38a726739ec3cd42eac94432a2617f7d4471b682
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_elec->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }  
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141         
142         fix0             = _mm_setzero_ps();
143         fiy0             = _mm_setzero_ps();
144         fiz0             = _mm_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_ps();
152         vvdwsum          = _mm_setzero_ps();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165             j_coord_offsetC  = DIM*jnrC;
166             j_coord_offsetD  = DIM*jnrD;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               x+j_coord_offsetC,x+j_coord_offsetD,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_ps(ix0,jx0);
175             dy00             = _mm_sub_ps(iy0,jy0);
176             dz00             = _mm_sub_ps(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
182
183             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
187                                                               charge+jnrC+0,charge+jnrD+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190             vdwjidx0C        = 2*vdwtype[jnrC+0];
191             vdwjidx0D        = 2*vdwtype[jnrD+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             r00              = _mm_mul_ps(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_ps(iq0,jq0);
201             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,
203                                          vdwparam+vdwioffset0+vdwjidx0C,
204                                          vdwparam+vdwioffset0+vdwjidx0D,
205                                          &c6_00,&c12_00);
206
207             /* Calculate table index by multiplying r with table scale and truncate to integer */
208             rt               = _mm_mul_ps(r00,vftabscale);
209             vfitab           = _mm_cvttps_epi32(rt);
210             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
211             vfitab           = _mm_slli_epi32(vfitab,2);
212
213             /* CUBIC SPLINE TABLE ELECTROSTATICS */
214             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
215             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
216             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
217             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
218             _MM_TRANSPOSE4_PS(Y,F,G,H);
219             Heps             = _mm_mul_ps(vfeps,H);
220             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
221             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
222             velec            = _mm_mul_ps(qq00,VV);
223             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
224             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
225
226             /* LENNARD-JONES DISPERSION/REPULSION */
227
228             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
229             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
230             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
231             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
232             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             velecsum         = _mm_add_ps(velecsum,velec);
236             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
237
238             fscal            = _mm_add_ps(felec,fvdw);
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm_mul_ps(fscal,dx00);
242             ty               = _mm_mul_ps(fscal,dy00);
243             tz               = _mm_mul_ps(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm_add_ps(fix0,tx);
247             fiy0             = _mm_add_ps(fiy0,ty);
248             fiz0             = _mm_add_ps(fiz0,tz);
249
250             fjptrA             = f+j_coord_offsetA;
251             fjptrB             = f+j_coord_offsetB;
252             fjptrC             = f+j_coord_offsetC;
253             fjptrD             = f+j_coord_offsetD;
254             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
255             
256             /* Inner loop uses 56 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             /* Get j neighbor index, and coordinate index */
263             jnrlistA         = jjnr[jidx];
264             jnrlistB         = jjnr[jidx+1];
265             jnrlistC         = jjnr[jidx+2];
266             jnrlistD         = jjnr[jidx+3];
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
270              */
271             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
273             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
274             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
275             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
276             j_coord_offsetA  = DIM*jnrA;
277             j_coord_offsetB  = DIM*jnrB;
278             j_coord_offsetC  = DIM*jnrC;
279             j_coord_offsetD  = DIM*jnrD;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
283                                               x+j_coord_offsetC,x+j_coord_offsetD,
284                                               &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm_sub_ps(ix0,jx0);
288             dy00             = _mm_sub_ps(iy0,jy0);
289             dz00             = _mm_sub_ps(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm_invsqrt_ps(rsq00);
295
296             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
297
298             /* Load parameters for j particles */
299             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
300                                                               charge+jnrC+0,charge+jnrD+0);
301             vdwjidx0A        = 2*vdwtype[jnrA+0];
302             vdwjidx0B        = 2*vdwtype[jnrB+0];
303             vdwjidx0C        = 2*vdwtype[jnrC+0];
304             vdwjidx0D        = 2*vdwtype[jnrD+0];
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             r00              = _mm_mul_ps(rsq00,rinv00);
311             r00              = _mm_andnot_ps(dummy_mask,r00);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq00             = _mm_mul_ps(iq0,jq0);
315             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
316                                          vdwparam+vdwioffset0+vdwjidx0B,
317                                          vdwparam+vdwioffset0+vdwjidx0C,
