5eddc72b284fbc5d3f2aaba7e507ca8a45d28bc4
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     /* Setup water-specific parameters */
113     inr              = nlist->iinr[0];
114     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
115     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
116     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
117     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }  
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
150                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
151         
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155         fix1             = _mm_setzero_ps();
156         fiy1             = _mm_setzero_ps();
157         fiz1             = _mm_setzero_ps();
158         fix2             = _mm_setzero_ps();
159         fiy2             = _mm_setzero_ps();
160         fiz2             = _mm_setzero_ps();
161         fix3             = _mm_setzero_ps();
162         fiy3             = _mm_setzero_ps();
163         fiz3             = _mm_setzero_ps();
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_ps();
167         vvdwsum          = _mm_setzero_ps();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               x+j_coord_offsetC,x+j_coord_offsetD,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_ps(ix0,jx0);
190             dy00             = _mm_sub_ps(iy0,jy0);
191             dz00             = _mm_sub_ps(iz0,jz0);
192             dx10             = _mm_sub_ps(ix1,jx0);
193             dy10             = _mm_sub_ps(iy1,jy0);
194             dz10             = _mm_sub_ps(iz1,jz0);
195             dx20             = _mm_sub_ps(ix2,jx0);
196             dy20             = _mm_sub_ps(iy2,jy0);
197             dz20             = _mm_sub_ps(iz2,jz0);
198             dx30             = _mm_sub_ps(ix3,jx0);
199             dy30             = _mm_sub_ps(iy3,jy0);
200             dz30             = _mm_sub_ps(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
207
208             rinv10           = gmx_mm_invsqrt_ps(rsq10);
209             rinv20           = gmx_mm_invsqrt_ps(rsq20);
210             rinv30           = gmx_mm_invsqrt_ps(rsq30);
211
212             rinvsq00         = gmx_mm_inv_ps(rsq00);
213             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
214             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
215             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                               charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             fjx0             = _mm_setzero_ps();
226             fjy0             = _mm_setzero_ps();
227             fjz0             = _mm_setzero_ps();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             /* Compute parameters for interactions between i and j atoms */
234             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,
236                                          vdwparam+vdwioffset0+vdwjidx0C,
237                                          vdwparam+vdwioffset0+vdwjidx0D,
238                                          &c6_00,&c12_00);
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
244             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
245             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
246             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = fvdw;
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_ps(fscal,dx00);
255             ty               = _mm_mul_ps(fscal,dy00);
256             tz               = _mm_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_ps(fix0,tx);
260             fiy0             = _mm_add_ps(fiy0,ty);
261             fiz0             = _mm_add_ps(fiz0,tz);
262
263             fjx0             = _mm_add_ps(fjx0,tx);
264             fjy0             = _mm_add_ps(fjy0,ty);
265             fjz0             = _mm_add_ps(fjz0,tz);
266             
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm_mul_ps(iq1,jq0);
273
274             /* COULOMB ELECTROSTATICS */
275             velec            = _mm_mul_ps(qq10,rinv10);
276             felec            = _mm_mul_ps(velec,rinvsq10);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_ps(velecsum,velec);
280
281             fscal            = felec;
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_ps(fscal,dx10);
285             ty               = _mm_mul_ps(fscal,dy10);
286             tz               = _mm_mul_ps(fscal,dz10);
287
288             /* Update vectorial force */
289             fix1             = _mm_add_ps(fix1,tx);
290             fiy1             = _mm_add_ps(fiy1,ty);
291             fiz1             = _mm_add_ps(fiz1,tz);
292
293             fjx0             = _mm_add_ps(fjx0,tx);
294             fjy0             = _mm_add_ps(fjy0,ty);
295             fjz0             = _mm_add_ps(fjz0,tz);
296             
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq20             = _mm_mul_ps(iq2,jq0);
303
304             /* COULOMB ELECTROSTATICS */
305             velec            = _mm_mul_ps(qq20,rinv20);
306             felec            = _mm_mul_ps(velec,rinvsq20);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_ps(fscal,dx20);
315             ty               = _mm_mul_ps(fscal,dy20);
316             tz               = _mm_mul_ps(fscal,dz20);
317
318             /* Update vectorial force */
319             fix2             = _mm_add_ps(fix2,tx);
320             fiy2             = _mm_add_ps(fiy2,ty);
321             fiz2             = _mm_add_ps(fiz2,tz);
322
323             fjx0             = _mm_add_ps(fjx0,tx);
324             fjy0             = _mm_add_ps(fjy0,ty);
