3109d42f3e470c7d56a632b6c0d7147fdbc40913
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_pd(fr->ic->k_rf);
107     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_pd(fr->ic->c_rf);
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152         fix1             = _mm_setzero_pd();
153         fiy1             = _mm_setzero_pd();
154         fiz1             = _mm_setzero_pd();
155         fix2             = _mm_setzero_pd();
156         fiy2             = _mm_setzero_pd();
157         fiz2             = _mm_setzero_pd();
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_pd();
161         vvdwsum          = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176             
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181             dx10             = _mm_sub_pd(ix1,jx0);
182             dy10             = _mm_sub_pd(iy1,jy0);
183             dz10             = _mm_sub_pd(iz1,jz0);
184             dx20             = _mm_sub_pd(ix2,jx0);
185             dy20             = _mm_sub_pd(iy2,jy0);
186             dz20             = _mm_sub_pd(iz2,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
190             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
191             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
192
193             rinv00           = gmx_mm_invsqrt_pd(rsq00);
194             rinv10           = gmx_mm_invsqrt_pd(rsq10);
195             rinv20           = gmx_mm_invsqrt_pd(rsq20);
196
197             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
198             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
199             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205
206             fjx0             = _mm_setzero_pd();
207             fjy0             = _mm_setzero_pd();
208             fjz0             = _mm_setzero_pd();
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             r00              = _mm_mul_pd(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm_mul_pd(iq0,jq0);
218             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm_mul_pd(r00,vftabscale);
223             vfitab           = _mm_cvttpd_epi32(rt);
224             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
225             vfitab           = _mm_slli_epi32(vfitab,3);
226
227             /* REACTION-FIELD ELECTROSTATICS */
228             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
229             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
230
231             /* CUBIC SPLINE TABLE DISPERSION */
232             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
233             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
234             GMX_MM_TRANSPOSE2_PD(Y,F);
235             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
236             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(G,H);
238             Heps             = _mm_mul_pd(vfeps,H);
239             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
240             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
241             vvdw6            = _mm_mul_pd(c6_00,VV);
242             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
243             fvdw6            = _mm_mul_pd(c6_00,FF);
244
245             /* CUBIC SPLINE TABLE REPULSION */
246             vfitab           = _mm_add_epi32(vfitab,ifour);
247             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
248             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
249             GMX_MM_TRANSPOSE2_PD(Y,F);
250             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
251             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
252             GMX_MM_TRANSPOSE2_PD(G,H);
253             Heps             = _mm_mul_pd(vfeps,H);
254             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
255             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
256             vvdw12           = _mm_mul_pd(c12_00,VV);
257             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
258             fvdw12           = _mm_mul_pd(c12_00,FF);
259             vvdw             = _mm_add_pd(vvdw12,vvdw6);
260             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm_add_pd(velecsum,velec);
264             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
265
266             fscal            = _mm_add_pd(felec,fvdw);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm_mul_pd(fscal,dx00);
270             ty               = _mm_mul_pd(fscal,dy00);
271             tz               = _mm_mul_pd(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm_add_pd(fix0,tx);
275             fiy0             = _mm_add_pd(fiy0,ty);
276             fiz0             = _mm_add_pd(fiz0,tz);
277
278             fjx0             = _mm_add_pd(fjx0,tx);
279             fjy0             = _mm_add_pd(fjy0,ty);
280             fjz0             = _mm_add_pd(fjz0,tz);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq10             = _mm_mul_pd(iq1,jq0);
288
289             /* REACTION-FIELD ELECTROSTATICS */
290             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
291             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm_add_pd(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_pd(fscal,dx10);
300             ty               = _mm_mul_pd(fscal,dy10);