318                                          vdwparam+vdwioffset0+vdwjidx0D,
319                                          &c6_00,&c12_00);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_ps(r00,vftabscale);
323             vfitab           = _mm_cvttps_epi32(rt);
324             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
325             vfitab           = _mm_slli_epi32(vfitab,2);
326
327             /* CUBIC SPLINE TABLE ELECTROSTATICS */
328             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
329             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
330             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
331             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
332             _MM_TRANSPOSE4_PS(Y,F,G,H);
333             Heps             = _mm_mul_ps(vfeps,H);
334             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
335             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
336             velec            = _mm_mul_ps(qq00,VV);
337             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
338             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
339
340             /* LENNARD-JONES DISPERSION/REPULSION */
341
342             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
343             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
344             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
345             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
346             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm_andnot_ps(dummy_mask,velec);
350             velecsum         = _mm_add_ps(velecsum,velec);
351             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
352             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
353
354             fscal            = _mm_add_ps(felec,fvdw);
355
356             fscal            = _mm_andnot_ps(dummy_mask,fscal);
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_ps(fscal,dx00);
360             ty               = _mm_mul_ps(fscal,dy00);
361             tz               = _mm_mul_ps(fscal,dz00);
362
363             /* Update vectorial force */
364             fix0             = _mm_add_ps(fix0,tx);
365             fiy0             = _mm_add_ps(fiy0,ty);
366             fiz0             = _mm_add_ps(fiz0,tz);
367
368             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
369             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
370             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
371             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
372             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
373             
374             /* Inner loop uses 57 flops */
375         }
376
377         /* End of innermost loop */
378
379         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
380                                               f+i_coord_offset,fshift+i_shift_offset);
381
382         ggid                        = gid[iidx];
383         /* Update potential energies */
384         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
385         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
386
387         /* Increment number of inner iterations */
388         inneriter                  += j_index_end - j_index_start;
389
390         /* Outer loop uses 9 flops */
391     }
392
393     /* Increment number of outer iterations */
394     outeriter        += nri;
395
396     /* Update outer/inner flops */
397
398     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
399 }
400 /*
401  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
402  * Electrostatics interaction: CubicSplineTable
403  * VdW interaction:            LennardJones
404  * Geometry:                   Particle-Particle
405  * Calculate force/pot:        Force
406  */
407 void
408 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
409                     (t_nblist * gmx_restrict                nlist,
410                      rvec * gmx_restrict                    xx,
411                      rvec * gmx_restrict                    ff,
412                      t_forcerec * gmx_restrict              fr,
413                      t_mdatoms * gmx_restrict               mdatoms,
414                      nb_kernel_data_t * gmx_restrict        kernel_data,
415                      t_nrnb * gmx_restrict                  nrnb)
416 {
417     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
418      * just 0 for non-waters.
419      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
420      * jnr indices corresponding to data put in the four positions in the SIMD register.
421      */
422     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
423     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
424     int              jnrA,jnrB,jnrC,jnrD;
425     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
426     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
427     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
428     real             rcutoff_scalar;
429     real             *shiftvec,*fshift,*x,*f;
430     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
431     real             scratch[4*DIM];
432     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
433     int              vdwioffset0;
434     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
435     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
436     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
437     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
438     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
439     real             *charge;
440     int              nvdwtype;
441     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
442     int              *vdwtype;
443     real             *vdwparam;
444     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
445     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
446     __m128i          vfitab;
447     __m128i          ifour       = _mm_set1_epi32(4);
448     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
449     real             *vftab;
450     __m128           dummy_mask,cutoff_mask;
451     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
452     __m128           one     = _mm_set1_ps(1.0);
453     __m128           two     = _mm_set1_ps(2.0);
454     x                = xx[0];
455     f                = ff[0];
456
457     nri              = nlist->nri;
