b568ab249a78bb6b99059b988c527d3cbb9338ea
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_pd(fr->ic->k_rf);
101     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_pd(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm_set1_pd(rcutoff_scalar);
113     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161             
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165             
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_pd(rsq00);
175
176             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             if (gmx_mm_any_lt(rsq00,rcutoff2))
188             {
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* Calculate table index by multiplying r with table scale and truncate to integer */
198             rt               = _mm_mul_pd(r00,vftabscale);
199             vfitab           = _mm_cvttpd_epi32(rt);
200             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
201             vfitab           = _mm_slli_epi32(vfitab,3);
202
203             /* REACTION-FIELD ELECTROSTATICS */
204             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
205             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
206
207             /* CUBIC SPLINE TABLE DISPERSION */
208             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
209             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
210             GMX_MM_TRANSPOSE2_PD(Y,F);
211             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
212             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
213             GMX_MM_TRANSPOSE2_PD(G,H);
214             Heps             = _mm_mul_pd(vfeps,H);
215             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
216             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
217             vvdw6            = _mm_mul_pd(c6_00,VV);
218             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
219             fvdw6            = _mm_mul_pd(c6_00,FF);
220
221             /* CUBIC SPLINE TABLE REPULSION */
222             vfitab           = _mm_add_epi32(vfitab,ifour);
223             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
224             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
225             GMX_MM_TRANSPOSE2_PD(Y,F);
226             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
227             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
228             GMX_MM_TRANSPOSE2_PD(G,H);
229             Heps             = _mm_mul_pd(vfeps,H);
230             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
231             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
232             vvdw12           = _mm_mul_pd(c12_00,VV);
233             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
234             fvdw12           = _mm_mul_pd(c12_00,FF);
235             vvdw             = _mm_add_pd(vvdw12,vvdw6);
236             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
237
238             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velec            = _mm_and_pd(velec,cutoff_mask);
242             velecsum         = _mm_add_pd(velecsum,velec);
243             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
244             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
245
246             fscal            = _mm_add_pd(felec,fvdw);
247
248             fscal            = _mm_and_pd(fscal,cutoff_mask);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
261
262             }
263
264             /* Inner loop uses 72 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276             
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = gmx_mm_invsqrt_pd(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm_any_lt(rsq00,rcutoff2))
298             {
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq00             = _mm_mul_pd(iq0,jq0);
304             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_pd(r00,vftabscale);
308             vfitab           = _mm_cvttpd_epi32(rt);
309             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
310             vfitab           = _mm_slli_epi32(vfitab,3);
311
312             /* REACTION-FIELD ELECTROSTATICS */
313             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
314             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
315
316             /* CUBIC SPLINE TABLE DISPERSION */
317             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
318             F                = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(Y,F);
320             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
321             H                = _mm_setzero_pd();
322             GMX_MM_TRANSPOSE2_PD(G,H);
323             Heps             = _mm_mul_pd(vfeps,H);
324             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
325             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
326             vvdw6            = _mm_mul_pd(c6_00,VV);
327             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
328             fvdw6            = _mm_mul_pd(c6_00,FF);
329
330             /* CUBIC SPLINE TABLE REPULSION */
331             vfitab           = _mm_add_epi32(vfitab,ifour);
332             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
333             F                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(Y,F);
335             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
336             H                = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(G,H);
338             Heps             = _mm_mul_pd(vfeps,H);
339             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
340             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
341             vvdw12           = _mm_mul_pd(c12_00,VV);
342             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
343             fvdw12           = _mm_mul_pd(c12_00,FF);
344             vvdw             = _mm_add_pd(vvdw12,vvdw6);
345             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
346
347             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm_and_pd(velec,cutoff_mask);
351             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
352             velecsum         = _mm_add_pd(velecsum,velec);
353             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
354             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
355             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
356
357             fscal            = _mm_add_pd(felec,fvdw);
358
359             fscal            = _mm_and_pd(fscal,cutoff_mask);
360
361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm_mul_pd(fscal,dx00);
365             ty               = _mm_mul_pd(fscal,dy00);
366             tz               = _mm_mul_pd(fscal,dz00);
367
368             /* Update vectorial force */
369             fix0             = _mm_add_pd(fix0,tx);
370             fiy0             = _mm_add_pd(fiy0,ty);
371             fiz0             = _mm_add_pd(fiz0,tz);
372
373             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
374
375             }
376
377             /* Inner loop uses 72 flops */
378         }
379
380         /* End of innermost loop */
381
382         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
383                                               f+i_coord_offset,fshift+i_shift_offset);
384
385         ggid                        = gid[iidx];
386         /* Update potential energies */
387         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
388         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
389
390         /* Increment number of inner iterations */
391         inneriter                  += j_index_end - j_index_start;
392
393         /* Outer loop uses 9 flops */
394     }
395
396     /* Increment number of outer iterations */
397     outeriter        += nri;
398
399     /* Update outer/inner flops */
400
401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*72);
402 }
403 /*
404  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_double
405  * Electrostatics interaction: ReactionField
406  * VdW interaction:            CubicSplineTable
407  * Geometry:                   Particle-Particle
408  * Calculate force/pot:        Force
409  */
410 void
411 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_double
412                     (t_nblist * gmx_restrict                nlist,
413                      rvec * gmx_restrict                    xx,
414                      rvec * gmx_restrict                    ff,
415                      t_forcerec * gmx_restrict              fr,
416                      t_mdatoms * gmx_restrict               mdatoms,
417                      nb_kernel_data_t * gmx_restrict        kernel_data,
418                      t_nrnb * gmx_restrict                  nrnb)
419 {
420     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
421      * just 0 for non-waters.
