Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128           dummy_mask,cutoff_mask;
84     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
85     __m128           one     = _mm_set1_ps(1.0);
86     __m128           two     = _mm_set1_ps(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_ps(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_vdw->data;
105     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = jnrC = jnrD = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111     j_coord_offsetC = 0;
112     j_coord_offsetD = 0;
113
114     outeriter        = 0;
115     inneriter        = 0;
116
117     /* Start outer loop over neighborlists */
118     for(iidx=0; iidx<nri; iidx++)
119     {
120         /* Load shift vector for this list */
121         i_shift_offset   = DIM*shiftidx[iidx];
122         shX              = shiftvec[i_shift_offset+XX];
123         shY              = shiftvec[i_shift_offset+YY];
124         shZ              = shiftvec[i_shift_offset+ZZ];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
136         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
137         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
138
139         fix0             = _mm_setzero_ps();
140         fiy0             = _mm_setzero_ps();
141         fiz0             = _mm_setzero_ps();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
145         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_ps();
149         vvdwsum          = _mm_setzero_ps();
150
151         /* Start inner kernel loop */
152         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
153         {
154
155             /* Get j neighbor index, and coordinate index */
156             jnrA             = jjnr[jidx];
157             jnrB             = jjnr[jidx+1];
158             jnrC             = jjnr[jidx+2];
159             jnrD             = jjnr[jidx+3];
160
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163             j_coord_offsetC  = DIM*jnrC;
164             j_coord_offsetD  = DIM*jnrD;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               x+j_coord_offsetC,x+j_coord_offsetD,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_ps(ix0,jx0);
173             dy00             = _mm_sub_ps(iy0,jy0);
174             dz00             = _mm_sub_ps(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_ps(rsq00);
180
181             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
185                                                               charge+jnrC+0,charge+jnrD+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188             vdwjidx0C        = 2*vdwtype[jnrC+0];
189             vdwjidx0D        = 2*vdwtype[jnrD+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_ps(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_ps(iq0,jq0);
199             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,
201                                          vdwparam+vdwioffset0+vdwjidx0C,
202                                          vdwparam+vdwioffset0+vdwjidx0D,
203                                          &c6_00,&c12_00);
204
205             /* Calculate table index by multiplying r with table scale and truncate to integer */
206             rt               = _mm_mul_ps(r00,vftabscale);
207             vfitab           = _mm_cvttps_epi32(rt);
208             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
209             vfitab           = _mm_slli_epi32(vfitab,3);
210
211             /* COULOMB ELECTROSTATICS */
212             velec            = _mm_mul_ps(qq00,rinv00);
213             felec            = _mm_mul_ps(velec,rinvsq00);
214
215             /* CUBIC SPLINE TABLE DISPERSION */
216             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
217             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
218             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
219             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
220             _MM_TRANSPOSE4_PS(Y,F,G,H);
221             Heps             = _mm_mul_ps(vfeps,H);
222             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
223             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
224             vvdw6            = _mm_mul_ps(c6_00,VV);
225             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
226             fvdw6            = _mm_mul_ps(c6_00,FF);
227
228             /* CUBIC SPLINE TABLE REPULSION */
229             vfitab           = _mm_add_epi32(vfitab,ifour);
230             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
231             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
232             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
233             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
234             _MM_TRANSPOSE4_PS(Y,F,G,H);
235             Heps             = _mm_mul_ps(vfeps,H);
236             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
237             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
238             vvdw12           = _mm_mul_ps(c12_00,VV);
239             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
240             fvdw12           = _mm_mul_ps(c12_00,FF);
241             vvdw             = _mm_add_ps(vvdw12,vvdw6);
242             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_ps(velecsum,velec);
246             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
247
248             fscal            = _mm_add_ps(felec,fvdw);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_ps(fscal,dx00);
252             ty               = _mm_mul_ps(fscal,dy00);
253             tz               = _mm_mul_ps(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_ps(fix0,tx);
257             fiy0             = _mm_add_ps(fiy0,ty);
258             fiz0             = _mm_add_ps(fiz0,tz);
259
260             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
261                                                    f+j_coord_offsetC,f+j_coord_offsetD,
262                                                    tx,ty,tz);
263
264             /* Inner loop uses 63 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             /* Get j neighbor index, and coordinate index */
271             jnrA             = jjnr[jidx];
272             jnrB             = jjnr[jidx+1];
273             jnrC             = jjnr[jidx+2];
274             jnrD             = jjnr[jidx+3];
275
276             /* Sign of each element will be negative for non-real atoms.
