Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     nvdwtype         = fr->ntype;
97     vdwparam         = fr->nbfp;
98     vdwtype          = mdatoms->typeA;
99
100     /* Avoid stupid compiler warnings */
101     jnrA = jnrB = jnrC = jnrD = 0;
102     j_coord_offsetA = 0;
103     j_coord_offsetB = 0;
104     j_coord_offsetC = 0;
105     j_coord_offsetD = 0;
106
107     outeriter        = 0;
108     inneriter        = 0;
109
110     /* Start outer loop over neighborlists */
111     for(iidx=0; iidx<nri; iidx++)
112     {
113         /* Load shift vector for this list */
114         i_shift_offset   = DIM*shiftidx[iidx];
115         shX              = shiftvec[i_shift_offset+XX];
116         shY              = shiftvec[i_shift_offset+YY];
117         shZ              = shiftvec[i_shift_offset+ZZ];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
129         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
130         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
131
132         fix0             = _mm_setzero_ps();
133         fiy0             = _mm_setzero_ps();
134         fiz0             = _mm_setzero_ps();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_ps();
142         vvdwsum          = _mm_setzero_ps();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             jnrC             = jjnr[jidx+2];
152             jnrD             = jjnr[jidx+3];
153
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156             j_coord_offsetC  = DIM*jnrC;
157             j_coord_offsetD  = DIM*jnrD;
158
159             /* load j atom coordinates */
160             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
161                                               x+j_coord_offsetC,x+j_coord_offsetD,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm_sub_ps(ix0,jx0);
166             dy00             = _mm_sub_ps(iy0,jy0);
167             dz00             = _mm_sub_ps(iz0,jz0);
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
171
172             rinv00           = gmx_mm_invsqrt_ps(rsq00);
173
174             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
175
176             /* Load parameters for j particles */
177             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
178                                                               charge+jnrC+0,charge+jnrD+0);
179             vdwjidx0A        = 2*vdwtype[jnrA+0];
180             vdwjidx0B        = 2*vdwtype[jnrB+0];
181             vdwjidx0C        = 2*vdwtype[jnrC+0];
182             vdwjidx0D        = 2*vdwtype[jnrD+0];
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             /* Compute parameters for interactions between i and j atoms */
189             qq00             = _mm_mul_ps(iq0,jq0);
190             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,
192                                          vdwparam+vdwioffset0+vdwjidx0C,
193                                          vdwparam+vdwioffset0+vdwjidx0D,
194                                          &c6_00,&c12_00);
195
196             /* COULOMB ELECTROSTATICS */
197             velec            = _mm_mul_ps(qq00,rinv00);
198             felec            = _mm_mul_ps(velec,rinvsq00);
199
200             /* LENNARD-JONES DISPERSION/REPULSION */
201
202             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
203             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
204             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
205             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
206             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
207
208             /* Update potential sum for this i atom from the interaction with this j atom. */
209             velecsum         = _mm_add_ps(velecsum,velec);
210             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
211
212             fscal            = _mm_add_ps(felec,fvdw);
213
214             /* Calculate temporary vectorial force */
215             tx               = _mm_mul_ps(fscal,dx00);
216             ty               = _mm_mul_ps(fscal,dy00);
217             tz               = _mm_mul_ps(fscal,dz00);
218
219             /* Update vectorial force */
220             fix0             = _mm_add_ps(fix0,tx);
221             fiy0             = _mm_add_ps(fiy0,ty);
222             fiz0             = _mm_add_ps(fiz0,tz);
223
224             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
225                                                    f+j_coord_offsetC,f+j_coord_offsetD,
226                                                    tx,ty,tz);
227
228             /* Inner loop uses 40 flops */
229         }
230
231         if(jidx<j_index_end)
232         {
233
234             /* Get j neighbor index, and coordinate index */
235             jnrA             = jjnr[jidx];
236             jnrB             = jjnr[jidx+1];
237             jnrC             = jjnr[jidx+2];
238             jnrD             = jjnr[jidx+3];
239
240             /* Sign of each element will be negative for non-real atoms.
