f30c46d1f9030eddcee87eba50436cd8bd141d0b
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
80     real             rswitch_scalar,d_scalar;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98     krf              = _mm_set1_pd(fr->ic->k_rf);
99     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
100     crf              = _mm_set1_pd(fr->ic->c_rf);
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff_scalar   = fr->rcoulomb;
107     rcutoff          = _mm_set1_pd(rcutoff_scalar);
108     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
109
110     rswitch_scalar   = fr->rvdw_switch;
111     rswitch          = _mm_set1_pd(rswitch_scalar);
112     /* Setup switch parameters */
113     d_scalar         = rcutoff_scalar-rswitch_scalar;
114     d                = _mm_set1_pd(d_scalar);
115     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
116     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
117     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
118     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
119     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm_setzero_pd();
148         fiy0             = _mm_setzero_pd();
149         fiz0             = _mm_setzero_pd();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_pd();
157         vvdwsum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172             
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             if (gmx_mm_any_lt(rsq00,rcutoff2))
195             {
196
197             r00              = _mm_mul_pd(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_pd(iq0,jq0);
201             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
203
204             /* REACTION-FIELD ELECTROSTATICS */
205             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
206             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
207
208             /* LENNARD-JONES DISPERSION/REPULSION */
209
210             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
211             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
212             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
213             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
214             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
215
216             d                = _mm_sub_pd(r00,rswitch);
217             d                = _mm_max_pd(d,_mm_setzero_pd());
218             d2               = _mm_mul_pd(d,d);
219             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
220
221             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
222
223             /* Evaluate switch function */
224             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
225             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
226             vvdw             = _mm_mul_pd(vvdw,sw);
227             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velec            = _mm_and_pd(velec,cutoff_mask);
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
233             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm_add_pd(felec,fvdw);
236
237             fscal            = _mm_and_pd(fscal,cutoff_mask);
238
239             /* Calculate temporary vectorial force */
240             tx               = _mm_mul_pd(fscal,dx00);
241             ty               = _mm_mul_pd(fscal,dy00);
242             tz               = _mm_mul_pd(fscal,dz00);
243
244             /* Update vectorial force */
245             fix0             = _mm_add_pd(fix0,tx);
246             fiy0             = _mm_add_pd(fiy0,ty);
247             fiz0             = _mm_add_pd(fiz0,tz);
248
249             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
250
251             }
252
253             /* Inner loop uses 70 flops */
254         }
255
256         if(jidx<j_index_end)
257         {
258
259             jnrA             = jjnr[jidx];
260             j_coord_offsetA  = DIM*jnrA;
261
262             /* load j atom coordinates */
263             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
264                                               &jx0,&jy0,&jz0);
265             
266             /* Calculate displacement vector */
267             dx00             = _mm_sub_pd(ix0,jx0);
268             dy00             = _mm_sub_pd(iy0,jy0);
269             dz00             = _mm_sub_pd(iz0,jz0);
270
271             /* Calculate squared distance and things based on it */
272             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
273
274             rinv00           = gmx_mm_invsqrt_pd(rsq00);
275
276             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
277
278             /* Load parameters for j particles */
279             jq0              = _mm_load_sd(charge+jnrA+0);
280             vdwjidx0A        = 2*vdwtype[jnrA+0];
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (gmx_mm_any_lt(rsq00,rcutoff2))
287             {
288
289             r00              = _mm_mul_pd(rsq00,rinv00);
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq00             = _mm_mul_pd(iq0,jq0);
293             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
294
295             /* REACTION-FIELD ELECTROSTATICS */
296             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
297             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
298
299             /* LENNARD-JONES DISPERSION/REPULSION */
300
301             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
302             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
303             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
304             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
305             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
306
307             d                = _mm_sub_pd(r00,rswitch);
308             d                = _mm_max_pd(d,_mm_setzero_pd());
309             d2               = _mm_mul_pd(d,d);
310             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
311
312             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
313
314             /* Evaluate switch function */
315             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
316             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
317             vvdw             = _mm_mul_pd(vvdw,sw);