277              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
278              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
279              */
280             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
281             jnrA       = (jnrA>=0) ? jnrA : 0;
282             jnrB       = (jnrB>=0) ? jnrB : 0;
283             jnrC       = (jnrC>=0) ? jnrC : 0;
284             jnrD       = (jnrD>=0) ? jnrD : 0;
285
286             j_coord_offsetA  = DIM*jnrA;
287             j_coord_offsetB  = DIM*jnrB;
288             j_coord_offsetC  = DIM*jnrC;
289             j_coord_offsetD  = DIM*jnrD;
290
291             /* load j atom coordinates */
292             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
293                                               x+j_coord_offsetC,x+j_coord_offsetD,
294                                               &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm_sub_ps(ix0,jx0);
298             dy00             = _mm_sub_ps(iy0,jy0);
299             dz00             = _mm_sub_ps(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
303
304             rinv00           = gmx_mm_invsqrt_ps(rsq00);
305
306             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
310                                                               charge+jnrC+0,charge+jnrD+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312             vdwjidx0B        = 2*vdwtype[jnrB+0];
313             vdwjidx0C        = 2*vdwtype[jnrC+0];
314             vdwjidx0D        = 2*vdwtype[jnrD+0];
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r00              = _mm_mul_ps(rsq00,rinv00);
321             r00              = _mm_andnot_ps(dummy_mask,r00);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_ps(iq0,jq0);
325             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
326                                          vdwparam+vdwioffset0+vdwjidx0B,
327                                          vdwparam+vdwioffset0+vdwjidx0C,
328                                          vdwparam+vdwioffset0+vdwjidx0D,
329                                          &c6_00,&c12_00);
330
331             /* Calculate table index by multiplying r with table scale and truncate to integer */
332             rt               = _mm_mul_ps(r00,vftabscale);
333             vfitab           = _mm_cvttps_epi32(rt);
334             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
335             vfitab           = _mm_slli_epi32(vfitab,3);
336
337             /* COULOMB ELECTROSTATICS */
338             velec            = _mm_mul_ps(qq00,rinv00);
339             felec            = _mm_mul_ps(velec,rinvsq00);
340
341             /* CUBIC SPLINE TABLE DISPERSION */
342             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
343             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
344             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
345             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
346             _MM_TRANSPOSE4_PS(Y,F,G,H);
347             Heps             = _mm_mul_ps(vfeps,H);
348             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
349             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
350             vvdw6            = _mm_mul_ps(c6_00,VV);
351             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
352             fvdw6            = _mm_mul_ps(c6_00,FF);
353
354             /* CUBIC SPLINE TABLE REPULSION */
355             vfitab           = _mm_add_epi32(vfitab,ifour);
356             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
357             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
358             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
359             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
360             _MM_TRANSPOSE4_PS(Y,F,G,H);
361             Heps             = _mm_mul_ps(vfeps,H);
362             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
363             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
364             vvdw12           = _mm_mul_ps(c12_00,VV);
365             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
366             fvdw12           = _mm_mul_ps(c12_00,FF);
367             vvdw             = _mm_add_ps(vvdw12,vvdw6);
368             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
374             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
375
376             fscal            = _mm_add_ps(felec,fvdw);
377
378             fscal            = _mm_andnot_ps(dummy_mask,fscal);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm_mul_ps(fscal,dx00);
382             ty               = _mm_mul_ps(fscal,dy00);
383             tz               = _mm_mul_ps(fscal,dz00);
384
385             /* Update vectorial force */
386             fix0             = _mm_add_ps(fix0,tx);
387             fiy0             = _mm_add_ps(fiy0,ty);
388             fiz0             = _mm_add_ps(fiz0,tz);
389
390             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
391                                                    f+j_coord_offsetC,f+j_coord_offsetD,
392                                                    tx,ty,tz);
393
394             /* Inner loop uses 64 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
400                                               f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 12 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*64);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse2_single
422  * Electrostatics interaction: Coulomb
423  * VdW interaction:            CubicSplineTable
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse2_single
429                     (t_nblist * gmx_restrict                nlist,
430                      rvec * gmx_restrict                    xx,
431                      rvec * gmx_restrict                    ff,
432                      t_forcerec * gmx_restrict              fr,
433                      t_mdatoms * gmx_restrict               mdatoms,
434                      nb_kernel_data_t * gmx_restrict        kernel_data,
435                      t_nrnb * gmx_restrict                  nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
438      * just 0 for non-waters.
