made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
76     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
77     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
78     real             rswitch_scalar,d_scalar;
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     nvdwtype         = fr->ntype;
95     vdwparam         = fr->nbfp;
96     vdwtype          = mdatoms->typeA;
97
98     rcutoff_scalar   = fr->rvdw;
99     rcutoff          = _mm_set1_pd(rcutoff_scalar);
100     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
101
102     rswitch_scalar   = fr->rvdw_switch;
103     rswitch          = _mm_set1_pd(rswitch_scalar);
104     /* Setup switch parameters */
105     d_scalar         = rcutoff_scalar-rswitch_scalar;
106     d                = _mm_set1_pd(d_scalar);
107     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
108     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
109     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
110     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
111     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
112     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146         /* Reset potential sums */
147         vvdwsum          = _mm_setzero_pd();
148
149         /* Start inner kernel loop */
150         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
151         {
152
153             /* Get j neighbor index, and coordinate index */
154             jnrA             = jjnr[jidx];
155             jnrB             = jjnr[jidx+1];
156             j_coord_offsetA  = DIM*jnrA;
157             j_coord_offsetB  = DIM*jnrB;
158             
159             /* load j atom coordinates */
160             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
161                                               &jx0,&jy0,&jz0);
162             
163             /* Calculate displacement vector */
164             dx00             = _mm_sub_pd(ix0,jx0);
165             dy00             = _mm_sub_pd(iy0,jy0);
166             dz00             = _mm_sub_pd(iz0,jz0);
167
168             /* Calculate squared distance and things based on it */
169             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
170
171             rinv00           = gmx_mm_invsqrt_pd(rsq00);
172
173             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
174
175             /* Load parameters for j particles */
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             if (gmx_mm_any_lt(rsq00,rcutoff2))
184             {
185
186             r00              = _mm_mul_pd(rsq00,rinv00);
187
188             /* Compute parameters for interactions between i and j atoms */
189             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
190                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
191
192             /* LENNARD-JONES DISPERSION/REPULSION */
193
194             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
195             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
196             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
197             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
198             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
199
200             d                = _mm_sub_pd(r00,rswitch);
201             d                = _mm_max_pd(d,_mm_setzero_pd());
202             d2               = _mm_mul_pd(d,d);
203             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
204
205             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
206
207             /* Evaluate switch function */
208             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
209             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
210             vvdw             = _mm_mul_pd(vvdw,sw);
211             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
215             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
216
217             fscal            = fvdw;
218
219             fscal            = _mm_and_pd(fscal,cutoff_mask);
220
221             /* Calculate temporary vectorial force */
222             tx               = _mm_mul_pd(fscal,dx00);
223             ty               = _mm_mul_pd(fscal,dy00);
224             tz               = _mm_mul_pd(fscal,dz00);
225
226             /* Update vectorial force */
227             fix0             = _mm_add_pd(fix0,tx);
228             fiy0             = _mm_add_pd(fiy0,ty);
229             fiz0             = _mm_add_pd(fiz0,tz);
230
231             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
232
233             }
234
235             /* Inner loop uses 59 flops */
236         }
237
238         if(jidx<j_index_end)
239         {
240
241             jnrA             = jjnr[jidx];
242             j_coord_offsetA  = DIM*jnrA;
243
244             /* load j atom coordinates */
245             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
246                                               &jx0,&jy0,&jz0);
247             
248             /* Calculate displacement vector */
249             dx00             = _mm_sub_pd(ix0,jx0);
250             dy00             = _mm_sub_pd(iy0,jy0);
251             dz00             = _mm_sub_pd(iz0,jz0);
252
253             /* Calculate squared distance and things based on it */
254             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
255
256             rinv00           = gmx_mm_invsqrt_pd(rsq00);
257
258             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
259
260             /* Load parameters for j particles */
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm_any_lt(rsq00,rcutoff2))
268             {
269
270             r00              = _mm_mul_pd(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
279             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
280             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
281             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
282
283             d                = _mm_sub_pd(r00,rswitch);
284             d                = _mm_max_pd(d,_mm_setzero_pd());
