70dfd6e52f5eee1c112b0d9929b983d74aef13c5
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }  
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141         
142         fix0             = _mm_setzero_ps();
143         fiy0             = _mm_setzero_ps();
144         fiz0             = _mm_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_ps();
152         vvdwsum          = _mm_setzero_ps();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165             j_coord_offsetC  = DIM*jnrC;
166             j_coord_offsetD  = DIM*jnrD;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               x+j_coord_offsetC,x+j_coord_offsetD,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_ps(ix0,jx0);
175             dy00             = _mm_sub_ps(iy0,jy0);
176             dz00             = _mm_sub_ps(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
182
183             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
187                                                               charge+jnrC+0,charge+jnrD+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190             vdwjidx0C        = 2*vdwtype[jnrC+0];
191             vdwjidx0D        = 2*vdwtype[jnrD+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             r00              = _mm_mul_ps(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_ps(iq0,jq0);
201             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,
203                                          vdwparam+vdwioffset0+vdwjidx0C,
204                                          vdwparam+vdwioffset0+vdwjidx0D,
205                                          &c6_00,&c12_00);
206
207             /* Calculate table index by multiplying r with table scale and truncate to integer */
208             rt               = _mm_mul_ps(r00,vftabscale);
209             vfitab           = _mm_cvttps_epi32(rt);
210             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
211             vfitab           = _mm_slli_epi32(vfitab,3);
212
213             /* COULOMB ELECTROSTATICS */
214             velec            = _mm_mul_ps(qq00,rinv00);
215             felec            = _mm_mul_ps(velec,rinvsq00);
216
217             /* CUBIC SPLINE TABLE DISPERSION */
218             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
219             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
220             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
221             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
222             _MM_TRANSPOSE4_PS(Y,F,G,H);
223             Heps             = _mm_mul_ps(vfeps,H);
224             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
225             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
226             vvdw6            = _mm_mul_ps(c6_00,VV);
227             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
228             fvdw6            = _mm_mul_ps(c6_00,FF);
229
230             /* CUBIC SPLINE TABLE REPULSION */
231             vfitab           = _mm_add_epi32(vfitab,ifour);
232             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
233             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
234             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
235             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
236             _MM_TRANSPOSE4_PS(Y,F,G,H);
237             Heps             = _mm_mul_ps(vfeps,H);
238             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
239             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
240             vvdw12           = _mm_mul_ps(c12_00,VV);
241             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
242             fvdw12           = _mm_mul_ps(c12_00,FF);
243             vvdw             = _mm_add_ps(vvdw12,vvdw6);
244             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm_add_ps(velecsum,velec);
248             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
249
250             fscal            = _mm_add_ps(felec,fvdw);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_ps(fscal,dx00);
254             ty               = _mm_mul_ps(fscal,dy00);
255             tz               = _mm_mul_ps(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_ps(fix0,tx);
259             fiy0             = _mm_add_ps(fiy0,ty);
260             fiz0             = _mm_add_ps(fiz0,tz);
261
262             fjptrA             = f+j_coord_offsetA;
263             fjptrB             = f+j_coord_offsetB;
264             fjptrC             = f+j_coord_offsetC;
265             fjptrD             = f+j_coord_offsetD;
266             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
267             
268             /* Inner loop uses 63 flops */
269         }
270
271         if(jidx<j_index_end)
272         {
273
274             /* Get j neighbor index, and coordinate index */
275             jnrlistA         = jjnr[jidx];
276             jnrlistB         = jjnr[jidx+1];
277             jnrlistC         = jjnr[jidx+2];
278             jnrlistD         = jjnr[jidx+3];
279             /* Sign of each element will be negative for non-real atoms.
