27c7016096211fc088d559aa2a6ed51196659ac9
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_pd(fr->ic->k_rf);
101     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_pd(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
134
135         fix0             = _mm_setzero_pd();
136         fiy0             = _mm_setzero_pd();
137         fiz0             = _mm_setzero_pd();
138
139         /* Load parameters for i particles */
140         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
141         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_pd();
145         vvdwsum          = _mm_setzero_pd();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156             
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               &jx0,&jy0,&jz0);
160             
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_pd(ix0,jx0);
163             dy00             = _mm_sub_pd(iy0,jy0);
164             dz00             = _mm_sub_pd(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_pd(rsq00);
170
171             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
175             vdwjidx0A        = 2*vdwtype[jnrA+0];
176             vdwjidx0B        = 2*vdwtype[jnrB+0];
177
178             /**************************
179              * CALCULATE INTERACTIONS *
180              **************************/
181
182             r00              = _mm_mul_pd(rsq00,rinv00);
183
184             /* Compute parameters for interactions between i and j atoms */
185             qq00             = _mm_mul_pd(iq0,jq0);
186             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
187                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
188
189             /* Calculate table index by multiplying r with table scale and truncate to integer */
190             rt               = _mm_mul_pd(r00,vftabscale);
191             vfitab           = _mm_cvttpd_epi32(rt);
192             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
193             vfitab           = _mm_slli_epi32(vfitab,3);
194
195             /* REACTION-FIELD ELECTROSTATICS */
196             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
197             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
198
199             /* CUBIC SPLINE TABLE DISPERSION */
200             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
201             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
202             GMX_MM_TRANSPOSE2_PD(Y,F);
203             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
204             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
205             GMX_MM_TRANSPOSE2_PD(G,H);
206             Heps             = _mm_mul_pd(vfeps,H);
207             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
208             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
209             vvdw6            = _mm_mul_pd(c6_00,VV);
210             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
211             fvdw6            = _mm_mul_pd(c6_00,FF);
212
213             /* CUBIC SPLINE TABLE REPULSION */
214             vfitab           = _mm_add_epi32(vfitab,ifour);
215             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
216             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
217             GMX_MM_TRANSPOSE2_PD(Y,F);
218             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
219             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
220             GMX_MM_TRANSPOSE2_PD(G,H);
221             Heps             = _mm_mul_pd(vfeps,H);
222             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
223             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
224             vvdw12           = _mm_mul_pd(c12_00,VV);
225             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
226             fvdw12           = _mm_mul_pd(c12_00,FF);
227             vvdw             = _mm_add_pd(vvdw12,vvdw6);
228             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
233
234             fscal            = _mm_add_pd(felec,fvdw);
235
236             /* Calculate temporary vectorial force */
237             tx               = _mm_mul_pd(fscal,dx00);
238             ty               = _mm_mul_pd(fscal,dy00);
239             tz               = _mm_mul_pd(fscal,dz00);
240
241             /* Update vectorial force */
242             fix0             = _mm_add_pd(fix0,tx);
243             fiy0             = _mm_add_pd(fiy0,ty);
244             fiz0             = _mm_add_pd(fiz0,tz);
245
246             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
247
248             /* Inner loop uses 67 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260             
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
272
273             /* Load parameters for j particles */
274             jq0              = _mm_load_sd(charge+jnrA+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r00              = _mm_mul_pd(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq00             = _mm_mul_pd(iq0,jq0);
285             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286
287             /* Calculate table index by multiplying r with table scale and truncate to integer */
288             rt               = _mm_mul_pd(r00,vftabscale);
289             vfitab           = _mm_cvttpd_epi32(rt);
290             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
291             vfitab           = _mm_slli_epi32(vfitab,3);
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
295             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
296
297             /* CUBIC SPLINE TABLE DISPERSION */
298             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
299             F                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(Y,F);
301             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
302             H                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(G,H);
304             Heps             = _mm_mul_pd(vfeps,H);
305             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
306             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
307             vvdw6            = _mm_mul_pd(c6_00,VV);
308             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
309             fvdw6            = _mm_mul_pd(c6_00,FF);
310
311             /* CUBIC SPLINE TABLE REPULSION */
312             vfitab           = _mm_add_epi32(vfitab,ifour);
313             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
314             F                = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(Y,F);
316             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
317             H                = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(G,H);
319             Heps             = _mm_mul_pd(vfeps,H);
320             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
321             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
