Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128           dummy_mask,cutoff_mask;
84     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
85     __m128           one     = _mm_set1_ps(1.0);
86     __m128           two     = _mm_set1_ps(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_ps(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_elec->data;
105     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = jnrC = jnrD = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111     j_coord_offsetC = 0;
112     j_coord_offsetD = 0;
113
114     outeriter        = 0;
115     inneriter        = 0;
116
117     /* Start outer loop over neighborlists */
118     for(iidx=0; iidx<nri; iidx++)
119     {
120         /* Load shift vector for this list */
121         i_shift_offset   = DIM*shiftidx[iidx];
122         shX              = shiftvec[i_shift_offset+XX];
123         shY              = shiftvec[i_shift_offset+YY];
124         shZ              = shiftvec[i_shift_offset+ZZ];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
136         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
137         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
138
139         fix0             = _mm_setzero_ps();
140         fiy0             = _mm_setzero_ps();
141         fiz0             = _mm_setzero_ps();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
145         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_ps();
149         vvdwsum          = _mm_setzero_ps();
150
151         /* Start inner kernel loop */
152         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
153         {
154
155             /* Get j neighbor index, and coordinate index */
156             jnrA             = jjnr[jidx];
157             jnrB             = jjnr[jidx+1];
158             jnrC             = jjnr[jidx+2];
159             jnrD             = jjnr[jidx+3];
160
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163             j_coord_offsetC  = DIM*jnrC;
164             j_coord_offsetD  = DIM*jnrD;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               x+j_coord_offsetC,x+j_coord_offsetD,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_ps(ix0,jx0);
173             dy00             = _mm_sub_ps(iy0,jy0);
174             dz00             = _mm_sub_ps(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_ps(rsq00);
180
181             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
185                                                               charge+jnrC+0,charge+jnrD+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188             vdwjidx0C        = 2*vdwtype[jnrC+0];
189             vdwjidx0D        = 2*vdwtype[jnrD+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_ps(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_ps(iq0,jq0);
199             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,
201                                          vdwparam+vdwioffset0+vdwjidx0C,
202                                          vdwparam+vdwioffset0+vdwjidx0D,
203                                          &c6_00,&c12_00);
204
205             /* Calculate table index by multiplying r with table scale and truncate to integer */
206             rt               = _mm_mul_ps(r00,vftabscale);
207             vfitab           = _mm_cvttps_epi32(rt);
208             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
209             vfitab           = _mm_slli_epi32(vfitab,2);
210
211             /* CUBIC SPLINE TABLE ELECTROSTATICS */
212             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
213             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
214             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
215             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
216             _MM_TRANSPOSE4_PS(Y,F,G,H);
217             Heps             = _mm_mul_ps(vfeps,H);
218             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
219             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
220             velec            = _mm_mul_ps(qq00,VV);
221             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
222             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
223
224             /* LENNARD-JONES DISPERSION/REPULSION */
225
226             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
227             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
228             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
229             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
230             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm_add_ps(velecsum,velec);
234             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
235
236             fscal            = _mm_add_ps(felec,fvdw);
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm_mul_ps(fscal,dx00);
240             ty               = _mm_mul_ps(fscal,dy00);
241             tz               = _mm_mul_ps(fscal,dz00);
242
243             /* Update vectorial force */
244             fix0             = _mm_add_ps(fix0,tx);
245             fiy0             = _mm_add_ps(fiy0,ty);
246             fiz0             = _mm_add_ps(fiz0,tz);
247
248             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
249                                                    f+j_coord_offsetC,f+j_coord_offsetD,
250                                                    tx,ty,tz);
251
252             /* Inner loop uses 56 flops */
253         }
254
255         if(jidx<j_index_end)
256         {
257
258             /* Get j neighbor index, and coordinate index */
259             jnrA             = jjnr[jidx];
260             jnrB             = jjnr[jidx+1];
261             jnrC             = jjnr[jidx+2];
262             jnrD             = jjnr[jidx+3];
263
264             /* Sign of each element will be negative for non-real atoms.