325             fjz0             = _mm_add_ps(fjz0,tz);
326             
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq30             = _mm_mul_ps(iq3,jq0);
333
334             /* COULOMB ELECTROSTATICS */
335             velec            = _mm_mul_ps(qq30,rinv30);
336             felec            = _mm_mul_ps(velec,rinvsq30);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_ps(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_ps(fscal,dx30);
345             ty               = _mm_mul_ps(fscal,dy30);
346             tz               = _mm_mul_ps(fscal,dz30);
347
348             /* Update vectorial force */
349             fix3             = _mm_add_ps(fix3,tx);
350             fiy3             = _mm_add_ps(fiy3,ty);
351             fiz3             = _mm_add_ps(fiz3,tz);
352
353             fjx0             = _mm_add_ps(fjx0,tx);
354             fjy0             = _mm_add_ps(fjy0,ty);
355             fjz0             = _mm_add_ps(fjz0,tz);
356             
357             fjptrA             = f+j_coord_offsetA;
358             fjptrB             = f+j_coord_offsetB;
359             fjptrC             = f+j_coord_offsetC;
360             fjptrD             = f+j_coord_offsetD;
361
362             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
363
364             /* Inner loop uses 116 flops */
365         }
366
367         if(jidx<j_index_end)
368         {
369
370             /* Get j neighbor index, and coordinate index */
371             jnrlistA         = jjnr[jidx];
372             jnrlistB         = jjnr[jidx+1];
373             jnrlistC         = jjnr[jidx+2];
374             jnrlistD         = jjnr[jidx+3];
375             /* Sign of each element will be negative for non-real atoms.
376              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
377              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
378              */
379             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
380             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
381             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
382             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
383             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
384             j_coord_offsetA  = DIM*jnrA;
385             j_coord_offsetB  = DIM*jnrB;
386             j_coord_offsetC  = DIM*jnrC;
387             j_coord_offsetD  = DIM*jnrD;
388
389             /* load j atom coordinates */
390             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
391                                               x+j_coord_offsetC,x+j_coord_offsetD,
392                                               &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _mm_sub_ps(ix0,jx0);
396             dy00             = _mm_sub_ps(iy0,jy0);
397             dz00             = _mm_sub_ps(iz0,jz0);
398             dx10             = _mm_sub_ps(ix1,jx0);
399             dy10             = _mm_sub_ps(iy1,jy0);
400             dz10             = _mm_sub_ps(iz1,jz0);
401             dx20             = _mm_sub_ps(ix2,jx0);
402             dy20             = _mm_sub_ps(iy2,jy0);
403             dz20             = _mm_sub_ps(iz2,jz0);
404             dx30             = _mm_sub_ps(ix3,jx0);
405             dy30             = _mm_sub_ps(iy3,jy0);
406             dz30             = _mm_sub_ps(iz3,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
410             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
411             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
412             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
413
414             rinv10           = gmx_mm_invsqrt_ps(rsq10);
415             rinv20           = gmx_mm_invsqrt_ps(rsq20);
416             rinv30           = gmx_mm_invsqrt_ps(rsq30);
417
418             rinvsq00         = gmx_mm_inv_ps(rsq00);
419             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
420             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
421             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
422
423             /* Load parameters for j particles */
424             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
425                                                               charge+jnrC+0,charge+jnrD+0);
426             vdwjidx0A        = 2*vdwtype[jnrA+0];
427             vdwjidx0B        = 2*vdwtype[jnrB+0];
428             vdwjidx0C        = 2*vdwtype[jnrC+0];
429             vdwjidx0D        = 2*vdwtype[jnrD+0];
430
431             fjx0             = _mm_setzero_ps();
432             fjy0             = _mm_setzero_ps();
433             fjz0             = _mm_setzero_ps();
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             /* Compute parameters for interactions between i and j atoms */
440             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
441                                          vdwparam+vdwioffset0+vdwjidx0B,
442                                          vdwparam+vdwioffset0+vdwjidx0C,
443                                          vdwparam+vdwioffset0+vdwjidx0D,
444                                          &c6_00,&c12_00);
445
446             /* LENNARD-JONES DISPERSION/REPULSION */
447
448             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
449             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
450             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
451             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
452             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
456             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
457
