Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
75     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m128           dummy_mask,cutoff_mask;
94     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
95     __m128           one     = _mm_set1_ps(1.0);
96     __m128           two     = _mm_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_ps(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_ps(d_scalar);
136     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158         shX              = shiftvec[i_shift_offset+XX];
159         shY              = shiftvec[i_shift_offset+YY];
160         shZ              = shiftvec[i_shift_offset+ZZ];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
172         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
173         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
174         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
175         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
176         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
177         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
178         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
179         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
180         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
181         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
182         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193         fix3             = _mm_setzero_ps();
194         fiy3             = _mm_setzero_ps();
195         fiz3             = _mm_setzero_ps();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_ps();
199         vvdwsum          = _mm_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                               x+j_coord_offsetC,x+j_coord_offsetD,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_ps(ix0,jx0);
223             dy00             = _mm_sub_ps(iy0,jy0);
224             dz00             = _mm_sub_ps(iz0,jz0);
225             dx10             = _mm_sub_ps(ix1,jx0);
226             dy10             = _mm_sub_ps(iy1,jy0);
227             dz10             = _mm_sub_ps(iz1,jz0);
228             dx20             = _mm_sub_ps(ix2,jx0);
229             dy20             = _mm_sub_ps(iy2,jy0);
230             dz20             = _mm_sub_ps(iz2,jz0);
231             dx30             = _mm_sub_ps(ix3,jx0);
232             dy30             = _mm_sub_ps(iy3,jy0);
233             dz30             = _mm_sub_ps(iz3,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
237             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
238             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
239             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
240
241             rinv00           = gmx_mm_invsqrt_ps(rsq00);
242             rinv10           = gmx_mm_invsqrt_ps(rsq10);
243             rinv20           = gmx_mm_invsqrt_ps(rsq20);
244             rinv30           = gmx_mm_invsqrt_ps(rsq30);
245
246             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
249             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                               charge+jnrC+0,charge+jnrD+0);
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255             vdwjidx0B        = 2*vdwtype[jnrB+0];
256             vdwjidx0C        = 2*vdwtype[jnrC+0];
257             vdwjidx0D        = 2*vdwtype[jnrD+0];
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             if (gmx_mm_any_lt(rsq00,rcutoff2))
264             {
265
266             r00              = _mm_mul_ps(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
270                                          vdwparam+vdwioffset0+vdwjidx0B,
271                                          vdwparam+vdwioffset0+vdwjidx0C,
272                                          vdwparam+vdwioffset0+vdwjidx0D,
273                                          &c6_00,&c12_00);
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
281             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
282
283             d                = _mm_sub_ps(r00,rswitch);
284             d                = _mm_max_ps(d,_mm_setzero_ps());
285             d2               = _mm_mul_ps(d,d);
286             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
287
288             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
289
290             /* Evaluate switch function */
291             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
292             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
293             vvdw             = _mm_mul_ps(vvdw,sw);
294             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
298             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
299
300             fscal            = fvdw;
301
302             fscal            = _mm_and_ps(fscal,cutoff_mask);
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_ps(fscal,dx00);
306             ty               = _mm_mul_ps(fscal,dy00);
307             tz               = _mm_mul_ps(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm_add_ps(fix0,tx);
311             fiy0             = _mm_add_ps(fiy0,ty);
312             fiz0             = _mm_add_ps(fiz0,tz);
313
314             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
315                                                    f+j_coord_offsetC,f+j_coord_offsetD,
316                                                    tx,ty,tz);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq10,rcutoff2))
325             {
326
327             r10              = _mm_mul_ps(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _mm_mul_ps(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_ps(r10,ewtabscale);
336             ewitab           = _mm_cvttps_epi32(ewrt);
337             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
341             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
342             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
343             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
344             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
345             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
346             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
347             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
348
349             d                = _mm_sub_ps(r10,rswitch);
350             d                = _mm_max_ps(d,_mm_setzero_ps());
351             d2               = _mm_mul_ps(d,d);
352             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
353
354             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
355
356             /* Evaluate switch function */
357             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
358             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
359             velec            = _mm_mul_ps(velec,sw);
360             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _mm_and_ps(velec,cutoff_mask);
364             velecsum         = _mm_add_ps(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _mm_and_ps(fscal,cutoff_mask);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_ps(fscal,dx10);
372             ty               = _mm_mul_ps(fscal,dy10);
373             tz               = _mm_mul_ps(fscal,dz10);
374
375             /* Update vectorial force */
376             fix1             = _mm_add_ps(fix1,tx);
377             fiy1             = _mm_add_ps(fiy1,ty);
378             fiz1             = _mm_add_ps(fiz1,tz);
379
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
381                                                    f+j_coord_offsetC,f+j_coord_offsetD,
382                                                    tx,ty,tz);
383
384             }
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             if (gmx_mm_any_lt(rsq20,rcutoff2))
391             {
392
393             r20              = _mm_mul_ps(rsq20,rinv20);
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq20             = _mm_mul_ps(iq2,jq0);
397
398             /* EWALD ELECTROSTATICS */
399
400             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
401             ewrt             = _mm_mul_ps(r20,ewtabscale);
402             ewitab           = _mm_cvttps_epi32(ewrt);
403             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