265              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
266              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
267              */
268             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
269             jnrA       = (jnrA>=0) ? jnrA : 0;
270             jnrB       = (jnrB>=0) ? jnrB : 0;
271             jnrC       = (jnrC>=0) ? jnrC : 0;
272             jnrD       = (jnrD>=0) ? jnrD : 0;
273
274             j_coord_offsetA  = DIM*jnrA;
275             j_coord_offsetB  = DIM*jnrB;
276             j_coord_offsetC  = DIM*jnrC;
277             j_coord_offsetD  = DIM*jnrD;
278
279             /* load j atom coordinates */
280             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
281                                               x+j_coord_offsetC,x+j_coord_offsetD,
282                                               &jx0,&jy0,&jz0);
283
284             /* Calculate displacement vector */
285             dx00             = _mm_sub_ps(ix0,jx0);
286             dy00             = _mm_sub_ps(iy0,jy0);
287             dz00             = _mm_sub_ps(iz0,jz0);
288
289             /* Calculate squared distance and things based on it */
290             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
291
292             rinv00           = gmx_mm_invsqrt_ps(rsq00);
293
294             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
295
296             /* Load parameters for j particles */
297             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
298                                                               charge+jnrC+0,charge+jnrD+0);
299             vdwjidx0A        = 2*vdwtype[jnrA+0];
300             vdwjidx0B        = 2*vdwtype[jnrB+0];
301             vdwjidx0C        = 2*vdwtype[jnrC+0];
302             vdwjidx0D        = 2*vdwtype[jnrD+0];
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r00              = _mm_mul_ps(rsq00,rinv00);
309             r00              = _mm_andnot_ps(dummy_mask,r00);
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq00             = _mm_mul_ps(iq0,jq0);
313             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
314                                          vdwparam+vdwioffset0+vdwjidx0B,
315                                          vdwparam+vdwioffset0+vdwjidx0C,
316                                          vdwparam+vdwioffset0+vdwjidx0D,
317                                          &c6_00,&c12_00);
318
319             /* Calculate table index by multiplying r with table scale and truncate to integer */
320             rt               = _mm_mul_ps(r00,vftabscale);
321             vfitab           = _mm_cvttps_epi32(rt);
322             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
323             vfitab           = _mm_slli_epi32(vfitab,2);
324
325             /* CUBIC SPLINE TABLE ELECTROSTATICS */
326             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
327             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
328             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
329             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
330             _MM_TRANSPOSE4_PS(Y,F,G,H);
331             Heps             = _mm_mul_ps(vfeps,H);
332             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
333             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
334             velec            = _mm_mul_ps(qq00,VV);
335             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
336             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
337
338             /* LENNARD-JONES DISPERSION/REPULSION */
339
340             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
341             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
342             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
343             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
344             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm_andnot_ps(dummy_mask,velec);
348             velecsum         = _mm_add_ps(velecsum,velec);
349             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
350             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
351
352             fscal            = _mm_add_ps(felec,fvdw);
353
354             fscal            = _mm_andnot_ps(dummy_mask,fscal);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm_mul_ps(fscal,dx00);
358             ty               = _mm_mul_ps(fscal,dy00);
359             tz               = _mm_mul_ps(fscal,dz00);
360
361             /* Update vectorial force */
362             fix0             = _mm_add_ps(fix0,tx);
363             fiy0             = _mm_add_ps(fiy0,ty);
364             fiz0             = _mm_add_ps(fiz0,tz);
365
366             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
367                                                    f+j_coord_offsetC,f+j_coord_offsetD,
368                                                    tx,ty,tz);
369
370             /* Inner loop uses 57 flops */
371         }
372
373         /* End of innermost loop */
374
375         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
376                                               f+i_coord_offset,fshift+i_shift_offset);
377
378         ggid                        = gid[iidx];
379         /* Update potential energies */
380         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
381         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
382
383         /* Increment number of inner iterations */
384         inneriter                  += j_index_end - j_index_start;
385
386         /* Outer loop uses 12 flops */
387     }
388
389     /* Increment number of outer iterations */
390     outeriter        += nri;
391
392     /* Update outer/inner flops */
393
394     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*57);
395 }
396 /*
397  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
398  * Electrostatics interaction: CubicSplineTable
399  * VdW interaction:            LennardJones
400  * Geometry:                   Particle-Particle
401  * Calculate force/pot:        Force
402  */
403 void
404 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
405                     (t_nblist * gmx_restrict                nlist,
406                      rvec * gmx_restrict                    xx,
407                      rvec * gmx_restrict                    ff,
408                      t_forcerec * gmx_restrict              fr,
409                      t_mdatoms * gmx_restrict               mdatoms,
410                      nb_kernel_data_t * gmx_restrict        kernel_data,
411                      t_nrnb * gmx_restrict                  nrnb)
412 {
413     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
414      * just 0 for non-waters.
415      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
416      * jnr indices corresponding to data put in the four positions in the SIMD register.