458             fscal            = fvdw;
459
460             fscal            = _mm_andnot_ps(dummy_mask,fscal);
461
462             /* Calculate temporary vectorial force */
463             tx               = _mm_mul_ps(fscal,dx00);
464             ty               = _mm_mul_ps(fscal,dy00);
465             tz               = _mm_mul_ps(fscal,dz00);
466
467             /* Update vectorial force */
468             fix0             = _mm_add_ps(fix0,tx);
469             fiy0             = _mm_add_ps(fiy0,ty);
470             fiz0             = _mm_add_ps(fiz0,tz);
471
472             fjx0             = _mm_add_ps(fjx0,tx);
473             fjy0             = _mm_add_ps(fjy0,ty);
474             fjz0             = _mm_add_ps(fjz0,tz);
475             
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             /* Compute parameters for interactions between i and j atoms */
481             qq10             = _mm_mul_ps(iq1,jq0);
482
483             /* COULOMB ELECTROSTATICS */
484             velec            = _mm_mul_ps(qq10,rinv10);
485             felec            = _mm_mul_ps(velec,rinvsq10);
486
487             /* Update potential sum for this i atom from the interaction with this j atom. */
488             velec            = _mm_andnot_ps(dummy_mask,velec);
489             velecsum         = _mm_add_ps(velecsum,velec);
490
491             fscal            = felec;
492
493             fscal            = _mm_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm_mul_ps(fscal,dx10);
497             ty               = _mm_mul_ps(fscal,dy10);
498             tz               = _mm_mul_ps(fscal,dz10);
499
500             /* Update vectorial force */
501             fix1             = _mm_add_ps(fix1,tx);
502             fiy1             = _mm_add_ps(fiy1,ty);
503             fiz1             = _mm_add_ps(fiz1,tz);
504
505             fjx0             = _mm_add_ps(fjx0,tx);
506             fjy0             = _mm_add_ps(fjy0,ty);
507             fjz0             = _mm_add_ps(fjz0,tz);
508             
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq20             = _mm_mul_ps(iq2,jq0);
515
516             /* COULOMB ELECTROSTATICS */
517             velec            = _mm_mul_ps(qq20,rinv20);
518             felec            = _mm_mul_ps(velec,rinvsq20);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_andnot_ps(dummy_mask,velec);
522             velecsum         = _mm_add_ps(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_ps(fscal,dx20);
530             ty               = _mm_mul_ps(fscal,dy20);
531             tz               = _mm_mul_ps(fscal,dz20);
532
533             /* Update vectorial force */
534             fix2             = _mm_add_ps(fix2,tx);
535             fiy2             = _mm_add_ps(fiy2,ty);
536             fiz2             = _mm_add_ps(fiz2,tz);
537
538             fjx0             = _mm_add_ps(fjx0,tx);
539             fjy0             = _mm_add_ps(fjy0,ty);
540             fjz0             = _mm_add_ps(fjz0,tz);
541             
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq30             = _mm_mul_ps(iq3,jq0);
548
549             /* COULOMB ELECTROSTATICS */
550             velec            = _mm_mul_ps(qq30,rinv30);
551             felec            = _mm_mul_ps(velec,rinvsq30);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx30);
563             ty               = _mm_mul_ps(fscal,dy30);
564             tz               = _mm_mul_ps(fscal,dz30);
565
566             /* Update vectorial force */
567             fix3             = _mm_add_ps(fix3,tx);
568             fiy3             = _mm_add_ps(fiy3,ty);
569             fiz3             = _mm_add_ps(fiz3,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574             
575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
579
580             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
581
582             /* Inner loop uses 116 flops */
583         }
584
585         /* End of innermost loop */
586
587         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
588                                               f+i_coord_offset,fshift+i_shift_offset);
589
590         ggid                        = gid[iidx];
591         /* Update potential energies */
592         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
593         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
594
595         /* Increment number of inner iterations */
596         inneriter                  += j_index_end - j_index_start;
597
598         /* Outer loop uses 26 flops */
599     }
600
601     /* Increment number of outer iterations */
602     outeriter        += nri;
603
604     /* Update outer/inner flops */
605
606     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
607 }
608 /*
609  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_single
610  * Electrostatics interaction: Coulomb
611  * VdW interaction:            LennardJones
612  * Geometry:                   Water4-Particle
613  * Calculate force/pot:        Force
614  */
615 void
616 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_single
617                     (t_nblist * gmx_restrict                nlist,
618                      rvec * gmx_restrict                    xx,
619                      rvec * gmx_restrict                    ff,
620                      t_forcerec * gmx_restrict              fr,
621                      t_mdatoms * gmx_restrict               mdatoms,
622                      nb_kernel_data_t * gmx_restrict        kernel_data,
623                      t_nrnb * gmx_restrict                  nrnb)
624 {
625     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
626      * just 0 for non-waters.