301             tz               = _mm_mul_pd(fscal,dz10);
302
303             /* Update vectorial force */
304             fix1             = _mm_add_pd(fix1,tx);
305             fiy1             = _mm_add_pd(fiy1,ty);
306             fiz1             = _mm_add_pd(fiz1,tz);
307
308             fjx0             = _mm_add_pd(fjx0,tx);
309             fjy0             = _mm_add_pd(fjy0,ty);
310             fjz0             = _mm_add_pd(fjz0,tz);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq20             = _mm_mul_pd(iq2,jq0);
318
319             /* REACTION-FIELD ELECTROSTATICS */
320             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
321             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _mm_add_pd(velecsum,velec);
325
326             fscal            = felec;
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_pd(fscal,dx20);
330             ty               = _mm_mul_pd(fscal,dy20);
331             tz               = _mm_mul_pd(fscal,dz20);
332
333             /* Update vectorial force */
334             fix2             = _mm_add_pd(fix2,tx);
335             fiy2             = _mm_add_pd(fiy2,ty);
336             fiz2             = _mm_add_pd(fiz2,tz);
337
338             fjx0             = _mm_add_pd(fjx0,tx);
339             fjy0             = _mm_add_pd(fjy0,ty);
340             fjz0             = _mm_add_pd(fjz0,tz);
341
342             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
343
344             /* Inner loop uses 134 flops */
345         }
346
347         if(jidx<j_index_end)
348         {
349
350             jnrA             = jjnr[jidx];
351             j_coord_offsetA  = DIM*jnrA;
352
353             /* load j atom coordinates */
354             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
355                                               &jx0,&jy0,&jz0);
356             
357             /* Calculate displacement vector */
358             dx00             = _mm_sub_pd(ix0,jx0);
359             dy00             = _mm_sub_pd(iy0,jy0);
360             dz00             = _mm_sub_pd(iz0,jz0);
361             dx10             = _mm_sub_pd(ix1,jx0);
362             dy10             = _mm_sub_pd(iy1,jy0);
363             dz10             = _mm_sub_pd(iz1,jz0);
364             dx20             = _mm_sub_pd(ix2,jx0);
365             dy20             = _mm_sub_pd(iy2,jy0);
366             dz20             = _mm_sub_pd(iz2,jz0);
367
368             /* Calculate squared distance and things based on it */
369             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
370             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
371             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
372
373             rinv00           = gmx_mm_invsqrt_pd(rsq00);
374             rinv10           = gmx_mm_invsqrt_pd(rsq10);
375             rinv20           = gmx_mm_invsqrt_pd(rsq20);
376
377             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
378             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
379             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
380
381             /* Load parameters for j particles */
382             jq0              = _mm_load_sd(charge+jnrA+0);
383             vdwjidx0A        = 2*vdwtype[jnrA+0];
384
385             fjx0             = _mm_setzero_pd();
386             fjy0             = _mm_setzero_pd();
387             fjz0             = _mm_setzero_pd();
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             r00              = _mm_mul_pd(rsq00,rinv00);
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq00             = _mm_mul_pd(iq0,jq0);
397             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm_mul_pd(r00,vftabscale);
401             vfitab           = _mm_cvttpd_epi32(rt);
402             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
403             vfitab           = _mm_slli_epi32(vfitab,3);
404
405             /* REACTION-FIELD ELECTROSTATICS */
406             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
407             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
408
409             /* CUBIC SPLINE TABLE DISPERSION */
410             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
411             F                = _mm_setzero_pd();
412             GMX_MM_TRANSPOSE2_PD(Y,F);
413             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
414             H                = _mm_setzero_pd();
415             GMX_MM_TRANSPOSE2_PD(G,H);
416             Heps             = _mm_mul_pd(vfeps,H);
417             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
418             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
419             vvdw6            = _mm_mul_pd(c6_00,VV);
420             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
421             fvdw6            = _mm_mul_pd(c6_00,FF);
422
423             /* CUBIC SPLINE TABLE REPULSION */
424             vfitab           = _mm_add_epi32(vfitab,ifour);
425             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
426             F                = _mm_setzero_pd();
427             GMX_MM_TRANSPOSE2_PD(Y,F);
428             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
429             H                = _mm_setzero_pd();
430             GMX_MM_TRANSPOSE2_PD(G,H);
