Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128           dummy_mask,cutoff_mask;
90     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91     __m128           one     = _mm_set1_ps(1.0);
92     __m128           two     = _mm_set1_ps(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_ps(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
116     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
117     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135         shX              = shiftvec[i_shift_offset+XX];
136         shY              = shiftvec[i_shift_offset+YY];
137         shZ              = shiftvec[i_shift_offset+ZZ];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
149         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
150         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
151         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
152         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
153         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
154         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
155         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
156         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
157
158         fix0             = _mm_setzero_ps();
159         fiy0             = _mm_setzero_ps();
160         fiz0             = _mm_setzero_ps();
161         fix1             = _mm_setzero_ps();
162         fiy1             = _mm_setzero_ps();
163         fiz1             = _mm_setzero_ps();
164         fix2             = _mm_setzero_ps();
165         fiy2             = _mm_setzero_ps();
166         fiz2             = _mm_setzero_ps();
167
168         /* Reset potential sums */
169         velecsum         = _mm_setzero_ps();
170         vvdwsum          = _mm_setzero_ps();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209             rinv10           = gmx_mm_invsqrt_ps(rsq10);
210             rinv20           = gmx_mm_invsqrt_ps(rsq20);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
214             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm_mul_ps(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm_mul_ps(iq0,jq0);
232             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,
234                                          vdwparam+vdwioffset0+vdwjidx0C,
235                                          vdwparam+vdwioffset0+vdwjidx0D,
236                                          &c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm_mul_ps(r00,vftabscale);
240             vfitab           = _mm_cvttps_epi32(rt);
241             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
242             vfitab           = _mm_slli_epi32(vfitab,3);
243
244             /* COULOMB ELECTROSTATICS */
245             velec            = _mm_mul_ps(qq00,rinv00);
246             felec            = _mm_mul_ps(velec,rinvsq00);
247
248             /* CUBIC SPLINE TABLE DISPERSION */
249             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
250             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
251             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
252             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
253             _MM_TRANSPOSE4_PS(Y,F,G,H);
254             Heps             = _mm_mul_ps(vfeps,H);
255             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
256             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
257             vvdw6            = _mm_mul_ps(c6_00,VV);
258             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
259             fvdw6            = _mm_mul_ps(c6_00,FF);
260
261             /* CUBIC SPLINE TABLE REPULSION */
262             vfitab           = _mm_add_epi32(vfitab,ifour);
263             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
265             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
266             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
267             _MM_TRANSPOSE4_PS(Y,F,G,H);
268             Heps             = _mm_mul_ps(vfeps,H);
269             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
270             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
271             vvdw12           = _mm_mul_ps(c12_00,VV);
272             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
273             fvdw12           = _mm_mul_ps(c12_00,FF);
274             vvdw             = _mm_add_ps(vvdw12,vvdw6);
275             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velecsum         = _mm_add_ps(velecsum,velec);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_ps(fscal,dx00);
285             ty               = _mm_mul_ps(fscal,dy00);
286             tz               = _mm_mul_ps(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_ps(fix0,tx);
290             fiy0             = _mm_add_ps(fiy0,ty);
291             fiz0             = _mm_add_ps(fiz0,tz);
292
293             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
294                                                    f+j_coord_offsetC,f+j_coord_offsetD,
295                                                    tx,ty,tz);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_ps(iq1,jq0);
303
304             /* COULOMB ELECTROSTATICS */
305             velec            = _mm_mul_ps(qq10,rinv10);
306             felec            = _mm_mul_ps(velec,rinvsq10);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_ps(fscal,dx10);
315             ty               = _mm_mul_ps(fscal,dy10);
316             tz               = _mm_mul_ps(fscal,dz10);
317
318             /* Update vectorial force */
319             fix1             = _mm_add_ps(fix1,tx);
320             fiy1             = _mm_add_ps(fiy1,ty);
321             fiz1             = _mm_add_ps(fiz1,tz);
322
323             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
324                                                    f+j_coord_offsetC,f+j_coord_offsetD,
325                                                    tx,ty,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_ps(iq2,jq0);
333
334             /* COULOMB ELECTROSTATICS */
335             velec            = _mm_mul_ps(qq20,rinv20);
336             felec            = _mm_mul_ps(velec,rinvsq20);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_ps(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_ps(fscal,dx20);
345             ty               = _mm_mul_ps(fscal,dy20);
346             tz               = _mm_mul_ps(fscal,dz20);
347
348             /* Update vectorial force */
349             fix2             = _mm_add_ps(fix2,tx);
350             fiy2             = _mm_add_ps(fiy2,ty);
351             fiz2             = _mm_add_ps(fiz2,tz);
352
353             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
354                                                    f+j_coord_offsetC,f+j_coord_offsetD,
355                                                    tx,ty,tz);
356
357             /* Inner loop uses 119 flops */
358         }
359
360         if(jidx<j_index_end)
361         {
362
363             /* Get j neighbor index, and coordinate index */
364             jnrA             = jjnr[jidx];
365             jnrB             = jjnr[jidx+1];
366             jnrC             = jjnr[jidx+2];
367             jnrD             = jjnr[jidx+3];
368
369             /* Sign of each element will be negative for non-real atoms.