439      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB,jnrC,jnrD;
445     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
447     real             shX,shY,shZ,rcutoff_scalar;
448     real             *shiftvec,*fshift,*x,*f;
449     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
450     int              vdwioffset0;
451     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
452     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
453     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
454     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
455     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
456     real             *charge;
457     int              nvdwtype;
458     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
459     int              *vdwtype;
460     real             *vdwparam;
461     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
462     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
463     __m128i          vfitab;
464     __m128i          ifour       = _mm_set1_epi32(4);
465     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
466     real             *vftab;
467     __m128           dummy_mask,cutoff_mask;
468     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
469     __m128           one     = _mm_set1_ps(1.0);
470     __m128           two     = _mm_set1_ps(2.0);
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     facel            = _mm_set1_ps(fr->epsfac);
483     charge           = mdatoms->chargeA;
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487
488     vftab            = kernel_data->table_vdw->data;
489     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
490
491     /* Avoid stupid compiler warnings */
492     jnrA = jnrB = jnrC = jnrD = 0;
493     j_coord_offsetA = 0;
494     j_coord_offsetB = 0;
495     j_coord_offsetC = 0;
496     j_coord_offsetD = 0;
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     /* Start outer loop over neighborlists */
502     for(iidx=0; iidx<nri; iidx++)
503     {
504         /* Load shift vector for this list */
505         i_shift_offset   = DIM*shiftidx[iidx];
506         shX              = shiftvec[i_shift_offset+XX];
507         shY              = shiftvec[i_shift_offset+YY];
508         shZ              = shiftvec[i_shift_offset+ZZ];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
520         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
521         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
522
523         fix0             = _mm_setzero_ps();
524         fiy0             = _mm_setzero_ps();
525         fiz0             = _mm_setzero_ps();
526
527         /* Load parameters for i particles */
528         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             jnrC             = jjnr[jidx+2];
539             jnrD             = jjnr[jidx+3];
540
541             j_coord_offsetA  = DIM*jnrA;
542             j_coord_offsetB  = DIM*jnrB;
543             j_coord_offsetC  = DIM*jnrC;
544             j_coord_offsetD  = DIM*jnrD;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
548                                               x+j_coord_offsetC,x+j_coord_offsetD,
549                                               &jx0,&jy0,&jz0);
550
551             /* Calculate displacement vector */
552             dx00             = _mm_sub_ps(ix0,jx0);
553             dy00             = _mm_sub_ps(iy0,jy0);
554             dz00             = _mm_sub_ps(iz0,jz0);
555
556             /* Calculate squared distance and things based on it */
557             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
558
559             rinv00           = gmx_mm_invsqrt_ps(rsq00);
560
561             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
562
563             /* Load parameters for j particles */
564             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
565                                                               charge+jnrC+0,charge+jnrD+0);
566             vdwjidx0A        = 2*vdwtype[jnrA+0];
567             vdwjidx0B        = 2*vdwtype[jnrB+0];
568             vdwjidx0C        = 2*vdwtype[jnrC+0];
569             vdwjidx0D        = 2*vdwtype[jnrD+0];
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq00             = _mm_mul_ps(iq0,jq0);
579             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
580                                          vdwparam+vdwioffset0+vdwjidx0B,
581                                          vdwparam+vdwioffset0+vdwjidx0C,
582                                          vdwparam+vdwioffset0+vdwjidx0D,
583                                          &c6_00,&c12_00);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm_mul_ps(r00,vftabscale);
587             vfitab           = _mm_cvttps_epi32(rt);
588             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
589             vfitab           = _mm_slli_epi32(vfitab,3);
590
591             /* COULOMB ELECTROSTATICS */
592             velec            = _mm_mul_ps(qq00,rinv00);
593             felec            = _mm_mul_ps(velec,rinvsq00);
594
595             /* CUBIC SPLINE TABLE DISPERSION */
596             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
597             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
598             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
599             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
600             _MM_TRANSPOSE4_PS(Y,F,G,H);
601             Heps             = _mm_mul_ps(vfeps,H);
602             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
603             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
604             fvdw6            = _mm_mul_ps(c6_00,FF);
605
606             /* CUBIC SPLINE TABLE REPULSION */
607             vfitab           = _mm_add_epi32(vfitab,ifour);
608             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
609             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
610             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
611             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
612             _MM_TRANSPOSE4_PS(Y,F,G,H);
613             Heps             = _mm_mul_ps(vfeps,H);
614             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
615             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
616             fvdw12           = _mm_mul_ps(c12_00,FF);
617             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
618
619             fscal            = _mm_add_ps(felec,fvdw);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx00);
623             ty               = _mm_mul_ps(fscal,dy00);
624             tz               = _mm_mul_ps(fscal,dz00);
625
626             /* Update vectorial force */
627             fix0             = _mm_add_ps(fix0,tx);
628             fiy0             = _mm_add_ps(fiy0,ty);
629             fiz0             = _mm_add_ps(fiz0,tz);
630
631             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
632                                                    f+j_coord_offsetC,f+j_coord_offsetD,
633                                                    tx,ty,tz);
634
635             /* Inner loop uses 54 flops */
636         }
637
638         if(jidx<j_index_end)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrA             = jjnr[jidx];
643             jnrB             = jjnr[jidx+1];
644             jnrC             = jjnr[jidx+2];
645             jnrD             = jjnr[jidx+3];
646
647             /* Sign of each element will be negative for non-real atoms.