280              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
281              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
282              */
283             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
284             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
285             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
286             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
287             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
288             j_coord_offsetA  = DIM*jnrA;
289             j_coord_offsetB  = DIM*jnrB;
290             j_coord_offsetC  = DIM*jnrC;
291             j_coord_offsetD  = DIM*jnrD;
292
293             /* load j atom coordinates */
294             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
295                                               x+j_coord_offsetC,x+j_coord_offsetD,
296                                               &jx0,&jy0,&jz0);
297
298             /* Calculate displacement vector */
299             dx00             = _mm_sub_ps(ix0,jx0);
300             dy00             = _mm_sub_ps(iy0,jy0);
301             dz00             = _mm_sub_ps(iz0,jz0);
302
303             /* Calculate squared distance and things based on it */
304             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
305
306             rinv00           = gmx_mm_invsqrt_ps(rsq00);
307
308             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
309
310             /* Load parameters for j particles */
311             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
312                                                               charge+jnrC+0,charge+jnrD+0);
313             vdwjidx0A        = 2*vdwtype[jnrA+0];
314             vdwjidx0B        = 2*vdwtype[jnrB+0];
315             vdwjidx0C        = 2*vdwtype[jnrC+0];
316             vdwjidx0D        = 2*vdwtype[jnrD+0];
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r00              = _mm_mul_ps(rsq00,rinv00);
323             r00              = _mm_andnot_ps(dummy_mask,r00);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq00             = _mm_mul_ps(iq0,jq0);
327             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
328                                          vdwparam+vdwioffset0+vdwjidx0B,
329                                          vdwparam+vdwioffset0+vdwjidx0C,
330                                          vdwparam+vdwioffset0+vdwjidx0D,
331                                          &c6_00,&c12_00);
332
333             /* Calculate table index by multiplying r with table scale and truncate to integer */
334             rt               = _mm_mul_ps(r00,vftabscale);
335             vfitab           = _mm_cvttps_epi32(rt);
336             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
337             vfitab           = _mm_slli_epi32(vfitab,3);
338
339             /* COULOMB ELECTROSTATICS */
340             velec            = _mm_mul_ps(qq00,rinv00);
341             felec            = _mm_mul_ps(velec,rinvsq00);
342
343             /* CUBIC SPLINE TABLE DISPERSION */
344             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
345             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
346             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
347             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
348             _MM_TRANSPOSE4_PS(Y,F,G,H);
349             Heps             = _mm_mul_ps(vfeps,H);
350             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
351             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
352             vvdw6            = _mm_mul_ps(c6_00,VV);
353             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
354             fvdw6            = _mm_mul_ps(c6_00,FF);
355
356             /* CUBIC SPLINE TABLE REPULSION */
357             vfitab           = _mm_add_epi32(vfitab,ifour);
358             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
359             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
360             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
361             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
362             _MM_TRANSPOSE4_PS(Y,F,G,H);
363             Heps             = _mm_mul_ps(vfeps,H);
364             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
365             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
366             vvdw12           = _mm_mul_ps(c12_00,VV);
367             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
368             fvdw12           = _mm_mul_ps(c12_00,FF);
369             vvdw             = _mm_add_ps(vvdw12,vvdw6);
370             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm_add_ps(velecsum,velec);
375             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
376             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
377
378             fscal            = _mm_add_ps(felec,fvdw);
379
380             fscal            = _mm_andnot_ps(dummy_mask,fscal);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm_mul_ps(fscal,dx00);
384             ty               = _mm_mul_ps(fscal,dy00);
385             tz               = _mm_mul_ps(fscal,dz00);
386
387             /* Update vectorial force */
388             fix0             = _mm_add_ps(fix0,tx);
389             fiy0             = _mm_add_ps(fiy0,ty);
390             fiz0             = _mm_add_ps(fiz0,tz);
391
392             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
393             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
394             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
395             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
396             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
397             
398             /* Inner loop uses 64 flops */
399         }
400
401         /* End of innermost loop */
402
403         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
404                                               f+i_coord_offset,fshift+i_shift_offset);
405
406         ggid                        = gid[iidx];
407         /* Update potential energies */
408         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
409         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
410
411         /* Increment number of inner iterations */
412         inneriter                  += j_index_end - j_index_start;
413
414         /* Outer loop uses 9 flops */
415     }
416
417     /* Increment number of outer iterations */
418     outeriter        += nri;
419
420     /* Update outer/inner flops */
421
422     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
423 }
424 /*
425  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse2_single
426  * Electrostatics interaction: Coulomb
427  * VdW interaction:            CubicSplineTable
428  * Geometry:                   Particle-Particle
429  * Calculate force/pot:        Force
430  */
431 void
432 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse2_single
433                     (t_nblist * gmx_restrict                nlist,
434                      rvec * gmx_restrict                    xx,
435                      rvec * gmx_restrict                    ff,
436                      t_forcerec * gmx_restrict              fr,
437                      t_mdatoms * gmx_restrict               mdatoms,
438                      nb_kernel_data_t * gmx_restrict        kernel_data,
439                      t_nrnb * gmx_restrict                  nrnb)
440 {
441     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
442      * just 0 for non-waters.