404             ewitab           = _mm_slli_epi32(ewitab,2);
405             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
406             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
407             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
408             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
409             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
410             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
411             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
412             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
413             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
414
415             d                = _mm_sub_ps(r20,rswitch);
416             d                = _mm_max_ps(d,_mm_setzero_ps());
417             d2               = _mm_mul_ps(d,d);
418             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
419
420             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
421
422             /* Evaluate switch function */
423             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
424             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
425             velec            = _mm_mul_ps(velec,sw);
426             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm_and_ps(velec,cutoff_mask);
430             velecsum         = _mm_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             fscal            = _mm_and_ps(fscal,cutoff_mask);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm_mul_ps(fscal,dx20);
438             ty               = _mm_mul_ps(fscal,dy20);
439             tz               = _mm_mul_ps(fscal,dz20);
440
441             /* Update vectorial force */
442             fix2             = _mm_add_ps(fix2,tx);
443             fiy2             = _mm_add_ps(fiy2,ty);
444             fiz2             = _mm_add_ps(fiz2,tz);
445
446             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
447                                                    f+j_coord_offsetC,f+j_coord_offsetD,
448                                                    tx,ty,tz);
449
450             }
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             if (gmx_mm_any_lt(rsq30,rcutoff2))
457             {
458
459             r30              = _mm_mul_ps(rsq30,rinv30);
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq30             = _mm_mul_ps(iq3,jq0);
463
464             /* EWALD ELECTROSTATICS */
465
466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
467             ewrt             = _mm_mul_ps(r30,ewtabscale);
468             ewitab           = _mm_cvttps_epi32(ewrt);
469             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
470             ewitab           = _mm_slli_epi32(ewitab,2);
471             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
472             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
473             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
474             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
475             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
476             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
477             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
478             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
479             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
480
481             d                = _mm_sub_ps(r30,rswitch);
482             d                = _mm_max_ps(d,_mm_setzero_ps());
483             d2               = _mm_mul_ps(d,d);
484             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
485
486             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
487
488             /* Evaluate switch function */
489             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
490             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
491             velec            = _mm_mul_ps(velec,sw);
492             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm_and_ps(velec,cutoff_mask);
496             velecsum         = _mm_add_ps(velecsum,velec);
497
498             fscal            = felec;
499
500             fscal            = _mm_and_ps(fscal,cutoff_mask);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm_mul_ps(fscal,dx30);
504             ty               = _mm_mul_ps(fscal,dy30);
505             tz               = _mm_mul_ps(fscal,dz30);
506
507             /* Update vectorial force */
508             fix3             = _mm_add_ps(fix3,tx);
509             fiy3             = _mm_add_ps(fiy3,ty);
510             fiz3             = _mm_add_ps(fiz3,tz);
511
512             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
513                                                    f+j_coord_offsetC,f+j_coord_offsetD,
514                                                    tx,ty,tz);
515
516             }
517
518             /* Inner loop uses 254 flops */
519         }
520
521         if(jidx<j_index_end)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrA             = jjnr[jidx];
526             jnrB             = jjnr[jidx+1];
527             jnrC             = jjnr[jidx+2];
528             jnrD             = jjnr[jidx+3];
529
530             /* Sign of each element will be negative for non-real atoms.
531              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
532              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
533              */
534             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
535             jnrA       = (jnrA>=0) ? jnrA : 0;
536             jnrB       = (jnrB>=0) ? jnrB : 0;
537             jnrC       = (jnrC>=0) ? jnrC : 0;
538             jnrD       = (jnrD>=0) ? jnrD : 0;
539
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               x+j_coord_offsetC,x+j_coord_offsetD,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_ps(ix0,jx0);
552             dy00             = _mm_sub_ps(iy0,jy0);
553             dz00             = _mm_sub_ps(iz0,jz0);
554             dx10             = _mm_sub_ps(ix1,jx0);
555             dy10             = _mm_sub_ps(iy1,jy0);
556             dz10             = _mm_sub_ps(iz1,jz0);
557             dx20             = _mm_sub_ps(ix2,jx0);
558             dy20             = _mm_sub_ps(iy2,jy0);
559             dz20             = _mm_sub_ps(iz2,jz0);
560             dx30             = _mm_sub_ps(ix3,jx0);
561             dy30             = _mm_sub_ps(iy3,jy0);
562             dz30             = _mm_sub_ps(iz3,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
566             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
567             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
568             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
569
570             rinv00           = gmx_mm_invsqrt_ps(rsq00);
571             rinv10           = gmx_mm_invsqrt_ps(rsq10);
572             rinv20           = gmx_mm_invsqrt_ps(rsq20);
573             rinv30           = gmx_mm_invsqrt_ps(rsq30);
574
575             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
576             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
577             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
578             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582                                                               charge+jnrC+0,charge+jnrD+0);
583             vdwjidx0A        = 2*vdwtype[jnrA+0];
584             vdwjidx0B        = 2*vdwtype[jnrB+0];
585             vdwjidx0C        = 2*vdwtype[jnrC+0];
586             vdwjidx0D        = 2*vdwtype[jnrD+0];
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq00,rcutoff2))
593             {
594
595             r00              = _mm_mul_ps(rsq00,rinv00);
596             r00              = _mm_andnot_ps(dummy_mask,r00);
597
598             /* Compute parameters for interactions between i and j atoms */
599             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
600                                          vdwparam+vdwioffset0+vdwjidx0B,
601                                          vdwparam+vdwioffset0+vdwjidx0C,
602                                          vdwparam+vdwioffset0+vdwjidx0D,
603                                          &c6_00,&c12_00);
604
605             /* LENNARD-JONES DISPERSION/REPULSION */
606