318             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_and_pd(velec,cutoff_mask);
322             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
323             velecsum         = _mm_add_pd(velecsum,velec);
324             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
325             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
326             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
327
328             fscal            = _mm_add_pd(felec,fvdw);
329
330             fscal            = _mm_and_pd(fscal,cutoff_mask);
331
332             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm_mul_pd(fscal,dx00);
336             ty               = _mm_mul_pd(fscal,dy00);
337             tz               = _mm_mul_pd(fscal,dz00);
338
339             /* Update vectorial force */
340             fix0             = _mm_add_pd(fix0,tx);
341             fiy0             = _mm_add_pd(fiy0,ty);
342             fiz0             = _mm_add_pd(fiz0,tz);
343
344             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
345
346             }
347
348             /* Inner loop uses 70 flops */
349         }
350
351         /* End of innermost loop */
352
353         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
354                                               f+i_coord_offset,fshift+i_shift_offset);
355
356         ggid                        = gid[iidx];
357         /* Update potential energies */
358         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
359         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
360
361         /* Increment number of inner iterations */
362         inneriter                  += j_index_end - j_index_start;
363
364         /* Outer loop uses 9 flops */
365     }
366
367     /* Increment number of outer iterations */
368     outeriter        += nri;
369
370     /* Update outer/inner flops */
371
372     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
373 }
374 /*
375  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
376  * Electrostatics interaction: ReactionField
377  * VdW interaction:            LennardJones
378  * Geometry:                   Particle-Particle
379  * Calculate force/pot:        Force
380  */
381 void
382 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
383                     (t_nblist * gmx_restrict                nlist,
384                      rvec * gmx_restrict                    xx,
385                      rvec * gmx_restrict                    ff,
386                      t_forcerec * gmx_restrict              fr,
387                      t_mdatoms * gmx_restrict               mdatoms,
388                      nb_kernel_data_t * gmx_restrict        kernel_data,
389                      t_nrnb * gmx_restrict                  nrnb)
390 {
391     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
392      * just 0 for non-waters.
393      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
394      * jnr indices corresponding to data put in the four positions in the SIMD register.
395      */
396     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
397     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
398     int              jnrA,jnrB;
399     int              j_coord_offsetA,j_coord_offsetB;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
404     int              vdwioffset0;
405     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B;
407     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     int              nvdwtype;
412     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
413     int              *vdwtype;
414     real             *vdwparam;
415     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
416     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
417     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
418     real             rswitch_scalar,d_scalar;
419     __m128d          dummy_mask,cutoff_mask;
420     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
421     __m128d          one     = _mm_set1_pd(1.0);
422     __m128d          two     = _mm_set1_pd(2.0);
423     x                = xx[0];
424     f                = ff[0];
425
426     nri              = nlist->nri;
427     iinr             = nlist->iinr;
428     jindex           = nlist->jindex;
429     jjnr             = nlist->jjnr;
430     shiftidx         = nlist->shift;
431     gid              = nlist->gid;
432     shiftvec         = fr->shift_vec[0];
433     fshift           = fr->fshift[0];
434     facel            = _mm_set1_pd(fr->epsfac);
435     charge           = mdatoms->chargeA;
436     krf              = _mm_set1_pd(fr->ic->k_rf);
437     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
438     crf              = _mm_set1_pd(fr->ic->c_rf);
439     nvdwtype         = fr->ntype;
440     vdwparam         = fr->nbfp;
441     vdwtype          = mdatoms->typeA;
442
443     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
444     rcutoff_scalar   = fr->rcoulomb;
445     rcutoff          = _mm_set1_pd(rcutoff_scalar);
446     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
447
448     rswitch_scalar   = fr->rvdw_switch;
449     rswitch          = _mm_set1_pd(rswitch_scalar);
450     /* Setup switch parameters */
451     d_scalar         = rcutoff_scalar-rswitch_scalar;
452     d                = _mm_set1_pd(d_scalar);
453     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
454     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
455     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
456     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
457     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
458     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
459
460     /* Avoid stupid compiler warnings */
461     jnrA = jnrB = 0;
462     j_coord_offsetA = 0;
463     j_coord_offsetB = 0;
464
465     outeriter        = 0;
466     inneriter        = 0;
467
468     /* Start outer loop over neighborlists */
469     for(iidx=0; iidx<nri; iidx++)
470     {
471         /* Load shift vector for this list */
472         i_shift_offset   = DIM*shiftidx[iidx];
473
474         /* Load limits for loop over neighbors */
475         j_index_start    = jindex[iidx];
476         j_index_end      = jindex[iidx+1];
477
478         /* Get outer coordinate index */
479         inr              = iinr[iidx];