443      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
444      * jnr indices corresponding to data put in the four positions in the SIMD register.
445      */
446     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
447     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
448     int              jnrA,jnrB,jnrC,jnrD;
449     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
450     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
451     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
452     real             rcutoff_scalar;
453     real             *shiftvec,*fshift,*x,*f;
454     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
455     real             scratch[4*DIM];
456     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
457     int              vdwioffset0;
458     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
459     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
460     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
461     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
462     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
463     real             *charge;
464     int              nvdwtype;
465     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
466     int              *vdwtype;
467     real             *vdwparam;
468     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
469     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
470     __m128i          vfitab;
471     __m128i          ifour       = _mm_set1_epi32(4);
472     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
473     real             *vftab;
474     __m128           dummy_mask,cutoff_mask;
475     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
476     __m128           one     = _mm_set1_ps(1.0);
477     __m128           two     = _mm_set1_ps(2.0);
478     x                = xx[0];
479     f                = ff[0];
480
481     nri              = nlist->nri;
482     iinr             = nlist->iinr;
483     jindex           = nlist->jindex;
484     jjnr             = nlist->jjnr;
485     shiftidx         = nlist->shift;
486     gid              = nlist->gid;
487     shiftvec         = fr->shift_vec[0];
488     fshift           = fr->fshift[0];
489     facel            = _mm_set1_ps(fr->epsfac);
490     charge           = mdatoms->chargeA;
491     nvdwtype         = fr->ntype;
492     vdwparam         = fr->nbfp;
493     vdwtype          = mdatoms->typeA;
494
495     vftab            = kernel_data->table_vdw->data;
496     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
497
498     /* Avoid stupid compiler warnings */
499     jnrA = jnrB = jnrC = jnrD = 0;
500     j_coord_offsetA = 0;
501     j_coord_offsetB = 0;
502     j_coord_offsetC = 0;
503     j_coord_offsetD = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     for(iidx=0;iidx<4*DIM;iidx++)
509     {
510         scratch[iidx] = 0.0;
511     }  
512
513     /* Start outer loop over neighborlists */
514     for(iidx=0; iidx<nri; iidx++)
515     {
516         /* Load shift vector for this list */
517         i_shift_offset   = DIM*shiftidx[iidx];
518
519         /* Load limits for loop over neighbors */
520         j_index_start    = jindex[iidx];
521         j_index_end      = jindex[iidx+1];
522
523         /* Get outer coordinate index */
524         inr              = iinr[iidx];
525         i_coord_offset   = DIM*inr;
526
527         /* Load i particle coords and add shift vector */
528         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
529         
530         fix0             = _mm_setzero_ps();
531         fiy0             = _mm_setzero_ps();
532         fiz0             = _mm_setzero_ps();
533
534         /* Load parameters for i particles */
535         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
536         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
537
538         /* Start inner kernel loop */
539         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
540         {
541
542             /* Get j neighbor index, and coordinate index */
543             jnrA             = jjnr[jidx];
544             jnrB             = jjnr[jidx+1];
545             jnrC             = jjnr[jidx+2];
546             jnrD             = jjnr[jidx+3];