322             vvdw12           = _mm_mul_pd(c12_00,VV);
323             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
324             fvdw12           = _mm_mul_pd(c12_00,FF);
325             vvdw             = _mm_add_pd(vvdw12,vvdw6);
326             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
330             velecsum         = _mm_add_pd(velecsum,velec);
331             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
332             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
333
334             fscal            = _mm_add_pd(felec,fvdw);
335
336             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_pd(fscal,dx00);
340             ty               = _mm_mul_pd(fscal,dy00);
341             tz               = _mm_mul_pd(fscal,dz00);
342
343             /* Update vectorial force */
344             fix0             = _mm_add_pd(fix0,tx);
345             fiy0             = _mm_add_pd(fiy0,ty);
346             fiz0             = _mm_add_pd(fiz0,tz);
347
348             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
349
350             /* Inner loop uses 67 flops */
351         }
352
353         /* End of innermost loop */
354
355         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
356                                               f+i_coord_offset,fshift+i_shift_offset);
357
358         ggid                        = gid[iidx];
359         /* Update potential energies */
360         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
361         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
362
363         /* Increment number of inner iterations */
364         inneriter                  += j_index_end - j_index_start;
365
366         /* Outer loop uses 9 flops */
367     }
368
369     /* Increment number of outer iterations */
370     outeriter        += nri;
371
372     /* Update outer/inner flops */
373
374     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
375 }
376 /*
377  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
378  * Electrostatics interaction: ReactionField
379  * VdW interaction:            CubicSplineTable
380  * Geometry:                   Particle-Particle
381  * Calculate force/pot:        Force
382  */
383 void
384 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
385                     (t_nblist * gmx_restrict                nlist,
386                      rvec * gmx_restrict                    xx,
387                      rvec * gmx_restrict                    ff,
388                      t_forcerec * gmx_restrict              fr,
389                      t_mdatoms * gmx_restrict               mdatoms,
390                      nb_kernel_data_t * gmx_restrict        kernel_data,
391                      t_nrnb * gmx_restrict                  nrnb)
392 {
393     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
394      * just 0 for non-waters.
395      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
396      * jnr indices corresponding to data put in the four positions in the SIMD register.
397      */
398     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
399     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
400     int              jnrA,jnrB;
401     int              j_coord_offsetA,j_coord_offsetB;
402     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
403     real             rcutoff_scalar;
404     real             *shiftvec,*fshift,*x,*f;
405     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     int              vdwioffset0;
407     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B;
409     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
412     real             *charge;
413     int              nvdwtype;
414     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
415     int              *vdwtype;
416     real             *vdwparam;
417     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
418     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
419     __m128i          vfitab;
420     __m128i          ifour       = _mm_set1_epi32(4);
421     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
422     real             *vftab;
423     __m128d          dummy_mask,cutoff_mask;
424     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
425     __m128d          one     = _mm_set1_pd(1.0);
426     __m128d          two     = _mm_set1_pd(2.0);
427     x                = xx[0];
428     f                = ff[0];
429
430     nri              = nlist->nri;
431     iinr             = nlist->iinr;
432     jindex           = nlist->jindex;
433     jjnr             = nlist->jjnr;
434     shiftidx         = nlist->shift;
435     gid              = nlist->gid;
436     shiftvec         = fr->shift_vec[0];
437     fshift           = fr->fshift[0];
438     facel            = _mm_set1_pd(fr->epsfac);
439     charge           = mdatoms->chargeA;
440     krf              = _mm_set1_pd(fr->ic->k_rf);
441     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
442     crf              = _mm_set1_pd(fr->ic->c_rf);
443     nvdwtype         = fr->ntype;
444     vdwparam         = fr->nbfp;
445     vdwtype          = mdatoms->typeA;
446
447     vftab            = kernel_data->table_vdw->data;
448     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
449
450     /* Avoid stupid compiler warnings */
451     jnrA = jnrB = 0;
452     j_coord_offsetA = 0;
453     j_coord_offsetB = 0;
454
455     outeriter        = 0;
456     inneriter        = 0;
457
458     /* Start outer loop over neighborlists */
459     for(iidx=0; iidx<nri; iidx++)
460     {
461         /* Load shift vector for this list */
462         i_shift_offset   = DIM*shiftidx[iidx];
463
464         /* Load limits for loop over neighbors */
465         j_index_start    = jindex[iidx];
466         j_index_end      = jindex[iidx+1];
467
468         /* Get outer coordinate index */
469         inr              = iinr[iidx];
470         i_coord_offset   = DIM*inr;
471
472         /* Load i particle coords and add shift vector */
473         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
474
475         fix0             = _mm_setzero_pd();
476         fiy0             = _mm_setzero_pd();
477         fiz0             = _mm_setzero_pd();
478
479         /* Load parameters for i particles */
480         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
481         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
482
483         /* Start inner kernel loop */
484         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
485         {
486
487             /* Get j neighbor index, and coordinate index */
488             jnrA             = jjnr[jidx];
489             jnrB             = jjnr[jidx+1];
490             j_coord_offsetA  = DIM*jnrA;
491             j_coord_offsetB  = DIM*jnrB;
492             
493             /* load j atom coordinates */
494             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