370              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
371              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
372              */
373             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
374             jnrA       = (jnrA>=0) ? jnrA : 0;
375             jnrB       = (jnrB>=0) ? jnrB : 0;
376             jnrC       = (jnrC>=0) ? jnrC : 0;
377             jnrD       = (jnrD>=0) ? jnrD : 0;
378
379             j_coord_offsetA  = DIM*jnrA;
380             j_coord_offsetB  = DIM*jnrB;
381             j_coord_offsetC  = DIM*jnrC;
382             j_coord_offsetD  = DIM*jnrD;
383
384             /* load j atom coordinates */
385             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
386                                               x+j_coord_offsetC,x+j_coord_offsetD,
387                                               &jx0,&jy0,&jz0);
388
389             /* Calculate displacement vector */
390             dx00             = _mm_sub_ps(ix0,jx0);
391             dy00             = _mm_sub_ps(iy0,jy0);
392             dz00             = _mm_sub_ps(iz0,jz0);
393             dx10             = _mm_sub_ps(ix1,jx0);
394             dy10             = _mm_sub_ps(iy1,jy0);
395             dz10             = _mm_sub_ps(iz1,jz0);
396             dx20             = _mm_sub_ps(ix2,jx0);
397             dy20             = _mm_sub_ps(iy2,jy0);
398             dz20             = _mm_sub_ps(iz2,jz0);
399
400             /* Calculate squared distance and things based on it */
401             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
402             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
403             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
404
405             rinv00           = gmx_mm_invsqrt_ps(rsq00);
406             rinv10           = gmx_mm_invsqrt_ps(rsq10);
407             rinv20           = gmx_mm_invsqrt_ps(rsq20);
408
409             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
410             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
411             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
412
413             /* Load parameters for j particles */
414             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
415                                                               charge+jnrC+0,charge+jnrD+0);
416             vdwjidx0A        = 2*vdwtype[jnrA+0];
417             vdwjidx0B        = 2*vdwtype[jnrB+0];
418             vdwjidx0C        = 2*vdwtype[jnrC+0];
419             vdwjidx0D        = 2*vdwtype[jnrD+0];
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r00              = _mm_mul_ps(rsq00,rinv00);
426             r00              = _mm_andnot_ps(dummy_mask,r00);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq00             = _mm_mul_ps(iq0,jq0);
430             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
431                                          vdwparam+vdwioffset0+vdwjidx0B,
432                                          vdwparam+vdwioffset0+vdwjidx0C,
433                                          vdwparam+vdwioffset0+vdwjidx0D,
434                                          &c6_00,&c12_00);
435
436             /* Calculate table index by multiplying r with table scale and truncate to integer */
437             rt               = _mm_mul_ps(r00,vftabscale);
438             vfitab           = _mm_cvttps_epi32(rt);
439             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
440             vfitab           = _mm_slli_epi32(vfitab,3);
441
442             /* COULOMB ELECTROSTATICS */
443             velec            = _mm_mul_ps(qq00,rinv00);
444             felec            = _mm_mul_ps(velec,rinvsq00);
445
446             /* CUBIC SPLINE TABLE DISPERSION */
447             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
448             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
449             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
450             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
451             _MM_TRANSPOSE4_PS(Y,F,G,H);
452             Heps             = _mm_mul_ps(vfeps,H);
453             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
454             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
455             vvdw6            = _mm_mul_ps(c6_00,VV);
456             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
457             fvdw6            = _mm_mul_ps(c6_00,FF);
458
459             /* CUBIC SPLINE TABLE REPULSION */
460             vfitab           = _mm_add_epi32(vfitab,ifour);
461             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
462             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
463             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
464             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
465             _MM_TRANSPOSE4_PS(Y,F,G,H);
466             Heps             = _mm_mul_ps(vfeps,H);
467             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
468             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
469             vvdw12           = _mm_mul_ps(c12_00,VV);
470             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