607             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
608             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
609             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
610             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
611             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
612
613             d                = _mm_sub_ps(r00,rswitch);
614             d                = _mm_max_ps(d,_mm_setzero_ps());
615             d2               = _mm_mul_ps(d,d);
616             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
617
618             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
619
620             /* Evaluate switch function */
621             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
622             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
623             vvdw             = _mm_mul_ps(vvdw,sw);
624             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
628             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
629             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
630
631             fscal            = fvdw;
632
633             fscal            = _mm_and_ps(fscal,cutoff_mask);
634
635             fscal            = _mm_andnot_ps(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm_mul_ps(fscal,dx00);
639             ty               = _mm_mul_ps(fscal,dy00);
640             tz               = _mm_mul_ps(fscal,dz00);
641
642             /* Update vectorial force */
643             fix0             = _mm_add_ps(fix0,tx);
644             fiy0             = _mm_add_ps(fiy0,ty);
645             fiz0             = _mm_add_ps(fiz0,tz);
646
647             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
648                                                    f+j_coord_offsetC,f+j_coord_offsetD,
649                                                    tx,ty,tz);
650
651             }
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             if (gmx_mm_any_lt(rsq10,rcutoff2))
658             {
659
660             r10              = _mm_mul_ps(rsq10,rinv10);
661             r10              = _mm_andnot_ps(dummy_mask,r10);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq10             = _mm_mul_ps(iq1,jq0);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
669             ewrt             = _mm_mul_ps(r10,ewtabscale);
670             ewitab           = _mm_cvttps_epi32(ewrt);
671             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
672             ewitab           = _mm_slli_epi32(ewitab,2);
673             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
674             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
675             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
676             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
677             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
678             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
679             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
680             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
681             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
682
683             d                = _mm_sub_ps(r10,rswitch);
684             d                = _mm_max_ps(d,_mm_setzero_ps());
685             d2               = _mm_mul_ps(d,d);
686             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
687
688             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
689
690             /* Evaluate switch function */
691             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
692             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
693             velec            = _mm_mul_ps(velec,sw);
694             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
695
696             /* Update potential sum for this i atom from the interaction with this j atom. */
697             velec            = _mm_and_ps(velec,cutoff_mask);
698             velec            = _mm_andnot_ps(dummy_mask,velec);
699             velecsum         = _mm_add_ps(velecsum,velec);
700
701             fscal            = felec;
702
703             fscal            = _mm_and_ps(fscal,cutoff_mask);
704
705             fscal            = _mm_andnot_ps(dummy_mask,fscal);
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm_mul_ps(fscal,dx10);
709             ty               = _mm_mul_ps(fscal,dy10);
710             tz               = _mm_mul_ps(fscal,dz10);
711
712             /* Update vectorial force */
713             fix1             = _mm_add_ps(fix1,tx);
714             fiy1             = _mm_add_ps(fiy1,ty);
715             fiz1             = _mm_add_ps(fiz1,tz);
716
717             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
718                                                    f+j_coord_offsetC,f+j_coord_offsetD,
719                                                    tx,ty,tz);
720
721             }
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             if (gmx_mm_any_lt(rsq20,rcutoff2))
728             {
729
730             r20              = _mm_mul_ps(rsq20,rinv20);
731             r20              = _mm_andnot_ps(dummy_mask,r20);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq20             = _mm_mul_ps(iq2,jq0);
735
736             /* EWALD ELECTROSTATICS */
737
738             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
739             ewrt             = _mm_mul_ps(r20,ewtabscale);
740             ewitab           = _mm_cvttps_epi32(ewrt);
741             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
742             ewitab           = _mm_slli_epi32(ewitab,2);
743             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
744             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
745             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
746             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
747             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
748             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
749             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
750             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
751             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
752
753             d                = _mm_sub_ps(r20,rswitch);
754             d                = _mm_max_ps(d,_mm_setzero_ps());
755             d2               = _mm_mul_ps(d,d);
756             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
757
758             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
759
760             /* Evaluate switch function */
761             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
762             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
763             velec            = _mm_mul_ps(velec,sw);
764             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
765
766             /* Update potential sum for this i atom from the interaction with this j atom. */
767             velec            = _mm_and_ps(velec,cutoff_mask);
768             velec            = _mm_andnot_ps(dummy_mask,velec);
769             velecsum         = _mm_add_ps(velecsum,velec);
770
771             fscal            = felec;
772
773             fscal            = _mm_and_ps(fscal,cutoff_mask);
774
775             fscal            = _mm_andnot_ps(dummy_mask,fscal);
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm_mul_ps(fscal,dx20);
779             ty               = _mm_mul_ps(fscal,dy20);
780             tz               = _mm_mul_ps(fscal,dz20);
781
782             /* Update vectorial force */
783             fix2             = _mm_add_ps(fix2,tx);
784             fiy2             = _mm_add_ps(fiy2,ty);
785             fiz2             = _mm_add_ps(fiz2,tz);
786
787             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
788                                                    f+j_coord_offsetC,f+j_coord_offsetD,
789                                                    tx,ty,tz);
790
791             }
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             if (gmx_mm_any_lt(rsq30,rcutoff2))
798             {
799
800             r30              = _mm_mul_ps(rsq30,rinv30);
801             r30              = _mm_andnot_ps(dummy_mask,r30);