627      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
628      * jnr indices corresponding to data put in the four positions in the SIMD register.
629      */
630     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
631     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
632     int              jnrA,jnrB,jnrC,jnrD;
633     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
634     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
635     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
636     real             rcutoff_scalar;
637     real             *shiftvec,*fshift,*x,*f;
638     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
639     real             scratch[4*DIM];
640     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
641     int              vdwioffset0;
642     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643     int              vdwioffset1;
644     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwioffset3;
648     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
649     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
650     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
651     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
652     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
653     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
654     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
655     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
656     real             *charge;
657     int              nvdwtype;
658     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
659     int              *vdwtype;
660     real             *vdwparam;
661     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
662     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
663     __m128           dummy_mask,cutoff_mask;
664     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
665     __m128           one     = _mm_set1_ps(1.0);
666     __m128           two     = _mm_set1_ps(2.0);
667     x                = xx[0];
668     f                = ff[0];
669
670     nri              = nlist->nri;
671     iinr             = nlist->iinr;
672     jindex           = nlist->jindex;
673     jjnr             = nlist->jjnr;
674     shiftidx         = nlist->shift;
675     gid              = nlist->gid;
676     shiftvec         = fr->shift_vec[0];
677     fshift           = fr->fshift[0];
678     facel            = _mm_set1_ps(fr->epsfac);
679     charge           = mdatoms->chargeA;
680     nvdwtype         = fr->ntype;
681     vdwparam         = fr->nbfp;
682     vdwtype          = mdatoms->typeA;
683
684     /* Setup water-specific parameters */
685     inr              = nlist->iinr[0];
686     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
687     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
688     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
689     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
690
691     /* Avoid stupid compiler warnings */
692     jnrA = jnrB = jnrC = jnrD = 0;
693     j_coord_offsetA = 0;
694     j_coord_offsetB = 0;
695     j_coord_offsetC = 0;
696     j_coord_offsetD = 0;
697
698     outeriter        = 0;
699     inneriter        = 0;
700
701     for(iidx=0;iidx<4*DIM;iidx++)
702     {
703         scratch[iidx] = 0.0;
704     }  
705
706     /* Start outer loop over neighborlists */
707     for(iidx=0; iidx<nri; iidx++)
708     {
709         /* Load shift vector for this list */
710         i_shift_offset   = DIM*shiftidx[iidx];
711
712         /* Load limits for loop over neighbors */
713         j_index_start    = jindex[iidx];
714         j_index_end      = jindex[iidx+1];
715
716         /* Get outer coordinate index */
717         inr              = iinr[iidx];
718         i_coord_offset   = DIM*inr;
719
720         /* Load i particle coords and add shift vector */
721         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
722                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
723         
724         fix0             = _mm_setzero_ps();
725         fiy0             = _mm_setzero_ps();
726         fiz0             = _mm_setzero_ps();
727         fix1             = _mm_setzero_ps();
728         fiy1             = _mm_setzero_ps();
729         fiz1             = _mm_setzero_ps();
730         fix2             = _mm_setzero_ps();
731         fiy2             = _mm_setzero_ps();
732         fiz2             = _mm_setzero_ps();
733         fix3             = _mm_setzero_ps();
734         fiy3             = _mm_setzero_ps();
735         fiz3             = _mm_setzero_ps();
736
737         /* Start inner kernel loop */
738         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
739         {
740
741             /* Get j neighbor index, and coordinate index */
742             jnrA             = jjnr[jidx];
743             jnrB             = jjnr[jidx+1];
744             jnrC             = jjnr[jidx+2];
745             jnrD             = jjnr[jidx+3];
746             j_coord_offsetA  = DIM*jnrA;
747             j_coord_offsetB  = DIM*jnrB;
748             j_coord_offsetC  = DIM*jnrC;