241              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
242              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
243              */
244             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
245             jnrA       = (jnrA>=0) ? jnrA : 0;
246             jnrB       = (jnrB>=0) ? jnrB : 0;
247             jnrC       = (jnrC>=0) ? jnrC : 0;
248             jnrD       = (jnrD>=0) ? jnrD : 0;
249
250             j_coord_offsetA  = DIM*jnrA;
251             j_coord_offsetB  = DIM*jnrB;
252             j_coord_offsetC  = DIM*jnrC;
253             j_coord_offsetD  = DIM*jnrD;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
257                                               x+j_coord_offsetC,x+j_coord_offsetD,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_ps(ix0,jx0);
262             dy00             = _mm_sub_ps(iy0,jy0);
263             dz00             = _mm_sub_ps(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
267
268             rinv00           = gmx_mm_invsqrt_ps(rsq00);
269
270             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
274                                                               charge+jnrC+0,charge+jnrD+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276             vdwjidx0B        = 2*vdwtype[jnrB+0];
277             vdwjidx0C        = 2*vdwtype[jnrC+0];
278             vdwjidx0D        = 2*vdwtype[jnrD+0];
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq00             = _mm_mul_ps(iq0,jq0);
286             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
287                                          vdwparam+vdwioffset0+vdwjidx0B,
288                                          vdwparam+vdwioffset0+vdwjidx0C,
289                                          vdwparam+vdwioffset0+vdwjidx0D,
290                                          &c6_00,&c12_00);
291
292             /* COULOMB ELECTROSTATICS */
293             velec            = _mm_mul_ps(qq00,rinv00);
294             felec            = _mm_mul_ps(velec,rinvsq00);
295
296             /* LENNARD-JONES DISPERSION/REPULSION */
297
298             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
299             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
300             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
301             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
302             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velec            = _mm_andnot_ps(dummy_mask,velec);
306             velecsum         = _mm_add_ps(velecsum,velec);
307             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
308             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
309
310             fscal            = _mm_add_ps(felec,fvdw);
311
312             fscal            = _mm_andnot_ps(dummy_mask,fscal);
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_ps(fscal,dx00);
316             ty               = _mm_mul_ps(fscal,dy00);
317             tz               = _mm_mul_ps(fscal,dz00);
318
319             /* Update vectorial force */
320             fix0             = _mm_add_ps(fix0,tx);
321             fiy0             = _mm_add_ps(fiy0,ty);
322             fiz0             = _mm_add_ps(fiz0,tz);
323
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
325                                                    f+j_coord_offsetC,f+j_coord_offsetD,
326                                                    tx,ty,tz);
327
328             /* Inner loop uses 40 flops */
329         }
330
331         /* End of innermost loop */
332
333         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
334                                               f+i_coord_offset,fshift+i_shift_offset);
335
336         ggid                        = gid[iidx];
337         /* Update potential energies */
338         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
339         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
340
341         /* Increment number of inner iterations */
342         inneriter                  += j_index_end - j_index_start;
343
344         /* Outer loop uses 12 flops */
345     }
346
347     /* Increment number of outer iterations */
348     outeriter        += nri;
349
350     /* Update outer/inner flops */
351
352     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*40);
353 }
354 /*
355  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
356  * Electrostatics interaction: Coulomb
357  * VdW interaction:            LennardJones
358  * Geometry:                   Particle-Particle
359  * Calculate force/pot:        Force
360  */
361 void
362 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
363                     (t_nblist * gmx_restrict                nlist,
364                      rvec * gmx_restrict                    xx,
365                      rvec * gmx_restrict                    ff,
366                      t_forcerec * gmx_restrict              fr,
367                      t_mdatoms * gmx_restrict               mdatoms,
368                      nb_kernel_data_t * gmx_restrict        kernel_data,
369                      t_nrnb * gmx_restrict                  nrnb)
370 {
371     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
372      * just 0 for non-waters.
373      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
374      * jnr indices corresponding to data put in the four positions in the SIMD register.