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq30             = _mm_mul_ps(iq3,jq0);
805
806             /* EWALD ELECTROSTATICS */
807
808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
809             ewrt             = _mm_mul_ps(r30,ewtabscale);
810             ewitab           = _mm_cvttps_epi32(ewrt);
811             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
812             ewitab           = _mm_slli_epi32(ewitab,2);
813             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
814             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
815             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
816             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
817             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
818             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
819             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
820             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
821             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
822
823             d                = _mm_sub_ps(r30,rswitch);
824             d                = _mm_max_ps(d,_mm_setzero_ps());
825             d2               = _mm_mul_ps(d,d);
826             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
827
828             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
829
830             /* Evaluate switch function */
831             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
832             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
833             velec            = _mm_mul_ps(velec,sw);
834             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
835
836             /* Update potential sum for this i atom from the interaction with this j atom. */
837             velec            = _mm_and_ps(velec,cutoff_mask);
838             velec            = _mm_andnot_ps(dummy_mask,velec);
839             velecsum         = _mm_add_ps(velecsum,velec);
840
841             fscal            = felec;
842
843             fscal            = _mm_and_ps(fscal,cutoff_mask);
844
845             fscal            = _mm_andnot_ps(dummy_mask,fscal);
846
847             /* Calculate temporary vectorial force */
848             tx               = _mm_mul_ps(fscal,dx30);
849             ty               = _mm_mul_ps(fscal,dy30);
850             tz               = _mm_mul_ps(fscal,dz30);
851
852             /* Update vectorial force */
853             fix3             = _mm_add_ps(fix3,tx);
854             fiy3             = _mm_add_ps(fiy3,ty);
855             fiz3             = _mm_add_ps(fiz3,tz);
856
857             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
858                                                    f+j_coord_offsetC,f+j_coord_offsetD,
859                                                    tx,ty,tz);
860
861             }
862
863             /* Inner loop uses 258 flops */
864         }
865
866         /* End of innermost loop */
867
868         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
869                                               f+i_coord_offset,fshift+i_shift_offset);
870
871         ggid                        = gid[iidx];
872         /* Update potential energies */
873         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
874         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
875
876         /* Increment number of inner iterations */
877         inneriter                  += j_index_end - j_index_start;
878
879         /* Outer loop uses 38 flops */
880     }
881
882     /* Increment number of outer iterations */
883     outeriter        += nri;
884
885     /* Update outer/inner flops */
886
887     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*38 + inneriter*258);
888 }
889 /*
890  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_single
891  * Electrostatics interaction: Ewald
892  * VdW interaction:            LennardJones
893  * Geometry:                   Water4-Particle
894  * Calculate force/pot:        Force
895  */
896 void
897 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_single
898                     (t_nblist * gmx_restrict                nlist,
899                      rvec * gmx_restrict                    xx,
900                      rvec * gmx_restrict                    ff,
901                      t_forcerec * gmx_restrict              fr,
902                      t_mdatoms * gmx_restrict               mdatoms,
903                      nb_kernel_data_t * gmx_restrict        kernel_data,
904                      t_nrnb * gmx_restrict                  nrnb)
905 {
906     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
907      * just 0 for non-waters.
908      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
909      * jnr indices corresponding to data put in the four positions in the SIMD register.
910      */
911     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
912     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
913     int              jnrA,jnrB,jnrC,jnrD;
914     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
915     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
916     real             shX,shY,shZ,rcutoff_scalar;
917     real             *shiftvec,*fshift,*x,*f;
918     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
919     int              vdwioffset0;
920     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
921     int              vdwioffset1;
922     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
923     int              vdwioffset2;
924     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
925     int              vdwioffset3;
926     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
927     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
928     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
929     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
930     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
931     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
932     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
933     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
934     real             *charge;
935     int              nvdwtype;
936     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
937     int              *vdwtype;
938     real             *vdwparam;
939     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
940     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
941     __m128i          ewitab;
942     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
943     real             *ewtab;
944     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
945     real             rswitch_scalar,d_scalar;
946     __m128           dummy_mask,cutoff_mask;
947     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
948     __m128           one     = _mm_set1_ps(1.0);
949     __m128           two     = _mm_set1_ps(2.0);
950     x                = xx[0];
951     f                = ff[0];
952
953     nri              = nlist->nri;
954     iinr             = nlist->iinr;
955     jindex           = nlist->jindex;
956     jjnr             = nlist->jjnr;
957     shiftidx         = nlist->shift;
958     gid              = nlist->gid;
959     shiftvec         = fr->shift_vec[0];
960     fshift           = fr->fshift[0];
961     facel            = _mm_set1_ps(fr->epsfac);
962     charge           = mdatoms->chargeA;
963     nvdwtype         = fr->ntype;
964     vdwparam         = fr->nbfp;
965     vdwtype          = mdatoms->typeA;
966
967     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
968     ewtab            = fr->ic->tabq_coul_FDV0;
969     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
970     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
971
972     /* Setup water-specific parameters */
973     inr              = nlist->iinr[0];
974     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
975     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
976     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
977     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
978
979     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
980     rcutoff_scalar   = fr->rcoulomb;
981     rcutoff          = _mm_set1_ps(rcutoff_scalar);
982     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
983
984     rswitch_scalar   = fr->rcoulomb_switch;
