Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     invsqrta         = fr->invsqrta;
116     dvda             = fr->dvda;
117     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
118     gbtab            = fr->gbtab.data;
119     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         isai0            = _mm_load1_pd(invsqrta+inr+0);
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vgbsum           = _mm_setzero_pd();
157         dvdasum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195
196             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
197             isaprod          = _mm_mul_pd(isai0,isaj0);
198             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
199             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
200
201             /* Calculate generalized born table index - this is a separate table from the normal one,
202              * but we use the same procedure by multiplying r with scale and truncating to integer.
203              */
204             rt               = _mm_mul_pd(r00,gbscale);
205             gbitab           = _mm_cvttpd_epi32(rt);
206             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
207             gbitab           = _mm_slli_epi32(gbitab,2);
208
209             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
210             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
211             GMX_MM_TRANSPOSE2_PD(Y,F);
212             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
213             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
214             GMX_MM_TRANSPOSE2_PD(G,H);
215             Heps             = _mm_mul_pd(gbeps,H);
216             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
217             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
218             vgb              = _mm_mul_pd(gbqqfactor,VV);
219
220             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
221             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
222             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
223             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
224             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
225             velec            = _mm_mul_pd(qq00,rinv00);
226             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _mm_add_pd(velecsum,velec);
230             vgbsum           = _mm_add_pd(vgbsum,vgb);
231
232             fscal            = felec;
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_pd(fscal,dx00);
236             ty               = _mm_mul_pd(fscal,dy00);
237             tz               = _mm_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_pd(fix0,tx);
241             fiy0             = _mm_add_pd(fiy0,ty);
242             fiz0             = _mm_add_pd(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245
246             /* Inner loop uses 58 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_pd(iq0,jq0);
281
282             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
283             isaprod          = _mm_mul_pd(isai0,isaj0);
284             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
285             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
286
287             /* Calculate generalized born table index - this is a separate table from the normal one,
288              * but we use the same procedure by multiplying r with scale and truncating to integer.
289              */
290             rt               = _mm_mul_pd(r00,gbscale);
291             gbitab           = _mm_cvttpd_epi32(rt);
292             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
293             gbitab           = _mm_slli_epi32(gbitab,2);
294
295             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
296             F                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(Y,F);
298             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
299             H                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(G,H);
301             Heps             = _mm_mul_pd(gbeps,H);
302             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
303             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
304             vgb              = _mm_mul_pd(gbqqfactor,VV);
305
306             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
307             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
308             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
309             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
310             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
311             velec            = _mm_mul_pd(qq00,rinv00);
312             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
316             velecsum         = _mm_add_pd(velecsum,velec);
317             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
318             vgbsum           = _mm_add_pd(vgbsum,vgb);
319
320             fscal            = felec;
321
322             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_pd(fscal,dx00);
326             ty               = _mm_mul_pd(fscal,dy00);
327             tz               = _mm_mul_pd(fscal,dz00);
328
329             /* Update vectorial force */
330             fix0             = _mm_add_pd(fix0,tx);
331             fiy0             = _mm_add_pd(fiy0,ty);
332             fiz0             = _mm_add_pd(fiz0,tz);
333
334             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
335
336             /* Inner loop uses 58 flops */
337         }
338
339         /* End of innermost loop */
340
341         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
342                                               f+i_coord_offset,fshift+i_shift_offset);
343
344         ggid                        = gid[iidx];
345         /* Update potential energies */
346         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
347         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
348         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
349         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
350
351         /* Increment number of inner iterations */
352         inneriter                  += j_index_end - j_index_start;
353
354         /* Outer loop uses 9 flops */
355     }
356
357     /* Increment number of outer iterations */
358     outeriter        += nri;
359
360     /* Update outer/inner flops */
361
362     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
363 }
364 /*
365  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_double
366  * Electrostatics interaction: GeneralizedBorn
367  * VdW interaction:            None
368  * Geometry:                   Particle-Particle
369  * Calculate force/pot:        Force
370  */
371 void
372 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_double
373                     (t_nblist * gmx_restrict                nlist,
374                      rvec * gmx_restrict                    xx,
375                      rvec * gmx_restrict                    ff,
376                      t_forcerec * gmx_restrict              fr,
377                      t_mdatoms * gmx_restrict               mdatoms,
378                      nb_kernel_data_t * gmx_restrict        kernel_data,
379                      t_nrnb * gmx_restrict                  nrnb)
380 {
381     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382      * just 0 for non-waters.