648              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
649              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
650              */
651             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
652             jnrA       = (jnrA>=0) ? jnrA : 0;
653             jnrB       = (jnrB>=0) ? jnrB : 0;
654             jnrC       = (jnrC>=0) ? jnrC : 0;
655             jnrD       = (jnrD>=0) ? jnrD : 0;
656
657             j_coord_offsetA  = DIM*jnrA;
658             j_coord_offsetB  = DIM*jnrB;
659             j_coord_offsetC  = DIM*jnrC;
660             j_coord_offsetD  = DIM*jnrD;
661
662             /* load j atom coordinates */
663             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
664                                               x+j_coord_offsetC,x+j_coord_offsetD,
665                                               &jx0,&jy0,&jz0);
666
667             /* Calculate displacement vector */
668             dx00             = _mm_sub_ps(ix0,jx0);
669             dy00             = _mm_sub_ps(iy0,jy0);
670             dz00             = _mm_sub_ps(iz0,jz0);
671
672             /* Calculate squared distance and things based on it */
673             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
674
675             rinv00           = gmx_mm_invsqrt_ps(rsq00);
676
677             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
678
679             /* Load parameters for j particles */
680             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
681                                                               charge+jnrC+0,charge+jnrD+0);
682             vdwjidx0A        = 2*vdwtype[jnrA+0];
683             vdwjidx0B        = 2*vdwtype[jnrB+0];
684             vdwjidx0C        = 2*vdwtype[jnrC+0];
685             vdwjidx0D        = 2*vdwtype[jnrD+0];
686
687             /**************************
688              * CALCULATE INTERACTIONS *
689              **************************/
690
691             r00              = _mm_mul_ps(rsq00,rinv00);
692             r00              = _mm_andnot_ps(dummy_mask,r00);
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq00             = _mm_mul_ps(iq0,jq0);
696             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
697                                          vdwparam+vdwioffset0+vdwjidx0B,
698                                          vdwparam+vdwioffset0+vdwjidx0C,
699                                          vdwparam+vdwioffset0+vdwjidx0D,
700                                          &c6_00,&c12_00);
701
702             /* Calculate table index by multiplying r with table scale and truncate to integer */
703             rt               = _mm_mul_ps(r00,vftabscale);
704             vfitab           = _mm_cvttps_epi32(rt);
705             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
706             vfitab           = _mm_slli_epi32(vfitab,3);
707
708             /* COULOMB ELECTROSTATICS */
709             velec            = _mm_mul_ps(qq00,rinv00);
710             felec            = _mm_mul_ps(velec,rinvsq00);
711
712             /* CUBIC SPLINE TABLE DISPERSION */
713             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
714             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
715             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
716             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
717             _MM_TRANSPOSE4_PS(Y,F,G,H);
718             Heps             = _mm_mul_ps(vfeps,H);
719             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
720             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
721             fvdw6            = _mm_mul_ps(c6_00,FF);
722
723             /* CUBIC SPLINE TABLE REPULSION */
724             vfitab           = _mm_add_epi32(vfitab,ifour);
725             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
726             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
727             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
728             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
729             _MM_TRANSPOSE4_PS(Y,F,G,H);
730             Heps             = _mm_mul_ps(vfeps,H);
731             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
732             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
733             fvdw12           = _mm_mul_ps(c12_00,FF);
734             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
735
736             fscal            = _mm_add_ps(felec,fvdw);
737
738             fscal            = _mm_andnot_ps(dummy_mask,fscal);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm_mul_ps(fscal,dx00);
742             ty               = _mm_mul_ps(fscal,dy00);
743             tz               = _mm_mul_ps(fscal,dz00);
744
745             /* Update vectorial force */
746             fix0             = _mm_add_ps(fix0,tx);
747             fiy0             = _mm_add_ps(fiy0,ty);
748             fiz0             = _mm_add_ps(fiz0,tz);
749
750             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
751                                                    f+j_coord_offsetC,f+j_coord_offsetD,
752                                                    tx,ty,tz);
753
754             /* Inner loop uses 55 flops */
755         }
756
757         /* End of innermost loop */
758
759         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
760                                               f+i_coord_offset,fshift+i_shift_offset);
761
762         /* Increment number of inner iterations */
763         inneriter                  += j_index_end - j_index_start;
764
765         /* Outer loop uses 10 flops */
766     }
767
768     /* Increment number of outer iterations */
769     outeriter        += nri;
770
771     /* Update outer/inner flops */
772
773     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*55);
774 }