985     rswitch          = _mm_set1_ps(rswitch_scalar);
986     /* Setup switch parameters */
987     d_scalar         = rcutoff_scalar-rswitch_scalar;
988     d                = _mm_set1_ps(d_scalar);
989     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
990     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
991     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
992     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
993     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
994     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
995
996     /* Avoid stupid compiler warnings */
997     jnrA = jnrB = jnrC = jnrD = 0;
998     j_coord_offsetA = 0;
999     j_coord_offsetB = 0;
1000     j_coord_offsetC = 0;
1001     j_coord_offsetD = 0;
1002
1003     outeriter        = 0;
1004     inneriter        = 0;
1005
1006     /* Start outer loop over neighborlists */
1007     for(iidx=0; iidx<nri; iidx++)
1008     {
1009         /* Load shift vector for this list */
1010         i_shift_offset   = DIM*shiftidx[iidx];
1011         shX              = shiftvec[i_shift_offset+XX];
1012         shY              = shiftvec[i_shift_offset+YY];
1013         shZ              = shiftvec[i_shift_offset+ZZ];
1014
1015         /* Load limits for loop over neighbors */
1016         j_index_start    = jindex[iidx];
1017         j_index_end      = jindex[iidx+1];
1018
1019         /* Get outer coordinate index */
1020         inr              = iinr[iidx];
1021         i_coord_offset   = DIM*inr;
1022
1023         /* Load i particle coords and add shift vector */
1024         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
1025         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
1026         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
1027         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
1028         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
1029         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
1030         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
1031         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
1032         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
1033         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
1034         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
1035         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
1036
1037         fix0             = _mm_setzero_ps();
1038         fiy0             = _mm_setzero_ps();
1039         fiz0             = _mm_setzero_ps();
1040         fix1             = _mm_setzero_ps();
1041         fiy1             = _mm_setzero_ps();
1042         fiz1             = _mm_setzero_ps();
1043         fix2             = _mm_setzero_ps();
1044         fiy2             = _mm_setzero_ps();
1045         fiz2             = _mm_setzero_ps();
1046         fix3             = _mm_setzero_ps();
1047         fiy3             = _mm_setzero_ps();
1048         fiz3             = _mm_setzero_ps();
1049
1050         /* Start inner kernel loop */
1051         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1052         {
1053
1054             /* Get j neighbor index, and coordinate index */
1055             jnrA             = jjnr[jidx];
1056             jnrB             = jjnr[jidx+1];
1057             jnrC             = jjnr[jidx+2];
1058             jnrD             = jjnr[jidx+3];
1059
1060             j_coord_offsetA  = DIM*jnrA;
1061             j_coord_offsetB  = DIM*jnrB;
1062             j_coord_offsetC  = DIM*jnrC;
1063             j_coord_offsetD  = DIM*jnrD;
1064
1065             /* load j atom coordinates */
1066             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1067                                               x+j_coord_offsetC,x+j_coord_offsetD,
1068                                               &jx0,&jy0,&jz0);
1069
1070             /* Calculate displacement vector */
1071             dx00             = _mm_sub_ps(ix0,jx0);
1072             dy00             = _mm_sub_ps(iy0,jy0);
1073             dz00             = _mm_sub_ps(iz0,jz0);
1074             dx10             = _mm_sub_ps(ix1,jx0);
1075             dy10             = _mm_sub_ps(iy1,jy0);
1076             dz10             = _mm_sub_ps(iz1,jz0);
1077             dx20             = _mm_sub_ps(ix2,jx0);
1078             dy20             = _mm_sub_ps(iy2,jy0);
1079             dz20             = _mm_sub_ps(iz2,jz0);
1080             dx30             = _mm_sub_ps(ix3,jx0);
1081             dy30             = _mm_sub_ps(iy3,jy0);
1082             dz30             = _mm_sub_ps(iz3,jz0);
1083
1084             /* Calculate squared distance and things based on it */
1085             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1086             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1087             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1088             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1089
1090             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1091             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1092             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1093             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1094
1095             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1096             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1097             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1098             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1099
1100             /* Load parameters for j particles */
1101             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1102                                                               charge+jnrC+0,charge+jnrD+0);
1103             vdwjidx0A        = 2*vdwtype[jnrA+0];
1104             vdwjidx0B        = 2*vdwtype[jnrB+0];
1105             vdwjidx0C        = 2*vdwtype[jnrC+0];
1106             vdwjidx0D        = 2*vdwtype[jnrD+0];
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             if (gmx_mm_any_lt(rsq00,rcutoff2))
1113             {
1114
1115             r00              = _mm_mul_ps(rsq00,rinv00);
1116
1117             /* Compute parameters for interactions between i and j atoms */
1118             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1119                                          vdwparam+vdwioffset0+vdwjidx0B,
1120                                          vdwparam+vdwioffset0+vdwjidx0C,
1121                                          vdwparam+vdwioffset0+vdwjidx0D,
1122                                          &c6_00,&c12_00);
1123
1124             /* LENNARD-JONES DISPERSION/REPULSION */
1125
1126             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1127             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1128             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1129             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1130             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1131
1132             d                = _mm_sub_ps(r00,rswitch);
1133             d                = _mm_max_ps(d,_mm_setzero_ps());
1134             d2               = _mm_mul_ps(d,d);
1135             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1136
1137             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1138
1139             /* Evaluate switch function */
1140             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1141             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1142             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1143
1144             fscal            = fvdw;
1145
1146             fscal            = _mm_and_ps(fscal,cutoff_mask);
1147
1148             /* Calculate temporary vectorial force */
1149             tx               = _mm_mul_ps(fscal,dx00);
1150             ty               = _mm_mul_ps(fscal,dy00);
1151             tz               = _mm_mul_ps(fscal,dz00);
1152
1153             /* Update vectorial force */
1154             fix0             = _mm_add_ps(fix0,tx);
1155             fiy0             = _mm_add_ps(fiy0,ty);
1156             fiz0             = _mm_add_ps(fiz0,tz);
1157
1158             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1159                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1160                                                    tx,ty,tz);