285             d2               = _mm_mul_pd(d,d);
286             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
287
288             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
289
290             /* Evaluate switch function */
291             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
292             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
293             vvdw             = _mm_mul_pd(vvdw,sw);
294             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
298             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
299             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
300
301             fscal            = fvdw;
302
303             fscal            = _mm_and_pd(fscal,cutoff_mask);
304
305             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_pd(fscal,dx00);
309             ty               = _mm_mul_pd(fscal,dy00);
310             tz               = _mm_mul_pd(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm_add_pd(fix0,tx);
314             fiy0             = _mm_add_pd(fiy0,ty);
315             fiz0             = _mm_add_pd(fiz0,tz);
316
317             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
318
319             }
320
321             /* Inner loop uses 59 flops */
322         }
323
324         /* End of innermost loop */
325
326         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
327                                               f+i_coord_offset,fshift+i_shift_offset);
328
329         ggid                        = gid[iidx];
330         /* Update potential energies */
331         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
332
333         /* Increment number of inner iterations */
334         inneriter                  += j_index_end - j_index_start;
335
336         /* Outer loop uses 7 flops */
337     }
338
339     /* Increment number of outer iterations */
340     outeriter        += nri;
341
342     /* Update outer/inner flops */
343
344     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
345 }
346 /*
347  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse2_double
348  * Electrostatics interaction: None
349  * VdW interaction:            LennardJones
350  * Geometry:                   Particle-Particle
351  * Calculate force/pot:        Force
352  */
353 void
354 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse2_double
355                     (t_nblist * gmx_restrict                nlist,
356                      rvec * gmx_restrict                    xx,
357                      rvec * gmx_restrict                    ff,
358                      t_forcerec * gmx_restrict              fr,
359                      t_mdatoms * gmx_restrict               mdatoms,
360                      nb_kernel_data_t * gmx_restrict        kernel_data,
361                      t_nrnb * gmx_restrict                  nrnb)
362 {
363     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
364      * just 0 for non-waters.
365      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
366      * jnr indices corresponding to data put in the four positions in the SIMD register.
367      */
368     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
369     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
370     int              jnrA,jnrB;
371     int              j_coord_offsetA,j_coord_offsetB;
372     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
373     real             rcutoff_scalar;
374     real             *shiftvec,*fshift,*x,*f;
375     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
376     int              vdwioffset0;
377     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
378     int              vdwjidx0A,vdwjidx0B;
379     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
380     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
381     int              nvdwtype;
382     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
383     int              *vdwtype;
384     real             *vdwparam;
385     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
386     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
387     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
388     real             rswitch_scalar,d_scalar;
389     __m128d          dummy_mask,cutoff_mask;
390     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
391     __m128d          one     = _mm_set1_pd(1.0);
392     __m128d          two     = _mm_set1_pd(2.0);
393     x                = xx[0];
394     f                = ff[0];
395
396     nri              = nlist->nri;
397     iinr             = nlist->iinr;
398     jindex           = nlist->jindex;
399     jjnr             = nlist->jjnr;
400     shiftidx         = nlist->shift;
401     gid              = nlist->gid;
402     shiftvec         = fr->shift_vec[0];
403     fshift           = fr->fshift[0];
404     nvdwtype         = fr->ntype;
405     vdwparam         = fr->nbfp;
406     vdwtype          = mdatoms->typeA;
407
408     rcutoff_scalar   = fr->rvdw;
409     rcutoff          = _mm_set1_pd(rcutoff_scalar);
410     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
411
412     rswitch_scalar   = fr->rvdw_switch;
413     rswitch          = _mm_set1_pd(rswitch_scalar);
414     /* Setup switch parameters */
415     d_scalar         = rcutoff_scalar-rswitch_scalar;
416     d                = _mm_set1_pd(d_scalar);
417     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
418     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
419     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
420     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
421     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
422     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
423
424     /* Avoid stupid compiler warnings */
425     jnrA = jnrB = 0;
426     j_coord_offsetA = 0;
427     j_coord_offsetB = 0;
428
429     outeriter        = 0;
430     inneriter        = 0;
431
432     /* Start outer loop over neighborlists */
433     for(iidx=0; iidx<nri; iidx++)
434     {
