7e781d8c54604a00a67476dc54f0b417c4faa7e6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
109     ewtab            = fr->ic->tabq_coul_FDV0;
110     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
111     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
117
118     rswitch_scalar   = fr->rcoulomb_switch;
119     rswitch          = _mm_set1_ps(rswitch_scalar);
120     /* Setup switch parameters */
121     d_scalar         = rcutoff_scalar-rswitch_scalar;
122     d                = _mm_set1_ps(d_scalar);
123     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
124     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
127     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }  
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161         
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172         vvdwsum          = _mm_setzero_ps();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
200
201             rinv00           = gmx_mm_invsqrt_ps(rsq00);
202
203             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
207                                                               charge+jnrC+0,charge+jnrD+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm_any_lt(rsq00,rcutoff2))
218             {
219
220             r00              = _mm_mul_ps(rsq00,rinv00);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_ps(iq0,jq0);
224             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,
226                                          vdwparam+vdwioffset0+vdwjidx0C,
227                                          vdwparam+vdwioffset0+vdwjidx0D,
228                                          &c6_00,&c12_00);
229
230             /* EWALD ELECTROSTATICS */
231
232             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
233             ewrt             = _mm_mul_ps(r00,ewtabscale);
234             ewitab           = _mm_cvttps_epi32(ewrt);
235             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
236             ewitab           = _mm_slli_epi32(ewitab,2);
237             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
238             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
239             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
240             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
241             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
242             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
243             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
244             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
245             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
251             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
252             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
253             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
254
255             d                = _mm_sub_ps(r00,rswitch);
256             d                = _mm_max_ps(d,_mm_setzero_ps());
257             d2               = _mm_mul_ps(d,d);
258             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
259
260             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
261
262             /* Evaluate switch function */
263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
264             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
265             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
266             velec            = _mm_mul_ps(velec,sw);
267             vvdw             = _mm_mul_ps(vvdw,sw);
268             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm_and_ps(velec,cutoff_mask);
272             velecsum         = _mm_add_ps(velecsum,velec);
273             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
274             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
275
276             fscal            = _mm_add_ps(felec,fvdw);
277
278             fscal            = _mm_and_ps(fscal,cutoff_mask);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_ps(fscal,dx00);
282             ty               = _mm_mul_ps(fscal,dy00);
283             tz               = _mm_mul_ps(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm_add_ps(fix0,tx);
287             fiy0             = _mm_add_ps(fiy0,ty);
288             fiz0             = _mm_add_ps(fiz0,tz);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
295             
296             }
297
298             /* Inner loop uses 83 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             /* Get j neighbor index, and coordinate index */
305             jnrlistA         = jjnr[jidx];
306             jnrlistB         = jjnr[jidx+1];
307             jnrlistC         = jjnr[jidx+2];
308             jnrlistD         = jjnr[jidx+3];
309             /* Sign of each element will be negative for non-real atoms.
310              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
311              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
312              */
313             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
314             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
315             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
316             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
317             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322
323             /* load j atom coordinates */
324             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
325                                               x+j_coord_offsetC,x+j_coord_offsetD,
326                                               &jx0,&jy0,&jz0);
327
328             /* Calculate displacement vector */
329             dx00             = _mm_sub_ps(ix0,jx0);
330             dy00             = _mm_sub_ps(iy0,jy0);
331             dz00             = _mm_sub_ps(iz0,jz0);
332
333             /* Calculate squared distance and things based on it */
334             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
335
336             rinv00           = gmx_mm_invsqrt_ps(rsq00);
337
338             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
339
340             /* Load parameters for j particles */
341             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
342                                                               charge+jnrC+0,charge+jnrD+0);
343             vdwjidx0A        = 2*vdwtype[jnrA+0];
344             vdwjidx0B        = 2*vdwtype[jnrB+0];
345             vdwjidx0C        = 2*vdwtype[jnrC+0];
346             vdwjidx0D        = 2*vdwtype[jnrD+0];
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq00,rcutoff2))
353             {
354
355             r00              = _mm_mul_ps(rsq00,rinv00);
356             r00              = _mm_andnot_ps(dummy_mask,r00);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq00             = _mm_mul_ps(iq0,jq0);
360             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
361                                          vdwparam+vdwioffset0+vdwjidx0B,
362                                          vdwparam+vdwioffset0+vdwjidx0C,
363                                          vdwparam+vdwioffset0+vdwjidx0D,
364                                          &c6_00,&c12_00);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _mm_mul_ps(r00,ewtabscale);
370             ewitab           = _mm_cvttps_epi32(ewrt);
371             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
372             ewitab           = _mm_slli_epi32(ewitab,2);
373             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