383      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384      * jnr indices corresponding to data put in the four positions in the SIMD register.
385      */
386     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
387     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388     int              jnrA,jnrB;
389     int              j_coord_offsetA,j_coord_offsetB;
390     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
391     real             rcutoff_scalar;
392     real             *shiftvec,*fshift,*x,*f;
393     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394     int              vdwioffset0;
395     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396     int              vdwjidx0A,vdwjidx0B;
397     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
400     real             *charge;
401     __m128i          gbitab;
402     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
403     __m128d          minushalf = _mm_set1_pd(-0.5);
404     real             *invsqrta,*dvda,*gbtab;
405     __m128i          vfitab;
406     __m128i          ifour       = _mm_set1_epi32(4);
407     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
408     real             *vftab;
409     __m128d          dummy_mask,cutoff_mask;
410     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
411     __m128d          one     = _mm_set1_pd(1.0);
412     __m128d          two     = _mm_set1_pd(2.0);
413     x                = xx[0];
414     f                = ff[0];
415
416     nri              = nlist->nri;
417     iinr             = nlist->iinr;
418     jindex           = nlist->jindex;
419     jjnr             = nlist->jjnr;
420     shiftidx         = nlist->shift;
421     gid              = nlist->gid;
422     shiftvec         = fr->shift_vec[0];
423     fshift           = fr->fshift[0];
424     facel            = _mm_set1_pd(fr->epsfac);
425     charge           = mdatoms->chargeA;
426
427     invsqrta         = fr->invsqrta;
428     dvda             = fr->dvda;
429     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
430     gbtab            = fr->gbtab.data;
431     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
432
433     /* Avoid stupid compiler warnings */
434     jnrA = jnrB = 0;
435     j_coord_offsetA = 0;
436     j_coord_offsetB = 0;
437
438     outeriter        = 0;
439     inneriter        = 0;
440
441     /* Start outer loop over neighborlists */
442     for(iidx=0; iidx<nri; iidx++)
443     {
444         /* Load shift vector for this list */
445         i_shift_offset   = DIM*shiftidx[iidx];
446
447         /* Load limits for loop over neighbors */
448         j_index_start    = jindex[iidx];
449         j_index_end      = jindex[iidx+1];
450
451         /* Get outer coordinate index */
452         inr              = iinr[iidx];
453         i_coord_offset   = DIM*inr;
454
455         /* Load i particle coords and add shift vector */
456         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
457
458         fix0             = _mm_setzero_pd();
459         fiy0             = _mm_setzero_pd();
460         fiz0             = _mm_setzero_pd();
461
462         /* Load parameters for i particles */
463         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
464         isai0            = _mm_load1_pd(invsqrta+inr+0);
465
466         dvdasum          = _mm_setzero_pd();
467
468         /* Start inner kernel loop */
469         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
470         {
471
472             /* Get j neighbor index, and coordinate index */
473             jnrA             = jjnr[jidx];
474             jnrB             = jjnr[jidx+1];
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477
478             /* load j atom coordinates */
479             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480                                               &jx0,&jy0,&jz0);
481
482             /* Calculate displacement vector */
483             dx00             = _mm_sub_pd(ix0,jx0);
484             dy00             = _mm_sub_pd(iy0,jy0);
485             dz00             = _mm_sub_pd(iz0,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
489
490             rinv00           = gmx_mm_invsqrt_pd(rsq00);
491
492             /* Load parameters for j particles */
493             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
494             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_pd(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm_mul_pd(iq0,jq0);
504
505             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
506             isaprod          = _mm_mul_pd(isai0,isaj0);
507             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
508             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
509
510             /* Calculate generalized born table index - this is a separate table from the normal one,
511              * but we use the same procedure by multiplying r with scale and truncating to integer.