375      */
376     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
377     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
378     int              jnrA,jnrB,jnrC,jnrD;
379     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
380     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
381     real             shX,shY,shZ,rcutoff_scalar;
382     real             *shiftvec,*fshift,*x,*f;
383     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
384     int              vdwioffset0;
385     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
386     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
387     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
388     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
389     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
390     real             *charge;
391     int              nvdwtype;
392     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
393     int              *vdwtype;
394     real             *vdwparam;
395     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
396     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
397     __m128           dummy_mask,cutoff_mask;
398     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
399     __m128           one     = _mm_set1_ps(1.0);
400     __m128           two     = _mm_set1_ps(2.0);
401     x                = xx[0];
402     f                = ff[0];
403
404     nri              = nlist->nri;
405     iinr             = nlist->iinr;
406     jindex           = nlist->jindex;
407     jjnr             = nlist->jjnr;
408     shiftidx         = nlist->shift;
409     gid              = nlist->gid;
410     shiftvec         = fr->shift_vec[0];
411     fshift           = fr->fshift[0];
412     facel            = _mm_set1_ps(fr->epsfac);
413     charge           = mdatoms->chargeA;
414     nvdwtype         = fr->ntype;
415     vdwparam         = fr->nbfp;
416     vdwtype          = mdatoms->typeA;
417
418     /* Avoid stupid compiler warnings */
419     jnrA = jnrB = jnrC = jnrD = 0;
420     j_coord_offsetA = 0;
421     j_coord_offsetB = 0;
422     j_coord_offsetC = 0;
423     j_coord_offsetD = 0;
424
425     outeriter        = 0;
426     inneriter        = 0;
427
428     /* Start outer loop over neighborlists */
429     for(iidx=0; iidx<nri; iidx++)
430     {
431         /* Load shift vector for this list */
432         i_shift_offset   = DIM*shiftidx[iidx];
433         shX              = shiftvec[i_shift_offset+XX];
434         shY              = shiftvec[i_shift_offset+YY];
435         shZ              = shiftvec[i_shift_offset+ZZ];
436
437         /* Load limits for loop over neighbors */
438         j_index_start    = jindex[iidx];
439         j_index_end      = jindex[iidx+1];
440
441         /* Get outer coordinate index */
442         inr              = iinr[iidx];
443         i_coord_offset   = DIM*inr;
444
445         /* Load i particle coords and add shift vector */
446         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
447         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
448         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
449
450         fix0             = _mm_setzero_ps();
451         fiy0             = _mm_setzero_ps();
452         fiz0             = _mm_setzero_ps();
453
454         /* Load parameters for i particles */
455         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
456         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
457
458         /* Start inner kernel loop */
459         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrA             = jjnr[jidx];
464             jnrB             = jjnr[jidx+1];
465             jnrC             = jjnr[jidx+2];
466             jnrD             = jjnr[jidx+3];
467
468             j_coord_offsetA  = DIM*jnrA;
469             j_coord_offsetB  = DIM*jnrB;
470             j_coord_offsetC  = DIM*jnrC;
471             j_coord_offsetD  = DIM*jnrD;
472
473             /* load j atom coordinates */
474             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
475                                               x+j_coord_offsetC,x+j_coord_offsetD,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_ps(ix0,jx0);
480             dy00             = _mm_sub_ps(iy0,jy0);
481             dz00             = _mm_sub_ps(iz0,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
485
486             rinv00           = gmx_mm_invsqrt_ps(rsq00);
487
488             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
489
490             /* Load parameters for j particles */
491             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
492                                                               charge+jnrC+0,charge+jnrD+0);
493             vdwjidx0A        = 2*vdwtype[jnrA+0];
494             vdwjidx0B        = 2*vdwtype[jnrB+0];
495             vdwjidx0C        = 2*vdwtype[jnrC+0];
496             vdwjidx0D        = 2*vdwtype[jnrD+0];
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm_mul_ps(iq0,jq0);
504             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,
506                                          vdwparam+vdwioffset0+vdwjidx0C,
507                                          vdwparam+vdwioffset0+vdwjidx0D,
508                                          &c6_00,&c12_00);
509
510             /* COULOMB ELECTROSTATICS */
511             velec            = _mm_mul_ps(qq00,rinv00);
512             felec            = _mm_mul_ps(velec,rinvsq00);
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
518
519             fscal            = _mm_add_ps(felec,fvdw);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_ps(fscal,dx00);
523             ty               = _mm_mul_ps(fscal,dy00);
524             tz               = _mm_mul_ps(fscal,dz00);
525
526             /* Update vectorial force */
527             fix0             = _mm_add_ps(fix0,tx);
528             fiy0             = _mm_add_ps(fiy0,ty);
529             fiz0             = _mm_add_ps(fiz0,tz);
530
531             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
532                                                    f+j_coord_offsetC,f+j_coord_offsetD,
533                                                    tx,ty,tz);
534
535             /* Inner loop uses 34 flops */
536         }
537
538         if(jidx<j_index_end)
539         {
540
541             /* Get j neighbor index, and coordinate index */
542             jnrA             = jjnr[jidx];
543             jnrB             = jjnr[jidx+1];
544             jnrC             = jjnr[jidx+2];
545             jnrD             = jjnr[jidx+3];
546
547             /* Sign of each element will be negative for non-real atoms.