431             Heps             = _mm_mul_pd(vfeps,H);
432             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
433             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
434             vvdw12           = _mm_mul_pd(c12_00,VV);
435             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
436             fvdw12           = _mm_mul_pd(c12_00,FF);
437             vvdw             = _mm_add_pd(vvdw12,vvdw6);
438             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
442             velecsum         = _mm_add_pd(velecsum,velec);
443             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
444             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
445
446             fscal            = _mm_add_pd(felec,fvdw);
447
448             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm_mul_pd(fscal,dx00);
452             ty               = _mm_mul_pd(fscal,dy00);
453             tz               = _mm_mul_pd(fscal,dz00);
454
455             /* Update vectorial force */
456             fix0             = _mm_add_pd(fix0,tx);
457             fiy0             = _mm_add_pd(fiy0,ty);
458             fiz0             = _mm_add_pd(fiz0,tz);
459
460             fjx0             = _mm_add_pd(fjx0,tx);
461             fjy0             = _mm_add_pd(fjy0,ty);
462             fjz0             = _mm_add_pd(fjz0,tz);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq10             = _mm_mul_pd(iq1,jq0);
470
471             /* REACTION-FIELD ELECTROSTATICS */
472             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
473             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
477             velecsum         = _mm_add_pd(velecsum,velec);
478
479             fscal            = felec;
480
481             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm_mul_pd(fscal,dx10);
485             ty               = _mm_mul_pd(fscal,dy10);
486             tz               = _mm_mul_pd(fscal,dz10);
487
488             /* Update vectorial force */
489             fix1             = _mm_add_pd(fix1,tx);
490             fiy1             = _mm_add_pd(fiy1,ty);
491             fiz1             = _mm_add_pd(fiz1,tz);
492
493             fjx0             = _mm_add_pd(fjx0,tx);
494             fjy0             = _mm_add_pd(fjy0,ty);
495             fjz0             = _mm_add_pd(fjz0,tz);
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq20             = _mm_mul_pd(iq2,jq0);
503
504             /* REACTION-FIELD ELECTROSTATICS */
505             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
506             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
510             velecsum         = _mm_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_pd(fscal,dx20);
518             ty               = _mm_mul_pd(fscal,dy20);
519             tz               = _mm_mul_pd(fscal,dz20);
520
521             /* Update vectorial force */
522             fix2             = _mm_add_pd(fix2,tx);
523             fiy2             = _mm_add_pd(fiy2,ty);
524             fiz2             = _mm_add_pd(fiz2,tz);
525
526             fjx0             = _mm_add_pd(fjx0,tx);
527             fjy0             = _mm_add_pd(fjy0,ty);
528             fjz0             = _mm_add_pd(fjz0,tz);
529
530             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
531
532             /* Inner loop uses 134 flops */
533         }
534
535         /* End of innermost loop */
536
537         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
538                                               f+i_coord_offset,fshift+i_shift_offset);
539
540         ggid                        = gid[iidx];
541         /* Update potential energies */
542         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
543         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
544
545         /* Increment number of inner iterations */
546         inneriter                  += j_index_end - j_index_start;
547
548         /* Outer loop uses 20 flops */
549     }
550
551     /* Increment number of outer iterations */
552     outeriter        += nri;
553
554     /* Update outer/inner flops */
555
556     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*134);
557 }
558 /*
559  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_double
560  * Electrostatics interaction: ReactionField
561  * VdW interaction:            CubicSplineTable
562  * Geometry:                   Water3-Particle
563  * Calculate force/pot:        Force
564  */
565 void
566 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_double
567                     (t_nblist * gmx_restrict                nlist,
568                      rvec * gmx_restrict                    xx,
569                      rvec * gmx_restrict                    ff,
570                      t_forcerec * gmx_restrict              fr,
571                      t_mdatoms * gmx_restrict               mdatoms,
572                      nb_kernel_data_t * gmx_restrict        kernel_data,
573                      t_nrnb * gmx_restrict                  nrnb)
574 {
575     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
576      * just 0 for non-waters.
577      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
578      * jnr indices corresponding to data put in the four positions in the SIMD register.