422      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
423      * jnr indices corresponding to data put in the four positions in the SIMD register.
424      */
425     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
426     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
427     int              jnrA,jnrB;
428     int              j_coord_offsetA,j_coord_offsetB;
429     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
430     real             rcutoff_scalar;
431     real             *shiftvec,*fshift,*x,*f;
432     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
433     int              vdwioffset0;
434     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
435     int              vdwjidx0A,vdwjidx0B;
436     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
437     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
438     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
439     real             *charge;
440     int              nvdwtype;
441     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
442     int              *vdwtype;
443     real             *vdwparam;
444     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
445     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
446     __m128i          vfitab;
447     __m128i          ifour       = _mm_set1_epi32(4);
448     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
449     real             *vftab;
450     __m128d          dummy_mask,cutoff_mask;
451     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
452     __m128d          one     = _mm_set1_pd(1.0);
453     __m128d          two     = _mm_set1_pd(2.0);
454     x                = xx[0];
455     f                = ff[0];
456
457     nri              = nlist->nri;
458     iinr             = nlist->iinr;
459     jindex           = nlist->jindex;
460     jjnr             = nlist->jjnr;
461     shiftidx         = nlist->shift;
462     gid              = nlist->gid;
463     shiftvec         = fr->shift_vec[0];
464     fshift           = fr->fshift[0];
465     facel            = _mm_set1_pd(fr->epsfac);
466     charge           = mdatoms->chargeA;
467     krf              = _mm_set1_pd(fr->ic->k_rf);
468     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
469     crf              = _mm_set1_pd(fr->ic->c_rf);
470     nvdwtype         = fr->ntype;
471     vdwparam         = fr->nbfp;
472     vdwtype          = mdatoms->typeA;
473
474     vftab            = kernel_data->table_vdw->data;
475     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
476
477     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
478     rcutoff_scalar   = fr->rcoulomb;
479     rcutoff          = _mm_set1_pd(rcutoff_scalar);
480     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     /* Start outer loop over neighborlists */
491     for(iidx=0; iidx<nri; iidx++)
492     {
493         /* Load shift vector for this list */
494         i_shift_offset   = DIM*shiftidx[iidx];
495
496         /* Load limits for loop over neighbors */
497         j_index_start    = jindex[iidx];
498         j_index_end      = jindex[iidx+1];
499
500         /* Get outer coordinate index */
501         inr              = iinr[iidx];
502         i_coord_offset   = DIM*inr;
503
504         /* Load i particle coords and add shift vector */
505         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
506
507         fix0             = _mm_setzero_pd();
508         fiy0             = _mm_setzero_pd();
509         fiz0             = _mm_setzero_pd();
510
511         /* Load parameters for i particles */
512         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
513         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
514
515         /* Start inner kernel loop */
516         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
517         {
518
519             /* Get j neighbor index, and coordinate index */
520             jnrA             = jjnr[jidx];
521             jnrB             = jjnr[jidx+1];
522             j_coord_offsetA  = DIM*jnrA;
523             j_coord_offsetB  = DIM*jnrB;
524             
525             /* load j atom coordinates */
526             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
527                                               &jx0,&jy0,&jz0);
528             
529             /* Calculate displacement vector */
530             dx00             = _mm_sub_pd(ix0,jx0);
531             dy00             = _mm_sub_pd(iy0,jy0);
532             dz00             = _mm_sub_pd(iz0,jz0);
533
534             /* Calculate squared distance and things based on it */
535             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
536
537             rinv00           = gmx_mm_invsqrt_pd(rsq00);
538
539             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
540
541             /* Load parameters for j particles */
542             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
543             vdwjidx0A        = 2*vdwtype[jnrA+0];
544             vdwjidx0B        = 2*vdwtype[jnrB+0];
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm_any_lt(rsq00,rcutoff2))
551             {
552
553             r00              = _mm_mul_pd(rsq00,rinv00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq00             = _mm_mul_pd(iq0,jq0);
557             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
558                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
559
560             /* Calculate table index by multiplying r with table scale and truncate to integer */
561             rt               = _mm_mul_pd(r00,vftabscale);
562             vfitab           = _mm_cvttpd_epi32(rt);
563             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
564             vfitab           = _mm_slli_epi32(vfitab,3);
565
566             /* REACTION-FIELD ELECTROSTATICS */
567             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
568
569             /* CUBIC SPLINE TABLE DISPERSION */
570             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
571             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
572             GMX_MM_TRANSPOSE2_PD(Y,F);
573             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
574             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
575             GMX_MM_TRANSPOSE2_PD(G,H);