1161
1162             }
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             if (gmx_mm_any_lt(rsq10,rcutoff2))
1169             {
1170
1171             r10              = _mm_mul_ps(rsq10,rinv10);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq10             = _mm_mul_ps(iq1,jq0);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1179             ewrt             = _mm_mul_ps(r10,ewtabscale);
1180             ewitab           = _mm_cvttps_epi32(ewrt);
1181             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1182             ewitab           = _mm_slli_epi32(ewitab,2);
1183             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1184             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1185             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1186             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1187             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1188             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1189             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1190             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1191             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1192
1193             d                = _mm_sub_ps(r10,rswitch);
1194             d                = _mm_max_ps(d,_mm_setzero_ps());
1195             d2               = _mm_mul_ps(d,d);
1196             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1197
1198             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1203             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1204
1205             fscal            = felec;
1206
1207             fscal            = _mm_and_ps(fscal,cutoff_mask);
1208
1209             /* Calculate temporary vectorial force */
1210             tx               = _mm_mul_ps(fscal,dx10);
1211             ty               = _mm_mul_ps(fscal,dy10);
1212             tz               = _mm_mul_ps(fscal,dz10);
1213
1214             /* Update vectorial force */
1215             fix1             = _mm_add_ps(fix1,tx);
1216             fiy1             = _mm_add_ps(fiy1,ty);
1217             fiz1             = _mm_add_ps(fiz1,tz);
1218
1219             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1220                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1221                                                    tx,ty,tz);
1222
1223             }
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             if (gmx_mm_any_lt(rsq20,rcutoff2))
1230             {
1231
1232             r20              = _mm_mul_ps(rsq20,rinv20);
1233
1234             /* Compute parameters for interactions between i and j atoms */
1235             qq20             = _mm_mul_ps(iq2,jq0);
1236
1237             /* EWALD ELECTROSTATICS */
1238
1239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1240             ewrt             = _mm_mul_ps(r20,ewtabscale);
1241             ewitab           = _mm_cvttps_epi32(ewrt);
1242             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1243             ewitab           = _mm_slli_epi32(ewitab,2);
1244             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1245             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1246             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1247             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1248             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1249             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1250             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1251             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1252             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1253
1254             d                = _mm_sub_ps(r20,rswitch);
1255             d                = _mm_max_ps(d,_mm_setzero_ps());
1256             d2               = _mm_mul_ps(d,d);
1257             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1258
1259             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1260
1261             /* Evaluate switch function */
1262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1263             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1264             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1265
1266             fscal            = felec;
1267
1268             fscal            = _mm_and_ps(fscal,cutoff_mask);
1269
1270             /* Calculate temporary vectorial force */
1271             tx               = _mm_mul_ps(fscal,dx20);
1272             ty               = _mm_mul_ps(fscal,dy20);
1273             tz               = _mm_mul_ps(fscal,dz20);
1274
1275             /* Update vectorial force */
1276             fix2             = _mm_add_ps(fix2,tx);
1277             fiy2             = _mm_add_ps(fiy2,ty);
1278             fiz2             = _mm_add_ps(fiz2,tz);
1279
1280             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1281                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1282                                                    tx,ty,tz);
1283
1284             }
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             if (gmx_mm_any_lt(rsq30,rcutoff2))
1291             {
1292
1293             r30              = _mm_mul_ps(rsq30,rinv30);
1294
1295             /* Compute parameters for interactions between i and j atoms */
1296             qq30             = _mm_mul_ps(iq3,jq0);
1297
1298             /* EWALD ELECTROSTATICS */
1299
1300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1301             ewrt             = _mm_mul_ps(r30,ewtabscale);
1302             ewitab           = _mm_cvttps_epi32(ewrt);
1303             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1304             ewitab           = _mm_slli_epi32(ewitab,2);
1305             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1306             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1307             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1308             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1309             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1310             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1311             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1312             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1313             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1314
1315             d                = _mm_sub_ps(r30,rswitch);
1316             d                = _mm_max_ps(d,_mm_setzero_ps());
1317             d2               = _mm_mul_ps(d,d);
1318             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1319
1320             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1321
1322             /* Evaluate switch function */
1323             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1324             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1325             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1326
1327             fscal            = felec;
1328
1329             fscal            = _mm_and_ps(fscal,cutoff_mask);
1330
1331             /* Calculate temporary vectorial force */
1332             tx               = _mm_mul_ps(fscal,dx30);
1333             ty               = _mm_mul_ps(fscal,dy30);
1334             tz               = _mm_mul_ps(fscal,dz30);
1335
1336             /* Update vectorial force */
1337             fix3             = _mm_add_ps(fix3,tx);
1338             fiy3             = _mm_add_ps(fiy3,ty);
1339             fiz3             = _mm_add_ps(fiz3,tz);
1340
1341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1342                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1343                                                    tx,ty,tz);
1344
1345             }
1346
1347             /* Inner loop uses 242 flops */
1348         }
1349
1350         if(jidx<j_index_end)
1351         {
1352
1353             /* Get j neighbor index, and coordinate index */
1354             jnrA             = jjnr[jidx];
1355             jnrB             = jjnr[jidx+1];
1356             jnrC             = jjnr[jidx+2];
1357             jnrD             = jjnr[jidx+3];
1358
1359             /* Sign of each element will be negative for non-real atoms.