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               x+j_coord_offsetC,x+j_coord_offsetD,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_ps(ix0,jx0);
559             dy00             = _mm_sub_ps(iy0,jy0);
560             dz00             = _mm_sub_ps(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm_invsqrt_ps(rsq00);
566
567             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
571                                                               charge+jnrC+0,charge+jnrD+0);
572             vdwjidx0A        = 2*vdwtype[jnrA+0];
573             vdwjidx0B        = 2*vdwtype[jnrB+0];
574             vdwjidx0C        = 2*vdwtype[jnrC+0];
575             vdwjidx0D        = 2*vdwtype[jnrD+0];
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r00              = _mm_mul_ps(rsq00,rinv00);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq00             = _mm_mul_ps(iq0,jq0);
585             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
586                                          vdwparam+vdwioffset0+vdwjidx0B,
587                                          vdwparam+vdwioffset0+vdwjidx0C,
588                                          vdwparam+vdwioffset0+vdwjidx0D,
589                                          &c6_00,&c12_00);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm_mul_ps(r00,vftabscale);
593             vfitab           = _mm_cvttps_epi32(rt);
594             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
595             vfitab           = _mm_slli_epi32(vfitab,3);
596
597             /* COULOMB ELECTROSTATICS */
598             velec            = _mm_mul_ps(qq00,rinv00);
599             felec            = _mm_mul_ps(velec,rinvsq00);
600
601             /* CUBIC SPLINE TABLE DISPERSION */
602             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
603             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
604             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
605             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
606             _MM_TRANSPOSE4_PS(Y,F,G,H);
607             Heps             = _mm_mul_ps(vfeps,H);
608             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
609             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
610             fvdw6            = _mm_mul_ps(c6_00,FF);
611
612             /* CUBIC SPLINE TABLE REPULSION */
613             vfitab           = _mm_add_epi32(vfitab,ifour);
614             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
615             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
616             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
617             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
618             _MM_TRANSPOSE4_PS(Y,F,G,H);
619             Heps             = _mm_mul_ps(vfeps,H);
620             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
621             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
622             fvdw12           = _mm_mul_ps(c12_00,FF);
623             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
624
625             fscal            = _mm_add_ps(felec,fvdw);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_ps(fscal,dx00);
629             ty               = _mm_mul_ps(fscal,dy00);
630             tz               = _mm_mul_ps(fscal,dz00);
631
632             /* Update vectorial force */
633             fix0             = _mm_add_ps(fix0,tx);
634             fiy0             = _mm_add_ps(fiy0,ty);
635             fiz0             = _mm_add_ps(fiz0,tz);
636
637             fjptrA             = f+j_coord_offsetA;
638             fjptrB             = f+j_coord_offsetB;
639             fjptrC             = f+j_coord_offsetC;
640             fjptrD             = f+j_coord_offsetD;
641             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
642             
643             /* Inner loop uses 54 flops */
644         }
645
646         if(jidx<j_index_end)
647         {
648
649             /* Get j neighbor index, and coordinate index */
650             jnrlistA         = jjnr[jidx];
651             jnrlistB         = jjnr[jidx+1];
652             jnrlistC         = jjnr[jidx+2];
653             jnrlistD         = jjnr[jidx+3];
654             /* Sign of each element will be negative for non-real atoms.