749             j_coord_offsetD  = DIM*jnrD;
750
751             /* load j atom coordinates */
752             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
753                                               x+j_coord_offsetC,x+j_coord_offsetD,
754                                               &jx0,&jy0,&jz0);
755
756             /* Calculate displacement vector */
757             dx00             = _mm_sub_ps(ix0,jx0);
758             dy00             = _mm_sub_ps(iy0,jy0);
759             dz00             = _mm_sub_ps(iz0,jz0);
760             dx10             = _mm_sub_ps(ix1,jx0);
761             dy10             = _mm_sub_ps(iy1,jy0);
762             dz10             = _mm_sub_ps(iz1,jz0);
763             dx20             = _mm_sub_ps(ix2,jx0);
764             dy20             = _mm_sub_ps(iy2,jy0);
765             dz20             = _mm_sub_ps(iz2,jz0);
766             dx30             = _mm_sub_ps(ix3,jx0);
767             dy30             = _mm_sub_ps(iy3,jy0);
768             dz30             = _mm_sub_ps(iz3,jz0);
769
770             /* Calculate squared distance and things based on it */
771             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
772             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
773             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
774             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
775
776             rinv10           = gmx_mm_invsqrt_ps(rsq10);
777             rinv20           = gmx_mm_invsqrt_ps(rsq20);
778             rinv30           = gmx_mm_invsqrt_ps(rsq30);
779
780             rinvsq00         = gmx_mm_inv_ps(rsq00);
781             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
782             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
783             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
784
785             /* Load parameters for j particles */
786             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
787                                                               charge+jnrC+0,charge+jnrD+0);
788             vdwjidx0A        = 2*vdwtype[jnrA+0];
789             vdwjidx0B        = 2*vdwtype[jnrB+0];
790             vdwjidx0C        = 2*vdwtype[jnrC+0];
791             vdwjidx0D        = 2*vdwtype[jnrD+0];
792
793             fjx0             = _mm_setzero_ps();
794             fjy0             = _mm_setzero_ps();
795             fjz0             = _mm_setzero_ps();
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
803                                          vdwparam+vdwioffset0+vdwjidx0B,
804                                          vdwparam+vdwioffset0+vdwjidx0C,
805                                          vdwparam+vdwioffset0+vdwjidx0D,
806                                          &c6_00,&c12_00);
807
808             /* LENNARD-JONES DISPERSION/REPULSION */
809
810             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
811             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
812
813             fscal            = fvdw;
814
815             /* Calculate temporary vectorial force */
816             tx               = _mm_mul_ps(fscal,dx00);
817             ty               = _mm_mul_ps(fscal,dy00);
818             tz               = _mm_mul_ps(fscal,dz00);
819
820             /* Update vectorial force */
821             fix0             = _mm_add_ps(fix0,tx);
822             fiy0             = _mm_add_ps(fiy0,ty);
823             fiz0             = _mm_add_ps(fiz0,tz);
824
825             fjx0             = _mm_add_ps(fjx0,tx);
826             fjy0             = _mm_add_ps(fjy0,ty);
827             fjz0             = _mm_add_ps(fjz0,tz);
828             
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             /* Compute parameters for interactions between i and j atoms */
834             qq10             = _mm_mul_ps(iq1,jq0);
835
836             /* COULOMB ELECTROSTATICS */
837             velec            = _mm_mul_ps(qq10,rinv10);
838             felec            = _mm_mul_ps(velec,rinvsq10);
839
840             fscal            = felec;
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm_mul_ps(fscal,dx10);
844             ty               = _mm_mul_ps(fscal,dy10);
845             tz               = _mm_mul_ps(fscal,dz10);
846
847             /* Update vectorial force */
848             fix1             = _mm_add_ps(fix1,tx);
849             fiy1             = _mm_add_ps(fiy1,ty);
850             fiz1             = _mm_add_ps(fiz1,tz);
851
852             fjx0             = _mm_add_ps(fjx0,tx);
853             fjy0             = _mm_add_ps(fjy0,ty);
854             fjz0             = _mm_add_ps(fjz0,tz);
855             
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             /* Compute parameters for interactions between i and j atoms */
861             qq20             = _mm_mul_ps(iq2,jq0);
862
863             /* COULOMB ELECTROSTATICS */
864             velec            = _mm_mul_ps(qq20,rinv20);
865             felec            = _mm_mul_ps(velec,rinvsq20);
866
867             fscal            = felec;
868