471             fvdw12           = _mm_mul_ps(c12_00,FF);
472             vvdw             = _mm_add_ps(vvdw12,vvdw6);
473             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_andnot_ps(dummy_mask,velec);
477             velecsum         = _mm_add_ps(velecsum,velec);
478             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
479             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
480
481             fscal            = _mm_add_ps(felec,fvdw);
482
483             fscal            = _mm_andnot_ps(dummy_mask,fscal);
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm_mul_ps(fscal,dx00);
487             ty               = _mm_mul_ps(fscal,dy00);
488             tz               = _mm_mul_ps(fscal,dz00);
489
490             /* Update vectorial force */
491             fix0             = _mm_add_ps(fix0,tx);
492             fiy0             = _mm_add_ps(fiy0,ty);
493             fiz0             = _mm_add_ps(fiz0,tz);
494
495             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
496                                                    f+j_coord_offsetC,f+j_coord_offsetD,
497                                                    tx,ty,tz);
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq10             = _mm_mul_ps(iq1,jq0);
505
506             /* COULOMB ELECTROSTATICS */
507             velec            = _mm_mul_ps(qq10,rinv10);
508             felec            = _mm_mul_ps(velec,rinvsq10);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm_andnot_ps(dummy_mask,velec);
512             velecsum         = _mm_add_ps(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm_andnot_ps(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_ps(fscal,dx10);
520             ty               = _mm_mul_ps(fscal,dy10);
521             tz               = _mm_mul_ps(fscal,dz10);
522
523             /* Update vectorial force */
524             fix1             = _mm_add_ps(fix1,tx);
525             fiy1             = _mm_add_ps(fiy1,ty);
526             fiz1             = _mm_add_ps(fiz1,tz);
527
528             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
529                                                    f+j_coord_offsetC,f+j_coord_offsetD,
530                                                    tx,ty,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq20             = _mm_mul_ps(iq2,jq0);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm_mul_ps(qq20,rinv20);
541             felec            = _mm_mul_ps(velec,rinvsq20);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_andnot_ps(dummy_mask,velec);
545             velecsum         = _mm_add_ps(velecsum,velec);
546
547             fscal            = felec;
548
549             fscal            = _mm_andnot_ps(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm_mul_ps(fscal,dx20);
553             ty               = _mm_mul_ps(fscal,dy20);
554             tz               = _mm_mul_ps(fscal,dz20);
555
556             /* Update vectorial force */
557             fix2             = _mm_add_ps(fix2,tx);
558             fiy2             = _mm_add_ps(fiy2,ty);
559             fiz2             = _mm_add_ps(fiz2,tz);
560
561             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
562                                                    f+j_coord_offsetC,f+j_coord_offsetD,
563                                                    tx,ty,tz);
564
565             /* Inner loop uses 120 flops */
566         }
567
568         /* End of innermost loop */
569
570         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
571                                               f+i_coord_offset,fshift+i_shift_offset);
572
573         ggid                        = gid[iidx];
574         /* Update potential energies */
575         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
576         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
577
578         /* Increment number of inner iterations */
579         inneriter                  += j_index_end - j_index_start;
580
581         /* Outer loop uses 29 flops */
582     }
583
584     /* Increment number of outer iterations */
585     outeriter        += nri;
586
587     /* Update outer/inner flops */
588
589     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*120);
590 }
591 /*
592  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_single
593  * Electrostatics interaction: Coulomb
594  * VdW interaction:            CubicSplineTable
595  * Geometry:                   Water3-Particle
596  * Calculate force/pot:        Force
597  */
598 void
599 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_single
600                     (t_nblist * gmx_restrict                nlist,
601                      rvec * gmx_restrict                    xx,
602                      rvec * gmx_restrict                    ff,
603                      t_forcerec * gmx_restrict              fr,
604                      t_mdatoms * gmx_restrict               mdatoms,
605                      nb_kernel_data_t * gmx_restrict        kernel_data,
606                      t_nrnb * gmx_restrict                  nrnb)
607 {
608     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
609      * just 0 for non-waters.