480         i_coord_offset   = DIM*inr;
481
482         /* Load i particle coords and add shift vector */
483         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
484
485         fix0             = _mm_setzero_pd();
486         fiy0             = _mm_setzero_pd();
487         fiz0             = _mm_setzero_pd();
488
489         /* Load parameters for i particles */
490         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
491         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502             
503             /* load j atom coordinates */
504             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
505                                               &jx0,&jy0,&jz0);
506             
507             /* Calculate displacement vector */
508             dx00             = _mm_sub_pd(ix0,jx0);
509             dy00             = _mm_sub_pd(iy0,jy0);
510             dz00             = _mm_sub_pd(iz0,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
514
515             rinv00           = gmx_mm_invsqrt_pd(rsq00);
516
517             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             if (gmx_mm_any_lt(rsq00,rcutoff2))
529             {
530
531             r00              = _mm_mul_pd(rsq00,rinv00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm_mul_pd(iq0,jq0);
535             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
537
538             /* REACTION-FIELD ELECTROSTATICS */
539             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
540
541             /* LENNARD-JONES DISPERSION/REPULSION */
542
543             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
544             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
545             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
546             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
547             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
548
549             d                = _mm_sub_pd(r00,rswitch);
550             d                = _mm_max_pd(d,_mm_setzero_pd());
551             d2               = _mm_mul_pd(d,d);
552             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
553
554             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
555
556             /* Evaluate switch function */
557             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
558             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
559             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
560
561             fscal            = _mm_add_pd(felec,fvdw);
562
563             fscal            = _mm_and_pd(fscal,cutoff_mask);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_pd(fscal,dx00);
567             ty               = _mm_mul_pd(fscal,dy00);
568             tz               = _mm_mul_pd(fscal,dz00);
569
570             /* Update vectorial force */
571             fix0             = _mm_add_pd(fix0,tx);
572             fiy0             = _mm_add_pd(fiy0,ty);
573             fiz0             = _mm_add_pd(fiz0,tz);
574
575             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
576
577             }
578
579             /* Inner loop uses 61 flops */
580         }
581
582         if(jidx<j_index_end)
583         {
584
585             jnrA             = jjnr[jidx];
586             j_coord_offsetA  = DIM*jnrA;
587
588             /* load j atom coordinates */
589             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
590                                               &jx0,&jy0,&jz0);
591             
592             /* Calculate displacement vector */
593             dx00             = _mm_sub_pd(ix0,jx0);
594             dy00             = _mm_sub_pd(iy0,jy0);
595             dz00             = _mm_sub_pd(iz0,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
599
600             rinv00           = gmx_mm_invsqrt_pd(rsq00);
601
602             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
603
604             /* Load parameters for j particles */
605             jq0              = _mm_load_sd(charge+jnrA+0);
606             vdwjidx0A        = 2*vdwtype[jnrA+0];
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             if (gmx_mm_any_lt(rsq00,rcutoff2))
613             {
614
615             r00              = _mm_mul_pd(rsq00,rinv00);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq00             = _mm_mul_pd(iq0,jq0);
619             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
620
621             /* REACTION-FIELD ELECTROSTATICS */
622             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
623
624             /* LENNARD-JONES DISPERSION/REPULSION */
625
626             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
627             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
628             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
629             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
630             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
631
632             d                = _mm_sub_pd(r00,rswitch);
633             d                = _mm_max_pd(d,_mm_setzero_pd());
634             d2               = _mm_mul_pd(d,d);
635             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
636
637             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
638
639             /* Evaluate switch function */
640             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
641             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
642             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
643
644             fscal            = _mm_add_pd(felec,fvdw);
645
646             fscal            = _mm_and_pd(fscal,cutoff_mask);
647
648             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx00);
652             ty               = _mm_mul_pd(fscal,dy00);
653             tz               = _mm_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm_add_pd(fix0,tx);
657             fiy0             = _mm_add_pd(fiy0,ty);
658             fiz0             = _mm_add_pd(fiz0,tz);
659
660             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
661
662             }
663
664             /* Inner loop uses 61 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 7 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
684 }