417      */
418     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
419     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
420     int              jnrA,jnrB,jnrC,jnrD;
421     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
422     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
423     real             shX,shY,shZ,rcutoff_scalar;
424     real             *shiftvec,*fshift,*x,*f;
425     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
426     int              vdwioffset0;
427     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
428     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
429     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
430     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
431     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
432     real             *charge;
433     int              nvdwtype;
434     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
435     int              *vdwtype;
436     real             *vdwparam;
437     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
438     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
439     __m128i          vfitab;
440     __m128i          ifour       = _mm_set1_epi32(4);
441     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
442     real             *vftab;
443     __m128           dummy_mask,cutoff_mask;
444     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
445     __m128           one     = _mm_set1_ps(1.0);
446     __m128           two     = _mm_set1_ps(2.0);
447     x                = xx[0];
448     f                = ff[0];
449
450     nri              = nlist->nri;
451     iinr             = nlist->iinr;
452     jindex           = nlist->jindex;
453     jjnr             = nlist->jjnr;
454     shiftidx         = nlist->shift;
455     gid              = nlist->gid;
456     shiftvec         = fr->shift_vec[0];
457     fshift           = fr->fshift[0];
458     facel            = _mm_set1_ps(fr->epsfac);
459     charge           = mdatoms->chargeA;
460     nvdwtype         = fr->ntype;
461     vdwparam         = fr->nbfp;
462     vdwtype          = mdatoms->typeA;
463
464     vftab            = kernel_data->table_elec->data;
465     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
466
467     /* Avoid stupid compiler warnings */
468     jnrA = jnrB = jnrC = jnrD = 0;
469     j_coord_offsetA = 0;
470     j_coord_offsetB = 0;
471     j_coord_offsetC = 0;
472     j_coord_offsetD = 0;
473
474     outeriter        = 0;
475     inneriter        = 0;
476
477     /* Start outer loop over neighborlists */
478     for(iidx=0; iidx<nri; iidx++)
479     {
480         /* Load shift vector for this list */
481         i_shift_offset   = DIM*shiftidx[iidx];
482         shX              = shiftvec[i_shift_offset+XX];
483         shY              = shiftvec[i_shift_offset+YY];
484         shZ              = shiftvec[i_shift_offset+ZZ];
485
486         /* Load limits for loop over neighbors */
487         j_index_start    = jindex[iidx];
488         j_index_end      = jindex[iidx+1];
489
490         /* Get outer coordinate index */
491         inr              = iinr[iidx];
492         i_coord_offset   = DIM*inr;
493
494         /* Load i particle coords and add shift vector */
495         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
496         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
497         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
498
499         fix0             = _mm_setzero_ps();
500         fiy0             = _mm_setzero_ps();
501         fiz0             = _mm_setzero_ps();
502
503         /* Load parameters for i particles */
504         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
505         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             jnrC             = jjnr[jidx+2];
515             jnrD             = jjnr[jidx+3];
516
517             j_coord_offsetA  = DIM*jnrA;
518             j_coord_offsetB  = DIM*jnrB;
519             j_coord_offsetC  = DIM*jnrC;
520             j_coord_offsetD  = DIM*jnrD;
521
522             /* load j atom coordinates */
523             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
524                                               x+j_coord_offsetC,x+j_coord_offsetD,
525                                               &jx0,&jy0,&jz0);
526
527             /* Calculate displacement vector */
528             dx00             = _mm_sub_ps(ix0,jx0);
529             dy00             = _mm_sub_ps(iy0,jy0);
530             dz00             = _mm_sub_ps(iz0,jz0);
531
532             /* Calculate squared distance and things based on it */
533             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
534
535             rinv00           = gmx_mm_invsqrt_ps(rsq00);
536
537             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
538
539             /* Load parameters for j particles */
540             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
541                                                               charge+jnrC+0,charge+jnrD+0);
542             vdwjidx0A        = 2*vdwtype[jnrA+0];
543             vdwjidx0B        = 2*vdwtype[jnrB+0];
544             vdwjidx0C        = 2*vdwtype[jnrC+0];
545             vdwjidx0D        = 2*vdwtype[jnrD+0];
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r00              = _mm_mul_ps(rsq00,rinv00);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq00             = _mm_mul_ps(iq0,jq0);
555             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
556                                          vdwparam+vdwioffset0+vdwjidx0B,
557                                          vdwparam+vdwioffset0+vdwjidx0C,
558                                          vdwparam+vdwioffset0+vdwjidx0D,
559                                          &c6_00,&c12_00);
560
561             /* Calculate table index by multiplying r with table scale and truncate to integer */
562             rt               = _mm_mul_ps(r00,vftabscale);
563             vfitab           = _mm_cvttps_epi32(rt);
564             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
565             vfitab           = _mm_slli_epi32(vfitab,2);
566
567             /* CUBIC SPLINE TABLE ELECTROSTATICS */
568             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
569             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
570             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
571             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
572             _MM_TRANSPOSE4_PS(Y,F,G,H);
573             Heps             = _mm_mul_ps(vfeps,H);
574             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
575             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
576             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
577
578             /* LENNARD-JONES DISPERSION/REPULSION */
579
580             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
581             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
582
583             fscal            = _mm_add_ps(felec,fvdw);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm_mul_ps(fscal,dx00);
587             ty               = _mm_mul_ps(fscal,dy00);
588             tz               = _mm_mul_ps(fscal,dz00);
589
590             /* Update vectorial force */
591             fix0             = _mm_add_ps(fix0,tx);
592             fiy0             = _mm_add_ps(fiy0,ty);
593             fiz0             = _mm_add_ps(fiz0,tz);
594
595             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
596                                                    f+j_coord_offsetC,f+j_coord_offsetD,
597                                                    tx,ty,tz);
598
599             /* Inner loop uses 47 flops */
600         }
601
602         if(jidx<j_index_end)
603         {
604
605             /* Get j neighbor index, and coordinate index */
606             jnrA             = jjnr[jidx];
607             jnrB             = jjnr[jidx+1];
608             jnrC             = jjnr[jidx+2];
609             jnrD             = jjnr[jidx+3];
610
611             /* Sign of each element will be negative for non-real atoms.