495                                               &jx0,&jy0,&jz0);
496             
497             /* Calculate displacement vector */
498             dx00             = _mm_sub_pd(ix0,jx0);
499             dy00             = _mm_sub_pd(iy0,jy0);
500             dz00             = _mm_sub_pd(iz0,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
504
505             rinv00           = gmx_mm_invsqrt_pd(rsq00);
506
507             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
511             vdwjidx0A        = 2*vdwtype[jnrA+0];
512             vdwjidx0B        = 2*vdwtype[jnrB+0];
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             r00              = _mm_mul_pd(rsq00,rinv00);
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq00             = _mm_mul_pd(iq0,jq0);
522             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
523                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
524
525             /* Calculate table index by multiplying r with table scale and truncate to integer */
526             rt               = _mm_mul_pd(r00,vftabscale);
527             vfitab           = _mm_cvttpd_epi32(rt);
528             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
529             vfitab           = _mm_slli_epi32(vfitab,3);
530
531             /* REACTION-FIELD ELECTROSTATICS */
532             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
533
534             /* CUBIC SPLINE TABLE DISPERSION */
535             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
536             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
537             GMX_MM_TRANSPOSE2_PD(Y,F);
538             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
539             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
540             GMX_MM_TRANSPOSE2_PD(G,H);
541             Heps             = _mm_mul_pd(vfeps,H);
542             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
543             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
544             fvdw6            = _mm_mul_pd(c6_00,FF);
545
546             /* CUBIC SPLINE TABLE REPULSION */
547             vfitab           = _mm_add_epi32(vfitab,ifour);
548             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
549             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
550             GMX_MM_TRANSPOSE2_PD(Y,F);
551             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
552             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(G,H);
554             Heps             = _mm_mul_pd(vfeps,H);
555             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
556             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
557             fvdw12           = _mm_mul_pd(c12_00,FF);
558             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
559
560             fscal            = _mm_add_pd(felec,fvdw);
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_pd(fscal,dx00);
564             ty               = _mm_mul_pd(fscal,dy00);
565             tz               = _mm_mul_pd(fscal,dz00);
566
567             /* Update vectorial force */
568             fix0             = _mm_add_pd(fix0,tx);
569             fiy0             = _mm_add_pd(fiy0,ty);
570             fiz0             = _mm_add_pd(fiz0,tz);
571
572             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
573
574             /* Inner loop uses 54 flops */
575         }
576
577         if(jidx<j_index_end)
578         {
579
580             jnrA             = jjnr[jidx];
581             j_coord_offsetA  = DIM*jnrA;
582
583             /* load j atom coordinates */
584             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
585                                               &jx0,&jy0,&jz0);
586             
587             /* Calculate displacement vector */
588             dx00             = _mm_sub_pd(ix0,jx0);
589             dy00             = _mm_sub_pd(iy0,jy0);
590             dz00             = _mm_sub_pd(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm_invsqrt_pd(rsq00);
596
597             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = _mm_load_sd(charge+jnrA+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r00              = _mm_mul_pd(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _mm_mul_pd(iq0,jq0);
611             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
612
613             /* Calculate table index by multiplying r with table scale and truncate to integer */
614             rt               = _mm_mul_pd(r00,vftabscale);
615             vfitab           = _mm_cvttpd_epi32(rt);
616             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
617             vfitab           = _mm_slli_epi32(vfitab,3);
618
619             /* REACTION-FIELD ELECTROSTATICS */
620             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
621
622             /* CUBIC SPLINE TABLE DISPERSION */
623             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
624             F                = _mm_setzero_pd();
625             GMX_MM_TRANSPOSE2_PD(Y,F);
626             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
627             H                = _mm_setzero_pd();
628             GMX_MM_TRANSPOSE2_PD(G,H);
629             Heps             = _mm_mul_pd(vfeps,H);
630             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
631             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
632             fvdw6            = _mm_mul_pd(c6_00,FF);
633
634             /* CUBIC SPLINE TABLE REPULSION */
635             vfitab           = _mm_add_epi32(vfitab,ifour);
636             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
637             F                = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(Y,F);
639             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
640             H                = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(G,H);
642             Heps             = _mm_mul_pd(vfeps,H);
643             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
644             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
645             fvdw12           = _mm_mul_pd(c12_00,FF);
646             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
647
648             fscal            = _mm_add_pd(felec,fvdw);
649
650             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm_mul_pd(fscal,dx00);
654             ty               = _mm_mul_pd(fscal,dy00);
655             tz               = _mm_mul_pd(fscal,dz00);
656
657             /* Update vectorial force */
658             fix0             = _mm_add_pd(fix0,tx);
659             fiy0             = _mm_add_pd(fiy0,ty);
660             fiz0             = _mm_add_pd(fiz0,tz);
661
662             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
663
664             /* Inner loop uses 54 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 7 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
684 }