610      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
611      * jnr indices corresponding to data put in the four positions in the SIMD register.
612      */
613     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
614     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
615     int              jnrA,jnrB,jnrC,jnrD;
616     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
617     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
618     real             shX,shY,shZ,rcutoff_scalar;
619     real             *shiftvec,*fshift,*x,*f;
620     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
621     int              vdwioffset0;
622     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
623     int              vdwioffset1;
624     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
625     int              vdwioffset2;
626     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
627     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
628     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
629     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
630     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
631     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
632     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
633     real             *charge;
634     int              nvdwtype;
635     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
636     int              *vdwtype;
637     real             *vdwparam;
638     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
639     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
640     __m128i          vfitab;
641     __m128i          ifour       = _mm_set1_epi32(4);
642     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
643     real             *vftab;
644     __m128           dummy_mask,cutoff_mask;
645     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
646     __m128           one     = _mm_set1_ps(1.0);
647     __m128           two     = _mm_set1_ps(2.0);
648     x                = xx[0];
649     f                = ff[0];
650
651     nri              = nlist->nri;
652     iinr             = nlist->iinr;
653     jindex           = nlist->jindex;
654     jjnr             = nlist->jjnr;
655     shiftidx         = nlist->shift;
656     gid              = nlist->gid;
657     shiftvec         = fr->shift_vec[0];
658     fshift           = fr->fshift[0];
659     facel            = _mm_set1_ps(fr->epsfac);
660     charge           = mdatoms->chargeA;
661     nvdwtype         = fr->ntype;
662     vdwparam         = fr->nbfp;
663     vdwtype          = mdatoms->typeA;
664
665     vftab            = kernel_data->table_vdw->data;
666     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
667
668     /* Setup water-specific parameters */
669     inr              = nlist->iinr[0];
670     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
671     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
672     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
673     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
674
675     /* Avoid stupid compiler warnings */
676     jnrA = jnrB = jnrC = jnrD = 0;
677     j_coord_offsetA = 0;
678     j_coord_offsetB = 0;
679     j_coord_offsetC = 0;
680     j_coord_offsetD = 0;
681
682     outeriter        = 0;
683     inneriter        = 0;
684
685     /* Start outer loop over neighborlists */
686     for(iidx=0; iidx<nri; iidx++)
687     {
688         /* Load shift vector for this list */
689         i_shift_offset   = DIM*shiftidx[iidx];
690         shX              = shiftvec[i_shift_offset+XX];
691         shY              = shiftvec[i_shift_offset+YY];
692         shZ              = shiftvec[i_shift_offset+ZZ];
693
694         /* Load limits for loop over neighbors */
695         j_index_start    = jindex[iidx];
696         j_index_end      = jindex[iidx+1];
697
698         /* Get outer coordinate index */
699         inr              = iinr[iidx];
700         i_coord_offset   = DIM*inr;
701
702         /* Load i particle coords and add shift vector */
703         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
704         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
705         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
706         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
707         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
708         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
709         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
710         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
711         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
712
713         fix0             = _mm_setzero_ps();
714         fiy0             = _mm_setzero_ps();
715         fiz0             = _mm_setzero_ps();
716         fix1             = _mm_setzero_ps();
717         fiy1             = _mm_setzero_ps();
718         fiz1             = _mm_setzero_ps();
719         fix2             = _mm_setzero_ps();
720         fiy2             = _mm_setzero_ps();
721         fiz2             = _mm_setzero_ps();
722
723         /* Start inner kernel loop */
724         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
725         {
726
727             /* Get j neighbor index, and coordinate index */
728             jnrA             = jjnr[jidx];
729             jnrB             = jjnr[jidx+1];