869             /* Calculate temporary vectorial force */
870             tx               = _mm_mul_ps(fscal,dx20);
871             ty               = _mm_mul_ps(fscal,dy20);
872             tz               = _mm_mul_ps(fscal,dz20);
873
874             /* Update vectorial force */
875             fix2             = _mm_add_ps(fix2,tx);
876             fiy2             = _mm_add_ps(fiy2,ty);
877             fiz2             = _mm_add_ps(fiz2,tz);
878
879             fjx0             = _mm_add_ps(fjx0,tx);
880             fjy0             = _mm_add_ps(fjy0,ty);
881             fjz0             = _mm_add_ps(fjz0,tz);
882             
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq30             = _mm_mul_ps(iq3,jq0);
889
890             /* COULOMB ELECTROSTATICS */
891             velec            = _mm_mul_ps(qq30,rinv30);
892             felec            = _mm_mul_ps(velec,rinvsq30);
893
894             fscal            = felec;
895
896             /* Calculate temporary vectorial force */
897             tx               = _mm_mul_ps(fscal,dx30);
898             ty               = _mm_mul_ps(fscal,dy30);
899             tz               = _mm_mul_ps(fscal,dz30);
900
901             /* Update vectorial force */
902             fix3             = _mm_add_ps(fix3,tx);
903             fiy3             = _mm_add_ps(fiy3,ty);
904             fiz3             = _mm_add_ps(fiz3,tz);
905
906             fjx0             = _mm_add_ps(fjx0,tx);
907             fjy0             = _mm_add_ps(fjy0,ty);
908             fjz0             = _mm_add_ps(fjz0,tz);
909             
910             fjptrA             = f+j_coord_offsetA;
911             fjptrB             = f+j_coord_offsetB;
912             fjptrC             = f+j_coord_offsetC;
913             fjptrD             = f+j_coord_offsetD;
914
915             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
916
917             /* Inner loop uses 108 flops */
918         }
919
920         if(jidx<j_index_end)
921         {
922
923             /* Get j neighbor index, and coordinate index */
924             jnrlistA         = jjnr[jidx];
925             jnrlistB         = jjnr[jidx+1];
926             jnrlistC         = jjnr[jidx+2];
927             jnrlistD         = jjnr[jidx+3];
928             /* Sign of each element will be negative for non-real atoms.
929              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
930              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
931              */
932             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
933             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
934             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
935             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
936             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
937             j_coord_offsetA  = DIM*jnrA;
938             j_coord_offsetB  = DIM*jnrB;
939             j_coord_offsetC  = DIM*jnrC;
940             j_coord_offsetD  = DIM*jnrD;
941
942             /* load j atom coordinates */
943             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
944                                               x+j_coord_offsetC,x+j_coord_offsetD,
945                                               &jx0,&jy0,&jz0);
946
947             /* Calculate displacement vector */
948             dx00             = _mm_sub_ps(ix0,jx0);
949             dy00             = _mm_sub_ps(iy0,jy0);
950             dz00             = _mm_sub_ps(iz0,jz0);
951             dx10             = _mm_sub_ps(ix1,jx0);
952             dy10             = _mm_sub_ps(iy1,jy0);
953             dz10             = _mm_sub_ps(iz1,jz0);
954             dx20             = _mm_sub_ps(ix2,jx0);
955             dy20             = _mm_sub_ps(iy2,jy0);
956             dz20             = _mm_sub_ps(iz2,jz0);
957             dx30             = _mm_sub_ps(ix3,jx0);
958             dy30             = _mm_sub_ps(iy3,jy0);
959             dz30             = _mm_sub_ps(iz3,jz0);
960
961             /* Calculate squared distance and things based on it */
962             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
963             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
964             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
965             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
966
967             rinv10           = gmx_mm_invsqrt_ps(rsq10);
968             rinv20           = gmx_mm_invsqrt_ps(rsq20);
969             rinv30           = gmx_mm_invsqrt_ps(rsq30);
970
971             rinvsq00         = gmx_mm_inv_ps(rsq00);
972             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
973             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
974             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
975
976             /* Load parameters for j particles */
977             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
978                                                               charge+jnrC+0,charge+jnrD+0);
979             vdwjidx0A        = 2*vdwtype[jnrA+0];
980             vdwjidx0B        = 2*vdwtype[jnrB+0];