576             Heps             = _mm_mul_pd(vfeps,H);
577             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
578             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
579             fvdw6            = _mm_mul_pd(c6_00,FF);
580
581             /* CUBIC SPLINE TABLE REPULSION */
582             vfitab           = _mm_add_epi32(vfitab,ifour);
583             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
584             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
585             GMX_MM_TRANSPOSE2_PD(Y,F);
586             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
587             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
588             GMX_MM_TRANSPOSE2_PD(G,H);
589             Heps             = _mm_mul_pd(vfeps,H);
590             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
591             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
592             fvdw12           = _mm_mul_pd(c12_00,FF);
593             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
594
595             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
596
597             fscal            = _mm_add_pd(felec,fvdw);
598
599             fscal            = _mm_and_pd(fscal,cutoff_mask);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx00);
603             ty               = _mm_mul_pd(fscal,dy00);
604             tz               = _mm_mul_pd(fscal,dz00);
605
606             /* Update vectorial force */
607             fix0             = _mm_add_pd(fix0,tx);
608             fiy0             = _mm_add_pd(fiy0,ty);
609             fiz0             = _mm_add_pd(fiz0,tz);
610
611             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
612
613             }
614
615             /* Inner loop uses 57 flops */
616         }
617
618         if(jidx<j_index_end)
619         {
620
621             jnrA             = jjnr[jidx];
622             j_coord_offsetA  = DIM*jnrA;
623
624             /* load j atom coordinates */
625             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
626                                               &jx0,&jy0,&jz0);
627             
628             /* Calculate displacement vector */
629             dx00             = _mm_sub_pd(ix0,jx0);
630             dy00             = _mm_sub_pd(iy0,jy0);
631             dz00             = _mm_sub_pd(iz0,jz0);
632
633             /* Calculate squared distance and things based on it */
634             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
635
636             rinv00           = gmx_mm_invsqrt_pd(rsq00);
637
638             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
639
640             /* Load parameters for j particles */
641             jq0              = _mm_load_sd(charge+jnrA+0);
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             if (gmx_mm_any_lt(rsq00,rcutoff2))
649             {
650
651             r00              = _mm_mul_pd(rsq00,rinv00);
652
653             /* Compute parameters for interactions between i and j atoms */
654             qq00             = _mm_mul_pd(iq0,jq0);
655             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
656
657             /* Calculate table index by multiplying r with table scale and truncate to integer */
658             rt               = _mm_mul_pd(r00,vftabscale);
659             vfitab           = _mm_cvttpd_epi32(rt);
660             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
661             vfitab           = _mm_slli_epi32(vfitab,3);
662
663             /* REACTION-FIELD ELECTROSTATICS */
664             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
665
666             /* CUBIC SPLINE TABLE DISPERSION */
667             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
668             F                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(Y,F);
670             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
671             H                = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(G,H);
673             Heps             = _mm_mul_pd(vfeps,H);
674             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
675             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
676             fvdw6            = _mm_mul_pd(c6_00,FF);
677
678             /* CUBIC SPLINE TABLE REPULSION */
679             vfitab           = _mm_add_epi32(vfitab,ifour);
680             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
681             F                = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(Y,F);
683             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
684             H                = _mm_setzero_pd();
685             GMX_MM_TRANSPOSE2_PD(G,H);
686             Heps             = _mm_mul_pd(vfeps,H);
687             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
688             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
689             fvdw12           = _mm_mul_pd(c12_00,FF);
690             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
691
692             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
693
694             fscal            = _mm_add_pd(felec,fvdw);
695
696             fscal            = _mm_and_pd(fscal,cutoff_mask);
697
698             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm_mul_pd(fscal,dx00);
702             ty               = _mm_mul_pd(fscal,dy00);
703             tz               = _mm_mul_pd(fscal,dz00);
704
705             /* Update vectorial force */
706             fix0             = _mm_add_pd(fix0,tx);
707             fiy0             = _mm_add_pd(fiy0,ty);
708             fiz0             = _mm_add_pd(fiz0,tz);
709
710             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
711
712             }
713
714             /* Inner loop uses 57 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
720                                               f+i_coord_offset,fshift+i_shift_offset);
721
722         /* Increment number of inner iterations */
723         inneriter                  += j_index_end - j_index_start;
724
725         /* Outer loop uses 7 flops */
726     }
727
728     /* Increment number of outer iterations */
729     outeriter        += nri;
730
731     /* Update outer/inner flops */
732
733     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
734 }