579      */
580     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
581     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
582     int              jnrA,jnrB;
583     int              j_coord_offsetA,j_coord_offsetB;
584     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
585     real             rcutoff_scalar;
586     real             *shiftvec,*fshift,*x,*f;
587     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
588     int              vdwioffset0;
589     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
590     int              vdwioffset1;
591     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
592     int              vdwioffset2;
593     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
594     int              vdwjidx0A,vdwjidx0B;
595     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
596     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
597     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
598     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
599     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     int              nvdwtype;
602     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
603     int              *vdwtype;
604     real             *vdwparam;
605     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
606     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
607     __m128i          vfitab;
608     __m128i          ifour       = _mm_set1_epi32(4);
609     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
610     real             *vftab;
611     __m128d          dummy_mask,cutoff_mask;
612     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
613     __m128d          one     = _mm_set1_pd(1.0);
614     __m128d          two     = _mm_set1_pd(2.0);
615     x                = xx[0];
616     f                = ff[0];
617
618     nri              = nlist->nri;
619     iinr             = nlist->iinr;
620     jindex           = nlist->jindex;
621     jjnr             = nlist->jjnr;
622     shiftidx         = nlist->shift;
623     gid              = nlist->gid;
624     shiftvec         = fr->shift_vec[0];
625     fshift           = fr->fshift[0];
626     facel            = _mm_set1_pd(fr->epsfac);
627     charge           = mdatoms->chargeA;
628     krf              = _mm_set1_pd(fr->ic->k_rf);
629     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
630     crf              = _mm_set1_pd(fr->ic->c_rf);
631     nvdwtype         = fr->ntype;
632     vdwparam         = fr->nbfp;
633     vdwtype          = mdatoms->typeA;
634
635     vftab            = kernel_data->table_vdw->data;
636     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
637
638     /* Setup water-specific parameters */
639     inr              = nlist->iinr[0];
640     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
641     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
642     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
643     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
644
645     /* Avoid stupid compiler warnings */
646     jnrA = jnrB = 0;
647     j_coord_offsetA = 0;
648     j_coord_offsetB = 0;
649
650     outeriter        = 0;
651     inneriter        = 0;
652
653     /* Start outer loop over neighborlists */
654     for(iidx=0; iidx<nri; iidx++)
655     {
656         /* Load shift vector for this list */
657         i_shift_offset   = DIM*shiftidx[iidx];
658
659         /* Load limits for loop over neighbors */
660         j_index_start    = jindex[iidx];
661         j_index_end      = jindex[iidx+1];
662
663         /* Get outer coordinate index */
664         inr              = iinr[iidx];
665         i_coord_offset   = DIM*inr;
666
667         /* Load i particle coords and add shift vector */
668         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
669                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
670
671         fix0             = _mm_setzero_pd();
672         fiy0             = _mm_setzero_pd();
673         fiz0             = _mm_setzero_pd();
674         fix1             = _mm_setzero_pd();
675         fiy1             = _mm_setzero_pd();
676         fiz1             = _mm_setzero_pd();
677         fix2             = _mm_setzero_pd();
678         fiy2             = _mm_setzero_pd();
679         fiz2             = _mm_setzero_pd();
680
681         /* Start inner kernel loop */
682         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
683         {
684
685             /* Get j neighbor index, and coordinate index */
686             jnrA             = jjnr[jidx];
687             jnrB             = jjnr[jidx+1];
688             j_coord_offsetA  = DIM*jnrA;
689             j_coord_offsetB  = DIM*jnrB;
690             
691             /* load j atom coordinates */
692             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
693                                               &jx0,&jy0,&jz0);
694             
695             /* Calculate displacement vector */
696             dx00             = _mm_sub_pd(ix0,jx0);
697             dy00             = _mm_sub_pd(iy0,jy0);
698             dz00             = _mm_sub_pd(iz0,jz0);
699             dx10             = _mm_sub_pd(ix1,jx0);
700             dy10             = _mm_sub_pd(iy1,jy0);
701             dz10             = _mm_sub_pd(iz1,jz0);
702             dx20             = _mm_sub_pd(ix2,jx0);
703             dy20             = _mm_sub_pd(iy2,jy0);
704             dz20             = _mm_sub_pd(iz2,jz0);
705
706             /* Calculate squared distance and things based on it */
707             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
708             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
709             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
710
711             rinv00           = gmx_mm_invsqrt_pd(rsq00);
712             rinv10           = gmx_mm_invsqrt_pd(rsq10);
713             rinv20           = gmx_mm_invsqrt_pd(rsq20);
714
715             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
716             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