981             vdwjidx0C        = 2*vdwtype[jnrC+0];
982             vdwjidx0D        = 2*vdwtype[jnrD+0];
983
984             fjx0             = _mm_setzero_ps();
985             fjy0             = _mm_setzero_ps();
986             fjz0             = _mm_setzero_ps();
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             /* Compute parameters for interactions between i and j atoms */
993             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
994                                          vdwparam+vdwioffset0+vdwjidx0B,
995                                          vdwparam+vdwioffset0+vdwjidx0C,
996                                          vdwparam+vdwioffset0+vdwjidx0D,
997                                          &c6_00,&c12_00);
998
999             /* LENNARD-JONES DISPERSION/REPULSION */
1000
1001             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1002             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1003
1004             fscal            = fvdw;
1005
1006             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_ps(fscal,dx00);
1010             ty               = _mm_mul_ps(fscal,dy00);
1011             tz               = _mm_mul_ps(fscal,dz00);
1012
1013             /* Update vectorial force */
1014             fix0             = _mm_add_ps(fix0,tx);
1015             fiy0             = _mm_add_ps(fiy0,ty);
1016             fiz0             = _mm_add_ps(fiz0,tz);
1017
1018             fjx0             = _mm_add_ps(fjx0,tx);
1019             fjy0             = _mm_add_ps(fjy0,ty);
1020             fjz0             = _mm_add_ps(fjz0,tz);
1021             
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq10             = _mm_mul_ps(iq1,jq0);
1028
1029             /* COULOMB ELECTROSTATICS */
1030             velec            = _mm_mul_ps(qq10,rinv10);
1031             felec            = _mm_mul_ps(velec,rinvsq10);
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_ps(fscal,dx10);
1039             ty               = _mm_mul_ps(fscal,dy10);
1040             tz               = _mm_mul_ps(fscal,dz10);
1041
1042             /* Update vectorial force */
1043             fix1             = _mm_add_ps(fix1,tx);
1044             fiy1             = _mm_add_ps(fiy1,ty);
1045             fiz1             = _mm_add_ps(fiz1,tz);
1046
1047             fjx0             = _mm_add_ps(fjx0,tx);
1048             fjy0             = _mm_add_ps(fjy0,ty);
1049             fjz0             = _mm_add_ps(fjz0,tz);
1050             
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _mm_mul_ps(iq2,jq0);
1057
1058             /* COULOMB ELECTROSTATICS */
1059             velec            = _mm_mul_ps(qq20,rinv20);
1060             felec            = _mm_mul_ps(velec,rinvsq20);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx20);
1068             ty               = _mm_mul_ps(fscal,dy20);
1069             tz               = _mm_mul_ps(fscal,dz20);
1070
1071             /* Update vectorial force */
1072             fix2             = _mm_add_ps(fix2,tx);
1073             fiy2             = _mm_add_ps(fiy2,ty);
1074             fiz2             = _mm_add_ps(fiz2,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079             
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq30             = _mm_mul_ps(iq3,jq0);
1086
1087             /* COULOMB ELECTROSTATICS */
1088             velec            = _mm_mul_ps(qq30,rinv30);
1089             felec            = _mm_mul_ps(velec,rinvsq30);
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_ps(fscal,dx30);
1097             ty               = _mm_mul_ps(fscal,dy30);
1098             tz               = _mm_mul_ps(fscal,dz30);
1099
1100             /* Update vectorial force */
1101             fix3             = _mm_add_ps(fix3,tx);
1102             fiy3             = _mm_add_ps(fiy3,ty);
1103             fiz3             = _mm_add_ps(fiz3,tz);
1104
1105             fjx0             = _mm_add_ps(fjx0,tx);
1106             fjy0             = _mm_add_ps(fjy0,ty);
1107             fjz0             = _mm_add_ps(fjz0,tz);
1108             
1109             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1110             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1111             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1112             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1113
1114             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1115
1116             /* Inner loop uses 108 flops */
1117         }
1118
1119         /* End of innermost loop */
1120
1121         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1122                                               f+i_coord_offset,fshift+i_shift_offset);
1123
1124         /* Increment number of inner iterations */
1125         inneriter                  += j_index_end - j_index_start;
1126
1127         /* Outer loop uses 24 flops */
1128     }
1129
1130     /* Increment number of outer iterations */
1131     outeriter        += nri;
1132
1133     /* Update outer/inner flops */
1134
1135     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1136 }