458     iinr             = nlist->iinr;
459     jindex           = nlist->jindex;
460     jjnr             = nlist->jjnr;
461     shiftidx         = nlist->shift;
462     gid              = nlist->gid;
463     shiftvec         = fr->shift_vec[0];
464     fshift           = fr->fshift[0];
465     facel            = _mm_set1_ps(fr->epsfac);
466     charge           = mdatoms->chargeA;
467     nvdwtype         = fr->ntype;
468     vdwparam         = fr->nbfp;
469     vdwtype          = mdatoms->typeA;
470
471     vftab            = kernel_data->table_elec->data;
472     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
473
474     /* Avoid stupid compiler warnings */
475     jnrA = jnrB = jnrC = jnrD = 0;
476     j_coord_offsetA = 0;
477     j_coord_offsetB = 0;
478     j_coord_offsetC = 0;
479     j_coord_offsetD = 0;
480
481     outeriter        = 0;
482     inneriter        = 0;
483
484     for(iidx=0;iidx<4*DIM;iidx++)
485     {
486         scratch[iidx] = 0.0;
487     }  
488
489     /* Start outer loop over neighborlists */
490     for(iidx=0; iidx<nri; iidx++)
491     {
492         /* Load shift vector for this list */
493         i_shift_offset   = DIM*shiftidx[iidx];
494
495         /* Load limits for loop over neighbors */
496         j_index_start    = jindex[iidx];
497         j_index_end      = jindex[iidx+1];
498
499         /* Get outer coordinate index */
500         inr              = iinr[iidx];
501         i_coord_offset   = DIM*inr;
502
503         /* Load i particle coords and add shift vector */
504         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
505         
506         fix0             = _mm_setzero_ps();
507         fiy0             = _mm_setzero_ps();
508         fiz0             = _mm_setzero_ps();
509
510         /* Load parameters for i particles */
511         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
512         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
513
514         /* Start inner kernel loop */
515         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
516         {
517
518             /* Get j neighbor index, and coordinate index */
519             jnrA             = jjnr[jidx];
520             jnrB             = jjnr[jidx+1];
521             jnrC             = jjnr[jidx+2];
522             jnrD             = jjnr[jidx+3];
523             j_coord_offsetA  = DIM*jnrA;
524             j_coord_offsetB  = DIM*jnrB;
525             j_coord_offsetC  = DIM*jnrC;
526             j_coord_offsetD  = DIM*jnrD;
527
528             /* load j atom coordinates */
529             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
530                                               x+j_coord_offsetC,x+j_coord_offsetD,
531                                               &jx0,&jy0,&jz0);
532
533             /* Calculate displacement vector */
534             dx00             = _mm_sub_ps(ix0,jx0);
535             dy00             = _mm_sub_ps(iy0,jy0);
536             dz00             = _mm_sub_ps(iz0,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
540
541             rinv00           = gmx_mm_invsqrt_ps(rsq00);
542
543             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
544
545             /* Load parameters for j particles */
546             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
547                                                               charge+jnrC+0,charge+jnrD+0);
548             vdwjidx0A        = 2*vdwtype[jnrA+0];
549             vdwjidx0B        = 2*vdwtype[jnrB+0];
550             vdwjidx0C        = 2*vdwtype[jnrC+0];
551             vdwjidx0D        = 2*vdwtype[jnrD+0];
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             r00              = _mm_mul_ps(rsq00,rinv00);
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq00             = _mm_mul_ps(iq0,jq0);
561             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
562                                          vdwparam+vdwioffset0+vdwjidx0B,
563                                          vdwparam+vdwioffset0+vdwjidx0C,
564                                          vdwparam+vdwioffset0+vdwjidx0D,
565                                          &c6_00,&c12_00);
566
567             /* Calculate table index by multiplying r with table scale and truncate to integer */
568             rt               = _mm_mul_ps(r00,vftabscale);
569             vfitab           = _mm_cvttps_epi32(rt);
570             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
571             vfitab           = _mm_slli_epi32(vfitab,2);
572
573             /* CUBIC SPLINE TABLE ELECTROSTATICS */
574             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
575             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
576             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
577             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
578             _MM_TRANSPOSE4_PS(Y,F,G,H);
579             Heps             = _mm_mul_ps(vfeps,H);
580             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
581             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
582             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
588
589             fscal            = _mm_add_ps(felec,fvdw);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm_mul_ps(fscal,dx00);
593             ty               = _mm_mul_ps(fscal,dy00);
594             tz               = _mm_mul_ps(fscal,dz00);
595
596             /* Update vectorial force */
597             fix0             = _mm_add_ps(fix0,tx);
598             fiy0             = _mm_add_ps(fiy0,ty);
599             fiz0             = _mm_add_ps(fiz0,tz);
600
601             fjptrA             = f+j_coord_offsetA;
602             fjptrB             = f+j_coord_offsetB;
603             fjptrC             = f+j_coord_offsetC;
604             fjptrD             = f+j_coord_offsetD;
605             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
606             
607             /* Inner loop uses 47 flops */
608         }
609
610         if(jidx<j_index_end)
611         {
612
613             /* Get j neighbor index, and coordinate index */
614             jnrlistA         = jjnr[jidx];
615             jnrlistB         = jjnr[jidx+1];
616             jnrlistC         = jjnr[jidx+2];
617             jnrlistD         = jjnr[jidx+3];
618             /* Sign of each element will be negative for non-real atoms.