717             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
718
719             /* Load parameters for j particles */
720             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
721             vdwjidx0A        = 2*vdwtype[jnrA+0];
722             vdwjidx0B        = 2*vdwtype[jnrB+0];
723
724             fjx0             = _mm_setzero_pd();
725             fjy0             = _mm_setzero_pd();
726             fjz0             = _mm_setzero_pd();
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             r00              = _mm_mul_pd(rsq00,rinv00);
733
734             /* Compute parameters for interactions between i and j atoms */
735             qq00             = _mm_mul_pd(iq0,jq0);
736             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
737                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
738
739             /* Calculate table index by multiplying r with table scale and truncate to integer */
740             rt               = _mm_mul_pd(r00,vftabscale);
741             vfitab           = _mm_cvttpd_epi32(rt);
742             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
743             vfitab           = _mm_slli_epi32(vfitab,3);
744
745             /* REACTION-FIELD ELECTROSTATICS */
746             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
747
748             /* CUBIC SPLINE TABLE DISPERSION */
749             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
750             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
751             GMX_MM_TRANSPOSE2_PD(Y,F);
752             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
753             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
754             GMX_MM_TRANSPOSE2_PD(G,H);
755             Heps             = _mm_mul_pd(vfeps,H);
756             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
757             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
758             fvdw6            = _mm_mul_pd(c6_00,FF);
759
760             /* CUBIC SPLINE TABLE REPULSION */
761             vfitab           = _mm_add_epi32(vfitab,ifour);
762             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
763             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
764             GMX_MM_TRANSPOSE2_PD(Y,F);
765             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
766             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
767             GMX_MM_TRANSPOSE2_PD(G,H);
768             Heps             = _mm_mul_pd(vfeps,H);
769             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
770             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
771             fvdw12           = _mm_mul_pd(c12_00,FF);
772             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
773
774             fscal            = _mm_add_pd(felec,fvdw);
775
776             /* Calculate temporary vectorial force */
777             tx               = _mm_mul_pd(fscal,dx00);
778             ty               = _mm_mul_pd(fscal,dy00);
779             tz               = _mm_mul_pd(fscal,dz00);
780
781             /* Update vectorial force */
782             fix0             = _mm_add_pd(fix0,tx);
783             fiy0             = _mm_add_pd(fiy0,ty);
784             fiz0             = _mm_add_pd(fiz0,tz);
785
786             fjx0             = _mm_add_pd(fjx0,tx);
787             fjy0             = _mm_add_pd(fjy0,ty);
788             fjz0             = _mm_add_pd(fjz0,tz);
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             /* Compute parameters for interactions between i and j atoms */
795             qq10             = _mm_mul_pd(iq1,jq0);
796
797             /* REACTION-FIELD ELECTROSTATICS */
798             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
799
800             fscal            = felec;
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm_mul_pd(fscal,dx10);
804             ty               = _mm_mul_pd(fscal,dy10);
805             tz               = _mm_mul_pd(fscal,dz10);
806
807             /* Update vectorial force */
808             fix1             = _mm_add_pd(fix1,tx);
809             fiy1             = _mm_add_pd(fiy1,ty);
810             fiz1             = _mm_add_pd(fiz1,tz);
811
812             fjx0             = _mm_add_pd(fjx0,tx);
813             fjy0             = _mm_add_pd(fjy0,ty);
814             fjz0             = _mm_add_pd(fjz0,tz);
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             /* Compute parameters for interactions between i and j atoms */
821             qq20             = _mm_mul_pd(iq2,jq0);
822
823             /* REACTION-FIELD ELECTROSTATICS */
824             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
825
826             fscal            = felec;
827
828             /* Calculate temporary vectorial force */
829             tx               = _mm_mul_pd(fscal,dx20);
830             ty               = _mm_mul_pd(fscal,dy20);
831             tz               = _mm_mul_pd(fscal,dz20);
832
833             /* Update vectorial force */
834             fix2             = _mm_add_pd(fix2,tx);
835             fiy2             = _mm_add_pd(fiy2,ty);
836             fiz2             = _mm_add_pd(fiz2,tz);
837
838             fjx0             = _mm_add_pd(fjx0,tx);
839             fjy0             = _mm_add_pd(fjy0,ty);
840             fjz0             = _mm_add_pd(fjz0,tz);
841
842             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
843
844             /* Inner loop uses 111 flops */
845         }
846
847         if(jidx<j_index_end)
848         {
849
850             jnrA             = jjnr[jidx];
851             j_coord_offsetA  = DIM*jnrA;
852
853             /* load j atom coordinates */
854             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
855                                               &jx0,&jy0,&jz0);
856             
857             /* Calculate displacement vector */
858             dx00             = _mm_sub_pd(ix0,jx0);
859             dy00             = _mm_sub_pd(iy0,jy0);
860             dz00             = _mm_sub_pd(iz0,jz0);