512              */
513             rt               = _mm_mul_pd(r00,gbscale);
514             gbitab           = _mm_cvttpd_epi32(rt);
515             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
516             gbitab           = _mm_slli_epi32(gbitab,2);
517
518             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
519             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
520             GMX_MM_TRANSPOSE2_PD(Y,F);
521             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
522             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
523             GMX_MM_TRANSPOSE2_PD(G,H);
524             Heps             = _mm_mul_pd(gbeps,H);
525             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
526             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
527             vgb              = _mm_mul_pd(gbqqfactor,VV);
528
529             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
530             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
531             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
532             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
533             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
534             velec            = _mm_mul_pd(qq00,rinv00);
535             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
536
537             fscal            = felec;
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_pd(fscal,dx00);
541             ty               = _mm_mul_pd(fscal,dy00);
542             tz               = _mm_mul_pd(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm_add_pd(fix0,tx);
546             fiy0             = _mm_add_pd(fiy0,ty);
547             fiz0             = _mm_add_pd(fiz0,tz);
548
549             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
550
551             /* Inner loop uses 56 flops */
552         }
553
554         if(jidx<j_index_end)
555         {
556
557             jnrA             = jjnr[jidx];
558             j_coord_offsetA  = DIM*jnrA;
559
560             /* load j atom coordinates */
561             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
562                                               &jx0,&jy0,&jz0);
563
564             /* Calculate displacement vector */
565             dx00             = _mm_sub_pd(ix0,jx0);
566             dy00             = _mm_sub_pd(iy0,jy0);
567             dz00             = _mm_sub_pd(iz0,jz0);
568
569             /* Calculate squared distance and things based on it */
570             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
571
572             rinv00           = gmx_mm_invsqrt_pd(rsq00);
573
574             /* Load parameters for j particles */
575             jq0              = _mm_load_sd(charge+jnrA+0);
576             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = _mm_mul_pd(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm_mul_pd(iq0,jq0);
586
587             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
588             isaprod          = _mm_mul_pd(isai0,isaj0);
589             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
590             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
591
592             /* Calculate generalized born table index - this is a separate table from the normal one,
593              * but we use the same procedure by multiplying r with scale and truncating to integer.
594              */
595             rt               = _mm_mul_pd(r00,gbscale);
596             gbitab           = _mm_cvttpd_epi32(rt);
597             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
598             gbitab           = _mm_slli_epi32(gbitab,2);
599
600             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
601             F                = _mm_setzero_pd();
602             GMX_MM_TRANSPOSE2_PD(Y,F);
603             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
604             H                = _mm_setzero_pd();
605             GMX_MM_TRANSPOSE2_PD(G,H);
606             Heps             = _mm_mul_pd(gbeps,H);
607             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
608             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
609             vgb              = _mm_mul_pd(gbqqfactor,VV);
610
611             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
612             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
613             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
614             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
615             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
616             velec            = _mm_mul_pd(qq00,rinv00);
617             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
618
619             fscal            = felec;
620
621             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_pd(fscal,dx00);
625             ty               = _mm_mul_pd(fscal,dy00);
626             tz               = _mm_mul_pd(fscal,dz00);
627
628             /* Update vectorial force */
629             fix0             = _mm_add_pd(fix0,tx);
630             fiy0             = _mm_add_pd(fiy0,ty);
631             fiz0             = _mm_add_pd(fiz0,tz);
632
633             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
634
635             /* Inner loop uses 56 flops */
636         }
637
638         /* End of innermost loop */
639
640         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
641                                               f+i_coord_offset,fshift+i_shift_offset);
642
643         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
644         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 7 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
658 }