612              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
613              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
614              */
615             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
616             jnrA       = (jnrA>=0) ? jnrA : 0;
617             jnrB       = (jnrB>=0) ? jnrB : 0;
618             jnrC       = (jnrC>=0) ? jnrC : 0;
619             jnrD       = (jnrD>=0) ? jnrD : 0;
620
621             j_coord_offsetA  = DIM*jnrA;
622             j_coord_offsetB  = DIM*jnrB;
623             j_coord_offsetC  = DIM*jnrC;
624             j_coord_offsetD  = DIM*jnrD;
625
626             /* load j atom coordinates */
627             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
628                                               x+j_coord_offsetC,x+j_coord_offsetD,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm_sub_ps(ix0,jx0);
633             dy00             = _mm_sub_ps(iy0,jy0);
634             dz00             = _mm_sub_ps(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
638
639             rinv00           = gmx_mm_invsqrt_ps(rsq00);
640
641             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
645                                                               charge+jnrC+0,charge+jnrD+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647             vdwjidx0B        = 2*vdwtype[jnrB+0];
648             vdwjidx0C        = 2*vdwtype[jnrC+0];
649             vdwjidx0D        = 2*vdwtype[jnrD+0];
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             r00              = _mm_mul_ps(rsq00,rinv00);
656             r00              = _mm_andnot_ps(dummy_mask,r00);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq00             = _mm_mul_ps(iq0,jq0);
660             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
661                                          vdwparam+vdwioffset0+vdwjidx0B,
662                                          vdwparam+vdwioffset0+vdwjidx0C,
663                                          vdwparam+vdwioffset0+vdwjidx0D,
664                                          &c6_00,&c12_00);
665
666             /* Calculate table index by multiplying r with table scale and truncate to integer */
667             rt               = _mm_mul_ps(r00,vftabscale);
668             vfitab           = _mm_cvttps_epi32(rt);
669             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
670             vfitab           = _mm_slli_epi32(vfitab,2);
671
672             /* CUBIC SPLINE TABLE ELECTROSTATICS */
673             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
674             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
675             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
676             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
677             _MM_TRANSPOSE4_PS(Y,F,G,H);
678             Heps             = _mm_mul_ps(vfeps,H);
679             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
680             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
681             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
682
683             /* LENNARD-JONES DISPERSION/REPULSION */
684
685             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
686             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
687
688             fscal            = _mm_add_ps(felec,fvdw);
689
690             fscal            = _mm_andnot_ps(dummy_mask,fscal);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm_mul_ps(fscal,dx00);
694             ty               = _mm_mul_ps(fscal,dy00);
695             tz               = _mm_mul_ps(fscal,dz00);
696
697             /* Update vectorial force */
698             fix0             = _mm_add_ps(fix0,tx);
699             fiy0             = _mm_add_ps(fiy0,ty);
700             fiz0             = _mm_add_ps(fiz0,tz);
701
702             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
703                                                    f+j_coord_offsetC,f+j_coord_offsetD,
704                                                    tx,ty,tz);
705
706             /* Inner loop uses 48 flops */
707         }
708
709         /* End of innermost loop */
710
711         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
712                                               f+i_coord_offset,fshift+i_shift_offset);
713
714         /* Increment number of inner iterations */
715         inneriter                  += j_index_end - j_index_start;
716
717         /* Outer loop uses 10 flops */
718     }
719
720     /* Increment number of outer iterations */
721     outeriter        += nri;
722
723     /* Update outer/inner flops */
724
725     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*48);
726 }