435         /* Load shift vector for this list */
436         i_shift_offset   = DIM*shiftidx[iidx];
437
438         /* Load limits for loop over neighbors */
439         j_index_start    = jindex[iidx];
440         j_index_end      = jindex[iidx+1];
441
442         /* Get outer coordinate index */
443         inr              = iinr[iidx];
444         i_coord_offset   = DIM*inr;
445
446         /* Load i particle coords and add shift vector */
447         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
448
449         fix0             = _mm_setzero_pd();
450         fiy0             = _mm_setzero_pd();
451         fiz0             = _mm_setzero_pd();
452
453         /* Load parameters for i particles */
454         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
455
456         /* Start inner kernel loop */
457         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrA             = jjnr[jidx];
462             jnrB             = jjnr[jidx+1];
463             j_coord_offsetA  = DIM*jnrA;
464             j_coord_offsetB  = DIM*jnrB;
465             
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
468                                               &jx0,&jy0,&jz0);
469             
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_pd(ix0,jx0);
472             dy00             = _mm_sub_pd(iy0,jy0);
473             dz00             = _mm_sub_pd(iz0,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
477
478             rinv00           = gmx_mm_invsqrt_pd(rsq00);
479
480             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
481
482             /* Load parameters for j particles */
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484             vdwjidx0B        = 2*vdwtype[jnrB+0];
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm_any_lt(rsq00,rcutoff2))
491             {
492
493             r00              = _mm_mul_pd(rsq00,rinv00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
497                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
498
499             /* LENNARD-JONES DISPERSION/REPULSION */
500
501             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
502             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
503             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
504             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
505             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
506
507             d                = _mm_sub_pd(r00,rswitch);
508             d                = _mm_max_pd(d,_mm_setzero_pd());
509             d2               = _mm_mul_pd(d,d);
510             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
511
512             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
513
514             /* Evaluate switch function */
515             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
516             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
517             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
518
519             fscal            = fvdw;
520
521             fscal            = _mm_and_pd(fscal,cutoff_mask);
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_pd(fscal,dx00);
525             ty               = _mm_mul_pd(fscal,dy00);
526             tz               = _mm_mul_pd(fscal,dz00);
527
528             /* Update vectorial force */
529             fix0             = _mm_add_pd(fix0,tx);
530             fiy0             = _mm_add_pd(fiy0,ty);
531             fiz0             = _mm_add_pd(fiz0,tz);
532
533             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
534
535             }
536
537             /* Inner loop uses 56 flops */
538         }
539
540         if(jidx<j_index_end)
541         {
542
543             jnrA             = jjnr[jidx];
544             j_coord_offsetA  = DIM*jnrA;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
548                                               &jx0,&jy0,&jz0);
549             
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_pd(ix0,jx0);
552             dy00             = _mm_sub_pd(iy0,jy0);
553             dz00             = _mm_sub_pd(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm_invsqrt_pd(rsq00);
559
560             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm_any_lt(rsq00,rcutoff2))
570             {
571
572             r00              = _mm_mul_pd(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
580             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
581             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
582             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
583             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
584
585             d                = _mm_sub_pd(r00,rswitch);
586             d                = _mm_max_pd(d,_mm_setzero_pd());
587             d2               = _mm_mul_pd(d,d);
588             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
589
590             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
591
592             /* Evaluate switch function */
593             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
594             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
595             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
596
597             fscal            = fvdw;
598
599             fscal            = _mm_and_pd(fscal,cutoff_mask);
600
601             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm_mul_pd(fscal,dx00);
605             ty               = _mm_mul_pd(fscal,dy00);
606             tz               = _mm_mul_pd(fscal,dz00);
607
608             /* Update vectorial force */
609             fix0             = _mm_add_pd(fix0,tx);
610             fiy0             = _mm_add_pd(fiy0,ty);
611             fiz0             = _mm_add_pd(fiz0,tz);
612
613             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
614
615             }
616
617             /* Inner loop uses 56 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 6 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*56);
637 }