548              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
549              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
550              */
551             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
552             jnrA       = (jnrA>=0) ? jnrA : 0;
553             jnrB       = (jnrB>=0) ? jnrB : 0;
554             jnrC       = (jnrC>=0) ? jnrC : 0;
555             jnrD       = (jnrD>=0) ? jnrD : 0;
556
557             j_coord_offsetA  = DIM*jnrA;
558             j_coord_offsetB  = DIM*jnrB;
559             j_coord_offsetC  = DIM*jnrC;
560             j_coord_offsetD  = DIM*jnrD;
561
562             /* load j atom coordinates */
563             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
564                                               x+j_coord_offsetC,x+j_coord_offsetD,
565                                               &jx0,&jy0,&jz0);
566
567             /* Calculate displacement vector */
568             dx00             = _mm_sub_ps(ix0,jx0);
569             dy00             = _mm_sub_ps(iy0,jy0);
570             dz00             = _mm_sub_ps(iz0,jz0);
571
572             /* Calculate squared distance and things based on it */
573             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
574
575             rinv00           = gmx_mm_invsqrt_ps(rsq00);
576
577             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
578
579             /* Load parameters for j particles */
580             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
581                                                               charge+jnrC+0,charge+jnrD+0);
582             vdwjidx0A        = 2*vdwtype[jnrA+0];
583             vdwjidx0B        = 2*vdwtype[jnrB+0];
584             vdwjidx0C        = 2*vdwtype[jnrC+0];
585             vdwjidx0D        = 2*vdwtype[jnrD+0];
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm_mul_ps(iq0,jq0);
593             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
594                                          vdwparam+vdwioffset0+vdwjidx0B,
595                                          vdwparam+vdwioffset0+vdwjidx0C,
596                                          vdwparam+vdwioffset0+vdwjidx0D,
597                                          &c6_00,&c12_00);
598
599             /* COULOMB ELECTROSTATICS */
600             velec            = _mm_mul_ps(qq00,rinv00);
601             felec            = _mm_mul_ps(velec,rinvsq00);
602
603             /* LENNARD-JONES DISPERSION/REPULSION */
604
605             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
606             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
607
608             fscal            = _mm_add_ps(felec,fvdw);
609
610             fscal            = _mm_andnot_ps(dummy_mask,fscal);
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm_mul_ps(fscal,dx00);
614             ty               = _mm_mul_ps(fscal,dy00);
615             tz               = _mm_mul_ps(fscal,dz00);
616
617             /* Update vectorial force */
618             fix0             = _mm_add_ps(fix0,tx);
619             fiy0             = _mm_add_ps(fiy0,ty);
620             fiz0             = _mm_add_ps(fiz0,tz);
621
622             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
623                                                    f+j_coord_offsetC,f+j_coord_offsetD,
624                                                    tx,ty,tz);
625
626             /* Inner loop uses 34 flops */
627         }
628
629         /* End of innermost loop */
630
631         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
632                                               f+i_coord_offset,fshift+i_shift_offset);
633
634         /* Increment number of inner iterations */
635         inneriter                  += j_index_end - j_index_start;
636
637         /* Outer loop uses 10 flops */
638     }
639
640     /* Increment number of outer iterations */
641     outeriter        += nri;
642
643     /* Update outer/inner flops */
644
645     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*34);
646 }