730             jnrC             = jjnr[jidx+2];
731             jnrD             = jjnr[jidx+3];
732
733             j_coord_offsetA  = DIM*jnrA;
734             j_coord_offsetB  = DIM*jnrB;
735             j_coord_offsetC  = DIM*jnrC;
736             j_coord_offsetD  = DIM*jnrD;
737
738             /* load j atom coordinates */
739             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
740                                               x+j_coord_offsetC,x+j_coord_offsetD,
741                                               &jx0,&jy0,&jz0);
742
743             /* Calculate displacement vector */
744             dx00             = _mm_sub_ps(ix0,jx0);
745             dy00             = _mm_sub_ps(iy0,jy0);
746             dz00             = _mm_sub_ps(iz0,jz0);
747             dx10             = _mm_sub_ps(ix1,jx0);
748             dy10             = _mm_sub_ps(iy1,jy0);
749             dz10             = _mm_sub_ps(iz1,jz0);
750             dx20             = _mm_sub_ps(ix2,jx0);
751             dy20             = _mm_sub_ps(iy2,jy0);
752             dz20             = _mm_sub_ps(iz2,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
756             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
757             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
758
759             rinv00           = gmx_mm_invsqrt_ps(rsq00);
760             rinv10           = gmx_mm_invsqrt_ps(rsq10);
761             rinv20           = gmx_mm_invsqrt_ps(rsq20);
762
763             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
764             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
765             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
766
767             /* Load parameters for j particles */
768             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
769                                                               charge+jnrC+0,charge+jnrD+0);
770             vdwjidx0A        = 2*vdwtype[jnrA+0];
771             vdwjidx0B        = 2*vdwtype[jnrB+0];
772             vdwjidx0C        = 2*vdwtype[jnrC+0];
773             vdwjidx0D        = 2*vdwtype[jnrD+0];
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             r00              = _mm_mul_ps(rsq00,rinv00);
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq00             = _mm_mul_ps(iq0,jq0);
783             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
784                                          vdwparam+vdwioffset0+vdwjidx0B,
785                                          vdwparam+vdwioffset0+vdwjidx0C,
786                                          vdwparam+vdwioffset0+vdwjidx0D,
787                                          &c6_00,&c12_00);
788
789             /* Calculate table index by multiplying r with table scale and truncate to integer */
790             rt               = _mm_mul_ps(r00,vftabscale);
791             vfitab           = _mm_cvttps_epi32(rt);
792             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
793             vfitab           = _mm_slli_epi32(vfitab,3);
794
795             /* COULOMB ELECTROSTATICS */
796             velec            = _mm_mul_ps(qq00,rinv00);
797             felec            = _mm_mul_ps(velec,rinvsq00);
798
799             /* CUBIC SPLINE TABLE DISPERSION */
800             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
801             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
802             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
803             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
804             _MM_TRANSPOSE4_PS(Y,F,G,H);
805             Heps             = _mm_mul_ps(vfeps,H);
806             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
807             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
808             fvdw6            = _mm_mul_ps(c6_00,FF);
809
810             /* CUBIC SPLINE TABLE REPULSION */
811             vfitab           = _mm_add_epi32(vfitab,ifour);
812             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
813             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
814             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
815             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
816             _MM_TRANSPOSE4_PS(Y,F,G,H);
817             Heps             = _mm_mul_ps(vfeps,H);
818             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
819             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
820             fvdw12           = _mm_mul_ps(c12_00,FF);
821             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
822
823             fscal            = _mm_add_ps(felec,fvdw);
824
825             /* Calculate temporary vectorial force */
826             tx               = _mm_mul_ps(fscal,dx00);
827             ty               = _mm_mul_ps(fscal,dy00);
828             tz               = _mm_mul_ps(fscal,dz00);
829
830             /* Update vectorial force */
831             fix0             = _mm_add_ps(fix0,tx);
832             fiy0             = _mm_add_ps(fiy0,ty);
833             fiz0             = _mm_add_ps(fiz0,tz);
834
835             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
836                                                    f+j_coord_offsetC,f+j_coord_offsetD,
837                                                    tx,ty,tz);