374             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
375             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
376             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
377             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
378             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
379             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
380             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
381             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
382
383             /* LENNARD-JONES DISPERSION/REPULSION */
384
385             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
386             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
387             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
388             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
389             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
390
391             d                = _mm_sub_ps(r00,rswitch);
392             d                = _mm_max_ps(d,_mm_setzero_ps());
393             d2               = _mm_mul_ps(d,d);
394             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
395
396             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
397
398             /* Evaluate switch function */
399             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
400             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
401             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
402             velec            = _mm_mul_ps(velec,sw);
403             vvdw             = _mm_mul_ps(vvdw,sw);
404             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_and_ps(velec,cutoff_mask);
408             velec            = _mm_andnot_ps(dummy_mask,velec);
409             velecsum         = _mm_add_ps(velecsum,velec);
410             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
411             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
412             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
413
414             fscal            = _mm_add_ps(felec,fvdw);
415
416             fscal            = _mm_and_ps(fscal,cutoff_mask);
417
418             fscal            = _mm_andnot_ps(dummy_mask,fscal);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm_mul_ps(fscal,dx00);
422             ty               = _mm_mul_ps(fscal,dy00);
423             tz               = _mm_mul_ps(fscal,dz00);
424
425             /* Update vectorial force */
426             fix0             = _mm_add_ps(fix0,tx);
427             fiy0             = _mm_add_ps(fiy0,ty);
428             fiz0             = _mm_add_ps(fiz0,tz);
429
430             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
431             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
432             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
433             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
434             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
435             
436             }
437
438             /* Inner loop uses 84 flops */
439         }
440
441         /* End of innermost loop */
442
443         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
444                                               f+i_coord_offset,fshift+i_shift_offset);
445
446         ggid                        = gid[iidx];
447         /* Update potential energies */
448         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
449         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
450
451         /* Increment number of inner iterations */
452         inneriter                  += j_index_end - j_index_start;
453
454         /* Outer loop uses 9 flops */
455     }
456
457     /* Increment number of outer iterations */
458     outeriter        += nri;
459
460     /* Update outer/inner flops */
461
462     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
463 }
464 /*
465  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_single
466  * Electrostatics interaction: Ewald
467  * VdW interaction:            LennardJones
468  * Geometry:                   Particle-Particle
469  * Calculate force/pot:        Force
470  */
471 void
472 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_single
473                     (t_nblist * gmx_restrict                nlist,
474                      rvec * gmx_restrict                    xx,
475                      rvec * gmx_restrict                    ff,
476                      t_forcerec * gmx_restrict              fr,
477                      t_mdatoms * gmx_restrict               mdatoms,
478                      nb_kernel_data_t * gmx_restrict        kernel_data,
479                      t_nrnb * gmx_restrict                  nrnb)
480 {
481     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
482      * just 0 for non-waters.
483      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
484      * jnr indices corresponding to data put in the four positions in the SIMD register.
485      */
486     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
487     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
488     int              jnrA,jnrB,jnrC,jnrD;
489     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
490     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
491     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
492     real             rcutoff_scalar;
493     real             *shiftvec,*fshift,*x,*f;
494     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
495     real             scratch[4*DIM];
496     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
497     int              vdwioffset0;
498     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
499     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
500     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
501     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
502     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
503     real             *charge;
504     int              nvdwtype;
505     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
506     int              *vdwtype;
507     real             *vdwparam;
508     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
509     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
510     __m128i          ewitab;
511     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
512     real             *ewtab;
513     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
514     real             rswitch_scalar,d_scalar;
515     __m128           dummy_mask,cutoff_mask;
516     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
517     __m128           one     = _mm_set1_ps(1.0);
518     __m128           two     = _mm_set1_ps(2.0);
519     x                = xx[0];
520     f                = ff[0];
521
522     nri              = nlist->nri;
523     iinr             = nlist->iinr;
524     jindex           = nlist->jindex;
525     jjnr             = nlist->jjnr;
526     shiftidx         = nlist->shift;
527     gid              = nlist->gid;
528     shiftvec         = fr->shift_vec[0];
529     fshift           = fr->fshift[0];
530     facel            = _mm_set1_ps(fr->epsfac);
531     charge           = mdatoms->chargeA;
532     nvdwtype         = fr->ntype;
533     vdwparam         = fr->nbfp;
534     vdwtype          = mdatoms->typeA;
535
536     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
537     ewtab            = fr->ic->tabq_coul_FDV0;
538     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
539     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