1360              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1361              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1362              */
1363             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1364             jnrA       = (jnrA>=0) ? jnrA : 0;
1365             jnrB       = (jnrB>=0) ? jnrB : 0;
1366             jnrC       = (jnrC>=0) ? jnrC : 0;
1367             jnrD       = (jnrD>=0) ? jnrD : 0;
1368
1369             j_coord_offsetA  = DIM*jnrA;
1370             j_coord_offsetB  = DIM*jnrB;
1371             j_coord_offsetC  = DIM*jnrC;
1372             j_coord_offsetD  = DIM*jnrD;
1373
1374             /* load j atom coordinates */
1375             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1376                                               x+j_coord_offsetC,x+j_coord_offsetD,
1377                                               &jx0,&jy0,&jz0);
1378
1379             /* Calculate displacement vector */
1380             dx00             = _mm_sub_ps(ix0,jx0);
1381             dy00             = _mm_sub_ps(iy0,jy0);
1382             dz00             = _mm_sub_ps(iz0,jz0);
1383             dx10             = _mm_sub_ps(ix1,jx0);
1384             dy10             = _mm_sub_ps(iy1,jy0);
1385             dz10             = _mm_sub_ps(iz1,jz0);
1386             dx20             = _mm_sub_ps(ix2,jx0);
1387             dy20             = _mm_sub_ps(iy2,jy0);
1388             dz20             = _mm_sub_ps(iz2,jz0);
1389             dx30             = _mm_sub_ps(ix3,jx0);
1390             dy30             = _mm_sub_ps(iy3,jy0);
1391             dz30             = _mm_sub_ps(iz3,jz0);
1392
1393             /* Calculate squared distance and things based on it */
1394             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1395             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1396             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1397             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1398
1399             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1400             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1401             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1402             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1403
1404             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1405             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1406             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1407             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1408
1409             /* Load parameters for j particles */
1410             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1411                                                               charge+jnrC+0,charge+jnrD+0);
1412             vdwjidx0A        = 2*vdwtype[jnrA+0];
1413             vdwjidx0B        = 2*vdwtype[jnrB+0];
1414             vdwjidx0C        = 2*vdwtype[jnrC+0];
1415             vdwjidx0D        = 2*vdwtype[jnrD+0];
1416
1417             /**************************
1418              * CALCULATE INTERACTIONS *
1419              **************************/
1420
1421             if (gmx_mm_any_lt(rsq00,rcutoff2))
1422             {
1423
1424             r00              = _mm_mul_ps(rsq00,rinv00);
1425             r00              = _mm_andnot_ps(dummy_mask,r00);
1426
1427             /* Compute parameters for interactions between i and j atoms */
1428             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1429                                          vdwparam+vdwioffset0+vdwjidx0B,
1430                                          vdwparam+vdwioffset0+vdwjidx0C,
1431                                          vdwparam+vdwioffset0+vdwjidx0D,
1432                                          &c6_00,&c12_00);
1433
1434             /* LENNARD-JONES DISPERSION/REPULSION */
1435
1436             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1437             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1438             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1439             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1440             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1441
1442             d                = _mm_sub_ps(r00,rswitch);
1443             d                = _mm_max_ps(d,_mm_setzero_ps());
1444             d2               = _mm_mul_ps(d,d);
1445             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1446
1447             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1448
1449             /* Evaluate switch function */
1450             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1451             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1452             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1453
1454             fscal            = fvdw;
1455
1456             fscal            = _mm_and_ps(fscal,cutoff_mask);
1457
1458             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1459
1460             /* Calculate temporary vectorial force */
1461             tx               = _mm_mul_ps(fscal,dx00);
1462             ty               = _mm_mul_ps(fscal,dy00);
1463             tz               = _mm_mul_ps(fscal,dz00);
1464
1465             /* Update vectorial force */
1466             fix0             = _mm_add_ps(fix0,tx);
1467             fiy0             = _mm_add_ps(fiy0,ty);
1468             fiz0             = _mm_add_ps(fiz0,tz);
1469
1470             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1471                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1472                                                    tx,ty,tz);
1473
1474             }
1475
1476             /**************************
1477              * CALCULATE INTERACTIONS *
1478              **************************/
1479
1480             if (gmx_mm_any_lt(rsq10,rcutoff2))
1481             {
1482
1483             r10              = _mm_mul_ps(rsq10,rinv10);
1484             r10              = _mm_andnot_ps(dummy_mask,r10);
1485
1486             /* Compute parameters for interactions between i and j atoms */
1487             qq10             = _mm_mul_ps(iq1,jq0);
1488
1489             /* EWALD ELECTROSTATICS */
1490
1491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1492             ewrt             = _mm_mul_ps(r10,ewtabscale);
1493             ewitab           = _mm_cvttps_epi32(ewrt);
1494             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1495             ewitab           = _mm_slli_epi32(ewitab,2);
1496             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1497             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1498             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1499             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1500             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1501             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1502             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1503             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1504             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1505
1506             d                = _mm_sub_ps(r10,rswitch);
1507             d                = _mm_max_ps(d,_mm_setzero_ps());
1508             d2               = _mm_mul_ps(d,d);
1509             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1510
1511             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1512
1513             /* Evaluate switch function */