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             /* Compute parameters for interactions between i and j atoms */
844             qq10             = _mm_mul_ps(iq1,jq0);
845
846             /* COULOMB ELECTROSTATICS */
847             velec            = _mm_mul_ps(qq10,rinv10);
848             felec            = _mm_mul_ps(velec,rinvsq10);
849
850             fscal            = felec;
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm_mul_ps(fscal,dx10);
854             ty               = _mm_mul_ps(fscal,dy10);
855             tz               = _mm_mul_ps(fscal,dz10);
856
857             /* Update vectorial force */
858             fix1             = _mm_add_ps(fix1,tx);
859             fiy1             = _mm_add_ps(fiy1,ty);
860             fiz1             = _mm_add_ps(fiz1,tz);
861
862             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
863                                                    f+j_coord_offsetC,f+j_coord_offsetD,
864                                                    tx,ty,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq20             = _mm_mul_ps(iq2,jq0);
872
873             /* COULOMB ELECTROSTATICS */
874             velec            = _mm_mul_ps(qq20,rinv20);
875             felec            = _mm_mul_ps(velec,rinvsq20);
876
877             fscal            = felec;
878
879             /* Calculate temporary vectorial force */
880             tx               = _mm_mul_ps(fscal,dx20);
881             ty               = _mm_mul_ps(fscal,dy20);
882             tz               = _mm_mul_ps(fscal,dz20);
883
884             /* Update vectorial force */
885             fix2             = _mm_add_ps(fix2,tx);
886             fiy2             = _mm_add_ps(fiy2,ty);
887             fiz2             = _mm_add_ps(fiz2,tz);
888
889             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
890                                                    f+j_coord_offsetC,f+j_coord_offsetD,
891                                                    tx,ty,tz);
892
893             /* Inner loop uses 108 flops */
894         }
895
896         if(jidx<j_index_end)
897         {
898
899             /* Get j neighbor index, and coordinate index */
900             jnrA             = jjnr[jidx];
901             jnrB             = jjnr[jidx+1];
902             jnrC             = jjnr[jidx+2];
903             jnrD             = jjnr[jidx+3];
904
905             /* Sign of each element will be negative for non-real atoms.
906              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
907              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
908              */
909             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
910             jnrA       = (jnrA>=0) ? jnrA : 0;
911             jnrB       = (jnrB>=0) ? jnrB : 0;
912             jnrC       = (jnrC>=0) ? jnrC : 0;
913             jnrD       = (jnrD>=0) ? jnrD : 0;
914
915             j_coord_offsetA  = DIM*jnrA;
916             j_coord_offsetB  = DIM*jnrB;
917             j_coord_offsetC  = DIM*jnrC;
918             j_coord_offsetD  = DIM*jnrD;
919
920             /* load j atom coordinates */
921             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
922                                               x+j_coord_offsetC,x+j_coord_offsetD,
923                                               &jx0,&jy0,&jz0);
924
925             /* Calculate displacement vector */
926             dx00             = _mm_sub_ps(ix0,jx0);
927             dy00             = _mm_sub_ps(iy0,jy0);
928             dz00             = _mm_sub_ps(iz0,jz0);
929             dx10             = _mm_sub_ps(ix1,jx0);
930             dy10             = _mm_sub_ps(iy1,jy0);
931             dz10             = _mm_sub_ps(iz1,jz0);
932             dx20             = _mm_sub_ps(ix2,jx0);
933             dy20             = _mm_sub_ps(iy2,jy0);
934             dz20             = _mm_sub_ps(iz2,jz0);
935
936             /* Calculate squared distance and things based on it */
937             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
938             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
939             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
940
941             rinv00           = gmx_mm_invsqrt_ps(rsq00);
942             rinv10           = gmx_mm_invsqrt_ps(rsq10);
943             rinv20           = gmx_mm_invsqrt_ps(rsq20);
944
945             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
946             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
947             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
948
949             /* Load parameters for j particles */
950             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
951                                                               charge+jnrC+0,charge+jnrD+0);
952             vdwjidx0A        = 2*vdwtype[jnrA+0];
953             vdwjidx0B        = 2*vdwtype[jnrB+0];
954             vdwjidx0C        = 2*vdwtype[jnrC+0];
955             vdwjidx0D        = 2*vdwtype[jnrD+0];
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r00              = _mm_mul_ps(rsq00,rinv00);
962             r00              = _mm_andnot_ps(dummy_mask,r00);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq00             = _mm_mul_ps(iq0,jq0);
966             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