540
541     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
542     rcutoff_scalar   = fr->rcoulomb;
543     rcutoff          = _mm_set1_ps(rcutoff_scalar);
544     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
545
546     rswitch_scalar   = fr->rcoulomb_switch;
547     rswitch          = _mm_set1_ps(rswitch_scalar);
548     /* Setup switch parameters */
549     d_scalar         = rcutoff_scalar-rswitch_scalar;
550     d                = _mm_set1_ps(d_scalar);
551     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
552     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
553     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
554     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
555     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
556     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
557
558     /* Avoid stupid compiler warnings */
559     jnrA = jnrB = jnrC = jnrD = 0;
560     j_coord_offsetA = 0;
561     j_coord_offsetB = 0;
562     j_coord_offsetC = 0;
563     j_coord_offsetD = 0;
564
565     outeriter        = 0;
566     inneriter        = 0;
567
568     for(iidx=0;iidx<4*DIM;iidx++)
569     {
570         scratch[iidx] = 0.0;
571     }  
572
573     /* Start outer loop over neighborlists */
574     for(iidx=0; iidx<nri; iidx++)
575     {
576         /* Load shift vector for this list */
577         i_shift_offset   = DIM*shiftidx[iidx];
578
579         /* Load limits for loop over neighbors */
580         j_index_start    = jindex[iidx];
581         j_index_end      = jindex[iidx+1];
582
583         /* Get outer coordinate index */
584         inr              = iinr[iidx];
585         i_coord_offset   = DIM*inr;
586
587         /* Load i particle coords and add shift vector */
588         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
589         
590         fix0             = _mm_setzero_ps();
591         fiy0             = _mm_setzero_ps();
592         fiz0             = _mm_setzero_ps();
593
594         /* Load parameters for i particles */
595         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
596         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
597
598         /* Start inner kernel loop */
599         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrA             = jjnr[jidx];
604             jnrB             = jjnr[jidx+1];
605             jnrC             = jjnr[jidx+2];
606             jnrD             = jjnr[jidx+3];
607             j_coord_offsetA  = DIM*jnrA;
608             j_coord_offsetB  = DIM*jnrB;
609             j_coord_offsetC  = DIM*jnrC;
610             j_coord_offsetD  = DIM*jnrD;
611
612             /* load j atom coordinates */
613             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
614                                               x+j_coord_offsetC,x+j_coord_offsetD,
615                                               &jx0,&jy0,&jz0);
616
617             /* Calculate displacement vector */
618             dx00             = _mm_sub_ps(ix0,jx0);
619             dy00             = _mm_sub_ps(iy0,jy0);
620             dz00             = _mm_sub_ps(iz0,jz0);
621
622             /* Calculate squared distance and things based on it */
623             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
624
625             rinv00           = gmx_mm_invsqrt_ps(rsq00);
626
627             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
628
629             /* Load parameters for j particles */
630             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
631                                                               charge+jnrC+0,charge+jnrD+0);
632             vdwjidx0A        = 2*vdwtype[jnrA+0];
633             vdwjidx0B        = 2*vdwtype[jnrB+0];
634             vdwjidx0C        = 2*vdwtype[jnrC+0];
635             vdwjidx0D        = 2*vdwtype[jnrD+0];
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq00,rcutoff2))
642             {
643
644             r00              = _mm_mul_ps(rsq00,rinv00);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq00             = _mm_mul_ps(iq0,jq0);
648             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
649                                          vdwparam+vdwioffset0+vdwjidx0B,
650                                          vdwparam+vdwioffset0+vdwjidx0C,
651                                          vdwparam+vdwioffset0+vdwjidx0D,
652                                          &c6_00,&c12_00);
653
654             /* EWALD ELECTROSTATICS */
655
656             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
657             ewrt             = _mm_mul_ps(r00,ewtabscale);
658             ewitab           = _mm_cvttps_epi32(ewrt);
659             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
663             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
664             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
665             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
666             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
667             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
668             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
669             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
670
671             /* LENNARD-JONES DISPERSION/REPULSION */
672
673             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
674             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
675             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
676             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
677             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
678
679             d                = _mm_sub_ps(r00,rswitch);
680             d                = _mm_max_ps(d,_mm_setzero_ps());
681             d2               = _mm_mul_ps(d,d);
682             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
683
684             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
685
686             /* Evaluate switch function */
687             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
688             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
689             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
690             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
691
692             fscal            = _mm_add_ps(felec,fvdw);
693
694             fscal            = _mm_and_ps(fscal,cutoff_mask);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm_mul_ps(fscal,dx00);
698             ty               = _mm_mul_ps(fscal,dy00);
699             tz               = _mm_mul_ps(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm_add_ps(fix0,tx);
703             fiy0             = _mm_add_ps(fiy0,ty);
704             fiz0             = _mm_add_ps(fiz0,tz);
705
706             fjptrA             = f+j_coord_offsetA;
707             fjptrB             = f+j_coord_offsetB;
708             fjptrC             = f+j_coord_offsetC;
709             fjptrD             = f+j_coord_offsetD;
710             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
711             
712             }
713
714             /* Inner loop uses 77 flops */
715         }
716
717         if(jidx<j_index_end)
718         {
719
720             /* Get j neighbor index, and coordinate index */
721             jnrlistA         = jjnr[jidx];
722             jnrlistB         = jjnr[jidx+1];
723             jnrlistC         = jjnr[jidx+2];
724             jnrlistD         = jjnr[jidx+3];
725             /* Sign of each element will be negative for non-real atoms.
