitch);
702             d                = _mm_max_ps(d,_mm_setzero_ps());
703             d2               = _mm_mul_ps(d,d);
704             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
705
706             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
707
708             /* Evaluate switch function */
709             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
710             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
711             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
712
713             fscal            = felec;
714
715             fscal            = _mm_and_ps(fscal,cutoff_mask);
716
717             fscal            = _mm_andnot_ps(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm_mul_ps(fscal,dx00);
721             ty               = _mm_mul_ps(fscal,dy00);
722             tz               = _mm_mul_ps(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm_add_ps(fix0,tx);
726             fiy0             = _mm_add_ps(fiy0,ty);
727             fiz0             = _mm_add_ps(fiz0,tz);
728
729             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
730                                                    f+j_coord_offsetC,f+j_coord_offsetD,
731                                                    tx,ty,tz);
732
733             }
734
735             /* Inner loop uses 63 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         /* Increment number of inner iterations */
744         inneriter                  += j_index_end - j_index_start;
745
746         /* Outer loop uses 10 flops */
747     }
748
749     /* Increment number of outer iterations */
750     outeriter        += nri;
751
752     /* Update outer/inner flops */
753
754     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*10 + inneriter*63);
755 }