655              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
656              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
657              */
658             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
659             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
660             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
661             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
662             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
663             j_coord_offsetA  = DIM*jnrA;
664             j_coord_offsetB  = DIM*jnrB;
665             j_coord_offsetC  = DIM*jnrC;
666             j_coord_offsetD  = DIM*jnrD;
667
668             /* load j atom coordinates */
669             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
670                                               x+j_coord_offsetC,x+j_coord_offsetD,
671                                               &jx0,&jy0,&jz0);
672
673             /* Calculate displacement vector */
674             dx00             = _mm_sub_ps(ix0,jx0);
675             dy00             = _mm_sub_ps(iy0,jy0);
676             dz00             = _mm_sub_ps(iz0,jz0);
677
678             /* Calculate squared distance and things based on it */
679             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
680
681             rinv00           = gmx_mm_invsqrt_ps(rsq00);
682
683             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
684
685             /* Load parameters for j particles */
686             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
687                                                               charge+jnrC+0,charge+jnrD+0);
688             vdwjidx0A        = 2*vdwtype[jnrA+0];
689             vdwjidx0B        = 2*vdwtype[jnrB+0];
690             vdwjidx0C        = 2*vdwtype[jnrC+0];
691             vdwjidx0D        = 2*vdwtype[jnrD+0];
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             r00              = _mm_mul_ps(rsq00,rinv00);
698             r00              = _mm_andnot_ps(dummy_mask,r00);
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq00             = _mm_mul_ps(iq0,jq0);
702             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
703                                          vdwparam+vdwioffset0+vdwjidx0B,
704                                          vdwparam+vdwioffset0+vdwjidx0C,
705                                          vdwparam+vdwioffset0+vdwjidx0D,
706                                          &c6_00,&c12_00);
707
708             /* Calculate table index by multiplying r with table scale and truncate to integer */
709             rt               = _mm_mul_ps(r00,vftabscale);
710             vfitab           = _mm_cvttps_epi32(rt);
711             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
712             vfitab           = _mm_slli_epi32(vfitab,3);
713
714             /* COULOMB ELECTROSTATICS */
715             velec            = _mm_mul_ps(qq00,rinv00);
716             felec            = _mm_mul_ps(velec,rinvsq00);
717
718             /* CUBIC SPLINE TABLE DISPERSION */
719             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
720             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
721             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
722             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
723             _MM_TRANSPOSE4_PS(Y,F,G,H);
724             Heps             = _mm_mul_ps(vfeps,H);
725             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
726             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
727             fvdw6            = _mm_mul_ps(c6_00,FF);
728
729             /* CUBIC SPLINE TABLE REPULSION */
730             vfitab           = _mm_add_epi32(vfitab,ifour);
731             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
732             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
733             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
734             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
735             _MM_TRANSPOSE4_PS(Y,F,G,H);
736             Heps             = _mm_mul_ps(vfeps,H);
737             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
738             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
739             fvdw12           = _mm_mul_ps(c12_00,FF);
740             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
741
742             fscal            = _mm_add_ps(felec,fvdw);
743
744             fscal            = _mm_andnot_ps(dummy_mask,fscal);
745
746             /* Calculate temporary vectorial force */
747             tx               = _mm_mul_ps(fscal,dx00);
748             ty               = _mm_mul_ps(fscal,dy00);
749             tz               = _mm_mul_ps(fscal,dz00);
750
751             /* Update vectorial force */
752             fix0             = _mm_add_ps(fix0,tx);
753             fiy0             = _mm_add_ps(fiy0,ty);
754             fiz0             = _mm_add_ps(fiz0,tz);
755
756             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
757             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
758             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
759             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
760             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
761             
762             /* Inner loop uses 55 flops */
763         }
764
765         /* End of innermost loop */
766
767         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
768                                               f+i_coord_offset,fshift+i_shift_offset);
769
770         /* Increment number of inner iterations */
771         inneriter                  += j_index_end - j_index_start;
772
773         /* Outer loop uses 7 flops */
774     }
775
776     /* Increment number of outer iterations */
777     outeriter        += nri;
778
779     /* Update outer/inner flops */
780
781     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
782 }