726              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
727              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
728              */
729             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
730             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
731             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
732             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
733             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
734             j_coord_offsetA  = DIM*jnrA;
735             j_coord_offsetB  = DIM*jnrB;
736             j_coord_offsetC  = DIM*jnrC;
737             j_coord_offsetD  = DIM*jnrD;
738
739             /* load j atom coordinates */
740             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
741                                               x+j_coord_offsetC,x+j_coord_offsetD,
742                                               &jx0,&jy0,&jz0);
743
744             /* Calculate displacement vector */
745             dx00             = _mm_sub_ps(ix0,jx0);
746             dy00             = _mm_sub_ps(iy0,jy0);
747             dz00             = _mm_sub_ps(iz0,jz0);
748
749             /* Calculate squared distance and things based on it */
750             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
751
752             rinv00           = gmx_mm_invsqrt_ps(rsq00);
753
754             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
755
756             /* Load parameters for j particles */
757             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
758                                                               charge+jnrC+0,charge+jnrD+0);
759             vdwjidx0A        = 2*vdwtype[jnrA+0];
760             vdwjidx0B        = 2*vdwtype[jnrB+0];
761             vdwjidx0C        = 2*vdwtype[jnrC+0];
762             vdwjidx0D        = 2*vdwtype[jnrD+0];
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             if (gmx_mm_any_lt(rsq00,rcutoff2))
769             {
770
771             r00              = _mm_mul_ps(rsq00,rinv00);
772             r00              = _mm_andnot_ps(dummy_mask,r00);
773
774             /* Compute parameters for interactions between i and j atoms */
775             qq00             = _mm_mul_ps(iq0,jq0);
776             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
777                                          vdwparam+vdwioffset0+vdwjidx0B,
778                                          vdwparam+vdwioffset0+vdwjidx0C,
779                                          vdwparam+vdwioffset0+vdwjidx0D,
780                                          &c6_00,&c12_00);
781
782             /* EWALD ELECTROSTATICS */
783
784             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
785             ewrt             = _mm_mul_ps(r00,ewtabscale);
786             ewitab           = _mm_cvttps_epi32(ewrt);
787             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
788             ewitab           = _mm_slli_epi32(ewitab,2);
789             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
790             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
791             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
792             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
793             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
794             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
795             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
796             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
797             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
798
799             /* LENNARD-JONES DISPERSION/REPULSION */
800
801             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
802             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
803             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
804             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
805             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
806
807             d                = _mm_sub_ps(r00,rswitch);
808             d                = _mm_max_ps(d,_mm_setzero_ps());
809             d2               = _mm_mul_ps(d,d);
810             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
811
812             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
813
814             /* Evaluate switch function */
815             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
816             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
817             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
818             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
819
820             fscal            = _mm_add_ps(felec,fvdw);
821
822             fscal            = _mm_and_ps(fscal,cutoff_mask);
823
824             fscal            = _mm_andnot_ps(dummy_mask,fscal);
825
826             /* Calculate temporary vectorial force */
827             tx               = _mm_mul_ps(fscal,dx00);
828             ty               = _mm_mul_ps(fscal,dy00);
829             tz               = _mm_mul_ps(fscal,dz00);
830
831             /* Update vectorial force */
832             fix0             = _mm_add_ps(fix0,tx);
833             fiy0             = _mm_add_ps(fiy0,ty);
834             fiz0             = _mm_add_ps(fiz0,tz);
835
836             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
837             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
838             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
839             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
840             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
841             
842             }
843
844             /* Inner loop uses 78 flops */
845         }
846
847         /* End of innermost loop */
848
849         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
850                                               f+i_coord_offset,fshift+i_shift_offset);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 7 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
864 }