1514             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1515             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1516             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1517
1518             fscal            = felec;
1519
1520             fscal            = _mm_and_ps(fscal,cutoff_mask);
1521
1522             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1523
1524             /* Calculate temporary vectorial force */
1525             tx               = _mm_mul_ps(fscal,dx10);
1526             ty               = _mm_mul_ps(fscal,dy10);
1527             tz               = _mm_mul_ps(fscal,dz10);
1528
1529             /* Update vectorial force */
1530             fix1             = _mm_add_ps(fix1,tx);
1531             fiy1             = _mm_add_ps(fiy1,ty);
1532             fiz1             = _mm_add_ps(fiz1,tz);
1533
1534             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1535                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1536                                                    tx,ty,tz);
1537
1538             }
1539
1540             /**************************
1541              * CALCULATE INTERACTIONS *
1542              **************************/
1543
1544             if (gmx_mm_any_lt(rsq20,rcutoff2))
1545             {
1546
1547             r20              = _mm_mul_ps(rsq20,rinv20);
1548             r20              = _mm_andnot_ps(dummy_mask,r20);
1549
1550             /* Compute parameters for interactions between i and j atoms */
1551             qq20             = _mm_mul_ps(iq2,jq0);
1552
1553             /* EWALD ELECTROSTATICS */
1554
1555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1556             ewrt             = _mm_mul_ps(r20,ewtabscale);
1557             ewitab           = _mm_cvttps_epi32(ewrt);
1558             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1559             ewitab           = _mm_slli_epi32(ewitab,2);
1560             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1561             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1562             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1563             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1564             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1565             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1566             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1567             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1568             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1569
1570             d                = _mm_sub_ps(r20,rswitch);
1571             d                = _mm_max_ps(d,_mm_setzero_ps());
1572             d2               = _mm_mul_ps(d,d);
1573             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1574
1575             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1576
1577             /* Evaluate switch function */
1578             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1579             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1580             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1581
1582             fscal            = felec;
1583
1584             fscal            = _mm_and_ps(fscal,cutoff_mask);
1585
1586             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1587
1588             /* Calculate temporary vectorial force */
1589             tx               = _mm_mul_ps(fscal,dx20);
1590             ty               = _mm_mul_ps(fscal,dy20);
1591             tz               = _mm_mul_ps(fscal,dz20);
1592
1593             /* Update vectorial force */
1594             fix2             = _mm_add_ps(fix2,tx);
1595             fiy2             = _mm_add_ps(fiy2,ty);
1596             fiz2             = _mm_add_ps(fiz2,tz);
1597
1598             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1599                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1600                                                    tx,ty,tz);
1601
1602             }
1603
1604             /**************************
1605              * CALCULATE INTERACTIONS *
1606              **************************/
1607
1608             if (gmx_mm_any_lt(rsq30,rcutoff2))
1609             {
1610
1611             r30              = _mm_mul_ps(rsq30,rinv30);
1612             r30              = _mm_andnot_ps(dummy_mask,r30);
1613
1614             /* Compute parameters for interactions between i and j atoms */
1615             qq30             = _mm_mul_ps(iq3,jq0);
1616
1617             /* EWALD ELECTROSTATICS */
1618
1619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1620             ewrt             = _mm_mul_ps(r30,ewtabscale);
1621             ewitab           = _mm_cvttps_epi32(ewrt);
1622             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1623             ewitab           = _mm_slli_epi32(ewitab,2);
1624             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1625             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1626             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1627             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1628             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1629             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1630             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1631             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1632             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1633
1634             d                = _mm_sub_ps(r30,rswitch);
1635             d                = _mm_max_ps(d,_mm_setzero_ps());
1636             d2               = _mm_mul_ps(d,d);
1637             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1638
1639             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1640
1641             /* Evaluate switch function */
1642             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1643             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1644             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1645
1646             fscal            = felec;
1647
1648             fscal            = _mm_and_ps(fscal,cutoff_mask);
1649
1650             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1651
1652             /* Calculate temporary vectorial force */
1653             tx               = _mm_mul_ps(fscal,dx30);
1654             ty               = _mm_mul_ps(fscal,dy30);
1655             tz               = _mm_mul_ps(fscal,dz30);
1656
1657             /* Update vectorial force */
1658             fix3             = _mm_add_ps(fix3,tx);
1659             fiy3             = _mm_add_ps(fiy3,ty);
1660             fiz3             = _mm_add_ps(fiz3,tz);
1661
1662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1663                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1664                                                    tx,ty,tz);
1665
1666             }
1667
1668             /* Inner loop uses 246 flops */
1669         }
1670
1671         /* End of innermost loop */
1672
1673         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1674                                               f+i_coord_offset,fshift+i_shift_offset);
1675
1676         /* Increment number of inner iterations */
1677         inneriter                  += j_index_end - j_index_start;
1678
1679         /* Outer loop uses 36 flops */
1680     }
1681
1682     /* Increment number of outer iterations */
1683     outeriter        += nri;
1684
1685     /* Update outer/inner flops */
1686
1687     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*36 + inneriter*246);
1688 }