967                                          vdwparam+vdwioffset0+vdwjidx0B,
968                                          vdwparam+vdwioffset0+vdwjidx0C,
969                                          vdwparam+vdwioffset0+vdwjidx0D,
970                                          &c6_00,&c12_00);
971
972             /* Calculate table index by multiplying r with table scale and truncate to integer */
973             rt               = _mm_mul_ps(r00,vftabscale);
974             vfitab           = _mm_cvttps_epi32(rt);
975             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
976             vfitab           = _mm_slli_epi32(vfitab,3);
977
978             /* COULOMB ELECTROSTATICS */
979             velec            = _mm_mul_ps(qq00,rinv00);
980             felec            = _mm_mul_ps(velec,rinvsq00);
981
982             /* CUBIC SPLINE TABLE DISPERSION */
983             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
984             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
985             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
986             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
987             _MM_TRANSPOSE4_PS(Y,F,G,H);
988             Heps             = _mm_mul_ps(vfeps,H);
989             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
990             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
991             fvdw6            = _mm_mul_ps(c6_00,FF);
992
993             /* CUBIC SPLINE TABLE REPULSION */
994             vfitab           = _mm_add_epi32(vfitab,ifour);
995             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
996             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
997             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
998             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
999             _MM_TRANSPOSE4_PS(Y,F,G,H);
1000             Heps             = _mm_mul_ps(vfeps,H);
1001             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1002             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1003             fvdw12           = _mm_mul_ps(c12_00,FF);
1004             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1005
1006             fscal            = _mm_add_ps(felec,fvdw);
1007
1008             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_ps(fscal,dx00);
1012             ty               = _mm_mul_ps(fscal,dy00);
1013             tz               = _mm_mul_ps(fscal,dz00);
1014
1015             /* Update vectorial force */
1016             fix0             = _mm_add_ps(fix0,tx);
1017             fiy0             = _mm_add_ps(fiy0,ty);
1018             fiz0             = _mm_add_ps(fiz0,tz);
1019
1020             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1021                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1022                                                    tx,ty,tz);
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq10             = _mm_mul_ps(iq1,jq0);
1030
1031             /* COULOMB ELECTROSTATICS */
1032             velec            = _mm_mul_ps(qq10,rinv10);
1033             felec            = _mm_mul_ps(velec,rinvsq10);
1034
1035             fscal            = felec;
1036
1037             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm_mul_ps(fscal,dx10);
1041             ty               = _mm_mul_ps(fscal,dy10);
1042             tz               = _mm_mul_ps(fscal,dz10);
1043
1044             /* Update vectorial force */
1045             fix1             = _mm_add_ps(fix1,tx);
1046             fiy1             = _mm_add_ps(fiy1,ty);
1047             fiz1             = _mm_add_ps(fiz1,tz);
1048
1049             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1050                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1051                                                    tx,ty,tz);
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq20             = _mm_mul_ps(iq2,jq0);
1059
1060             /* COULOMB ELECTROSTATICS */
1061             velec            = _mm_mul_ps(qq20,rinv20);
1062             felec            = _mm_mul_ps(velec,rinvsq20);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm_mul_ps(fscal,dx20);
1070             ty               = _mm_mul_ps(fscal,dy20);
1071             tz               = _mm_mul_ps(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm_add_ps(fix2,tx);
1075             fiy2             = _mm_add_ps(fiy2,ty);
1076             fiz2             = _mm_add_ps(fiz2,tz);
1077
1078             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1079                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1080                                                    tx,ty,tz);
1081
1082             /* Inner loop uses 109 flops */
1083         }
1084
1085         /* End of innermost loop */
1086
1087         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1088                                               f+i_coord_offset,fshift+i_shift_offset);
1089
1090         /* Increment number of inner iterations */
1091         inneriter                  += j_index_end - j_index_start;
1092
1093         /* Outer loop uses 27 flops */
1094     }
1095
1096     /* Increment number of outer iterations */
1097     outeriter        += nri;
1098
1099     /* Update outer/inner flops */
1100
1101     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*109);
1102 }