861             dx10             = _mm_sub_pd(ix1,jx0);
862             dy10             = _mm_sub_pd(iy1,jy0);
863             dz10             = _mm_sub_pd(iz1,jz0);
864             dx20             = _mm_sub_pd(ix2,jx0);
865             dy20             = _mm_sub_pd(iy2,jy0);
866             dz20             = _mm_sub_pd(iz2,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
870             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
872
873             rinv00           = gmx_mm_invsqrt_pd(rsq00);
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876
877             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
880
881             /* Load parameters for j particles */
882             jq0              = _mm_load_sd(charge+jnrA+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884
885             fjx0             = _mm_setzero_pd();
886             fjy0             = _mm_setzero_pd();
887             fjz0             = _mm_setzero_pd();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r00              = _mm_mul_pd(rsq00,rinv00);
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq00             = _mm_mul_pd(iq0,jq0);
897             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
898
899             /* Calculate table index by multiplying r with table scale and truncate to integer */
900             rt               = _mm_mul_pd(r00,vftabscale);
901             vfitab           = _mm_cvttpd_epi32(rt);
902             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
903             vfitab           = _mm_slli_epi32(vfitab,3);
904
905             /* REACTION-FIELD ELECTROSTATICS */
906             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
907
908             /* CUBIC SPLINE TABLE DISPERSION */
909             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
910             F                = _mm_setzero_pd();
911             GMX_MM_TRANSPOSE2_PD(Y,F);
912             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
913             H                = _mm_setzero_pd();
914             GMX_MM_TRANSPOSE2_PD(G,H);
915             Heps             = _mm_mul_pd(vfeps,H);
916             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
917             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
918             fvdw6            = _mm_mul_pd(c6_00,FF);
919
920             /* CUBIC SPLINE TABLE REPULSION */
921             vfitab           = _mm_add_epi32(vfitab,ifour);
922             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
923             F                = _mm_setzero_pd();
924             GMX_MM_TRANSPOSE2_PD(Y,F);
925             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
926             H                = _mm_setzero_pd();
927             GMX_MM_TRANSPOSE2_PD(G,H);
928             Heps             = _mm_mul_pd(vfeps,H);
929             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
930             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
931             fvdw12           = _mm_mul_pd(c12_00,FF);
932             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
933
934             fscal            = _mm_add_pd(felec,fvdw);
935
936             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_pd(fscal,dx00);
940             ty               = _mm_mul_pd(fscal,dy00);
941             tz               = _mm_mul_pd(fscal,dz00);
942
943             /* Update vectorial force */
944             fix0             = _mm_add_pd(fix0,tx);
945             fiy0             = _mm_add_pd(fiy0,ty);
946             fiz0             = _mm_add_pd(fiz0,tz);
947
948             fjx0             = _mm_add_pd(fjx0,tx);
949             fjy0             = _mm_add_pd(fjy0,ty);
950             fjz0             = _mm_add_pd(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq10             = _mm_mul_pd(iq1,jq0);
958
959             /* REACTION-FIELD ELECTROSTATICS */
960             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
961
962             fscal            = felec;
963
964             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
965
966             /* Calculate temporary vectorial force */
967             tx               = _mm_mul_pd(fscal,dx10);
968             ty               = _mm_mul_pd(fscal,dy10);
969             tz               = _mm_mul_pd(fscal,dz10);
970
971             /* Update vectorial force */
972             fix1             = _mm_add_pd(fix1,tx);
973             fiy1             = _mm_add_pd(fiy1,ty);
974             fiz1             = _mm_add_pd(fiz1,tz);
975
976             fjx0             = _mm_add_pd(fjx0,tx);
977             fjy0             = _mm_add_pd(fjy0,ty);
978             fjz0             = _mm_add_pd(fjz0,tz);
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _mm_mul_pd(iq2,jq0);
986
987             /* REACTION-FIELD ELECTROSTATICS */
988             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
989
990             fscal            = felec;
991
992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx20);
996             ty               = _mm_mul_pd(fscal,dy20);
997             tz               = _mm_mul_pd(fscal,dz20);
998
999             /* Update vectorial force */
1000             fix2             = _mm_add_pd(fix2,tx);
1001             fiy2             = _mm_add_pd(fiy2,ty);
1002             fiz2             = _mm_add_pd(fiz2,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1009
1010             /* Inner loop uses 111 flops */
1011         }
1012
1013         /* End of innermost loop */
1014
1015         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1016                                               f+i_coord_offset,fshift+i_shift_offset);
1017
1018         /* Increment number of inner iterations */
1019         inneriter                  += j_index_end - j_index_start;
1020
1021         /* Outer loop uses 18 flops */
1022     }
1023
1024     /* Increment number of outer iterations */
1025     outeriter        += nri;
1026
1027     /* Update outer/inner flops */
1028
1029     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1030 }