619              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
620              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
621              */
622             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
623             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
624             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
625             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
626             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
627             j_coord_offsetA  = DIM*jnrA;
628             j_coord_offsetB  = DIM*jnrB;
629             j_coord_offsetC  = DIM*jnrC;
630             j_coord_offsetD  = DIM*jnrD;
631
632             /* load j atom coordinates */
633             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
634                                               x+j_coord_offsetC,x+j_coord_offsetD,
635                                               &jx0,&jy0,&jz0);
636
637             /* Calculate displacement vector */
638             dx00             = _mm_sub_ps(ix0,jx0);
639             dy00             = _mm_sub_ps(iy0,jy0);
640             dz00             = _mm_sub_ps(iz0,jz0);
641
642             /* Calculate squared distance and things based on it */
643             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
644
645             rinv00           = gmx_mm_invsqrt_ps(rsq00);
646
647             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
648
649             /* Load parameters for j particles */
650             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
651                                                               charge+jnrC+0,charge+jnrD+0);
652             vdwjidx0A        = 2*vdwtype[jnrA+0];
653             vdwjidx0B        = 2*vdwtype[jnrB+0];
654             vdwjidx0C        = 2*vdwtype[jnrC+0];
655             vdwjidx0D        = 2*vdwtype[jnrD+0];
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             r00              = _mm_mul_ps(rsq00,rinv00);
662             r00              = _mm_andnot_ps(dummy_mask,r00);
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq00             = _mm_mul_ps(iq0,jq0);
666             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
667                                          vdwparam+vdwioffset0+vdwjidx0B,
668                                          vdwparam+vdwioffset0+vdwjidx0C,
669                                          vdwparam+vdwioffset0+vdwjidx0D,
670                                          &c6_00,&c12_00);
671
672             /* Calculate table index by multiplying r with table scale and truncate to integer */
673             rt               = _mm_mul_ps(r00,vftabscale);
674             vfitab           = _mm_cvttps_epi32(rt);
675             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
676             vfitab           = _mm_slli_epi32(vfitab,2);
677
678             /* CUBIC SPLINE TABLE ELECTROSTATICS */
679             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
680             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
681             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
682             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
683             _MM_TRANSPOSE4_PS(Y,F,G,H);
684             Heps             = _mm_mul_ps(vfeps,H);
685             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
686             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
687             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
688
689             /* LENNARD-JONES DISPERSION/REPULSION */
690
691             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
692             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
693
694             fscal            = _mm_add_ps(felec,fvdw);
695
696             fscal            = _mm_andnot_ps(dummy_mask,fscal);
697
698             /* Calculate temporary vectorial force */
699             tx               = _mm_mul_ps(fscal,dx00);
700             ty               = _mm_mul_ps(fscal,dy00);
701             tz               = _mm_mul_ps(fscal,dz00);
702
703             /* Update vectorial force */
704             fix0             = _mm_add_ps(fix0,tx);
705             fiy0             = _mm_add_ps(fiy0,ty);
706             fiz0             = _mm_add_ps(fiz0,tz);
707
708             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
709             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
710             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
711             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
712             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
713             
714             /* Inner loop uses 48 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
720                                               f+i_coord_offset,fshift+i_shift_offset);
721
722         /* Increment number of inner iterations */
723         inneriter                  += j_index_end - j_index_start;
724
725         /* Outer loop uses 7 flops */
726     }
727
728     /* Increment number of outer iterations */
729     outeriter        += nri;
730
731     /* Update outer/inner flops */
732
733     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
734 }