9bdef9064b677e22c002f3161d6e2cd0879b45f4
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
108     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
109     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
135                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
136
137         fix1             = _mm_setzero_pd();
138         fiy1             = _mm_setzero_pd();
139         fiz1             = _mm_setzero_pd();
140         fix2             = _mm_setzero_pd();
141         fiy2             = _mm_setzero_pd();
142         fiz2             = _mm_setzero_pd();
143         fix3             = _mm_setzero_pd();
144         fiy3             = _mm_setzero_pd();
145         fiz3             = _mm_setzero_pd();
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159             
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163             
164             /* Calculate displacement vector */
165             dx10             = _mm_sub_pd(ix1,jx0);
166             dy10             = _mm_sub_pd(iy1,jy0);
167             dz10             = _mm_sub_pd(iz1,jz0);
168             dx20             = _mm_sub_pd(ix2,jx0);
169             dy20             = _mm_sub_pd(iy2,jy0);
170             dz20             = _mm_sub_pd(iz2,jz0);
171             dx30             = _mm_sub_pd(ix3,jx0);
172             dy30             = _mm_sub_pd(iy3,jy0);
173             dz30             = _mm_sub_pd(iz3,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
177             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
178             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
179
180             rinv10           = gmx_mm_invsqrt_pd(rsq10);
181             rinv20           = gmx_mm_invsqrt_pd(rsq20);
182             rinv30           = gmx_mm_invsqrt_pd(rsq30);
183
184             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
185             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
186             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
190
191             fjx0             = _mm_setzero_pd();
192             fjy0             = _mm_setzero_pd();
193             fjz0             = _mm_setzero_pd();
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             r10              = _mm_mul_pd(rsq10,rinv10);
200
201             /* Compute parameters for interactions between i and j atoms */
202             qq10             = _mm_mul_pd(iq1,jq0);
203
204             /* EWALD ELECTROSTATICS */
205
206             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
207             ewrt             = _mm_mul_pd(r10,ewtabscale);
208             ewitab           = _mm_cvttpd_epi32(ewrt);
209             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
210             ewitab           = _mm_slli_epi32(ewitab,2);
211             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
212             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
213             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
214             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
215             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
216             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
217             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
218             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
219             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
220             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             velecsum         = _mm_add_pd(velecsum,velec);
224
225             fscal            = felec;
226
227             /* Calculate temporary vectorial force */
228             tx               = _mm_mul_pd(fscal,dx10);
229             ty               = _mm_mul_pd(fscal,dy10);
230             tz               = _mm_mul_pd(fscal,dz10);
231
232             /* Update vectorial force */
233             fix1             = _mm_add_pd(fix1,tx);
234             fiy1             = _mm_add_pd(fiy1,ty);
235             fiz1             = _mm_add_pd(fiz1,tz);
236
237             fjx0             = _mm_add_pd(fjx0,tx);
238             fjy0             = _mm_add_pd(fjy0,ty);
239             fjz0             = _mm_add_pd(fjz0,tz);
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r20              = _mm_mul_pd(rsq20,rinv20);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq20             = _mm_mul_pd(iq2,jq0);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
253             ewrt             = _mm_mul_pd(r20,ewtabscale);
254             ewitab           = _mm_cvttpd_epi32(ewrt);
255             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
256             ewitab           = _mm_slli_epi32(ewitab,2);
257             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
258             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
259             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
260             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
261             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
263             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
264             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
265             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
266             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_pd(velecsum,velec);
270
271             fscal            = felec;
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_pd(fscal,dx20);
275             ty               = _mm_mul_pd(fscal,dy20);
276             tz               = _mm_mul_pd(fscal,dz20);
277
278             /* Update vectorial force */
279             fix2             = _mm_add_pd(fix2,tx);
280             fiy2             = _mm_add_pd(fiy2,ty);
281             fiz2             = _mm_add_pd(fiz2,tz);
282
283             fjx0             = _mm_add_pd(fjx0,tx);
284             fjy0             = _mm_add_pd(fjy0,ty);
285             fjz0             = _mm_add_pd(fjz0,tz);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             r30              = _mm_mul_pd(rsq30,rinv30);
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq30             = _mm_mul_pd(iq3,jq0);
295
296             /* EWALD ELECTROSTATICS */
297
298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
299             ewrt             = _mm_mul_pd(r30,ewtabscale);
300             ewitab           = _mm_cvttpd_epi32(ewrt);
301             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
302             ewitab           = _mm_slli_epi32(ewitab,2);
303             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
304             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
305             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
306             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
307             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
308             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
309             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
310             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
311             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
312             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_pd(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_pd(fscal,dx30);
321             ty               = _mm_mul_pd(fscal,dy30);
322             tz               = _mm_mul_pd(fscal,dz30);
323
324             /* Update vectorial force */
325             fix3             = _mm_add_pd(fix3,tx);
326             fiy3             = _mm_add_pd(fiy3,ty);
327             fiz3             = _mm_add_pd(fiz3,tz);
328
329             fjx0             = _mm_add_pd(fjx0,tx);
330             fjy0             = _mm_add_pd(fjy0,ty);
331             fjz0             = _mm_add_pd(fjz0,tz);
332
333             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
334
335             /* Inner loop uses 126 flops */
336         }
337
338         if(jidx<j_index_end)
339         {
340
341             jnrA             = jjnr[jidx];
342             j_coord_offsetA  = DIM*jnrA;
343
344             /* load j atom coordinates */
345             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
346                                               &jx0,&jy0,&jz0);
347             
348             /* Calculate displacement vector */
349             dx10             = _mm_sub_pd(ix1,jx0);
350             dy10             = _mm_sub_pd(iy1,jy0);
351             dz10             = _mm_sub_pd(iz1,jz0);
352             dx20             = _mm_sub_pd(ix2,jx0);
353             dy20             = _mm_sub_pd(iy2,jy0);
354             dz20             = _mm_sub_pd(iz2,jz0);
355             dx30             = _mm_sub_pd(ix3,jx0);
356             dy30             = _mm_sub_pd(iy3,jy0);
357             dz30             = _mm_sub_pd(iz3,jz0);
358
359             /* Calculate squared distance and things based on it */
360             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
361             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
362             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
363
364             rinv10           = gmx_mm_invsqrt_pd(rsq10);
365             rinv20           = gmx_mm_invsqrt_pd(rsq20);
366             rinv30           = gmx_mm_invsqrt_pd(rsq30);
367
368             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
369             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
370             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
371
372             /* Load parameters for j particles */
373             jq0              = _mm_load_sd(charge+jnrA+0);
374
375             fjx0             = _mm_setzero_pd();
376             fjy0             = _mm_setzero_pd();
377             fjz0             = _mm_setzero_pd();
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r10              = _mm_mul_pd(rsq10,rinv10);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq10             = _mm_mul_pd(iq1,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_pd(r10,ewtabscale);
392             ewitab           = _mm_cvttpd_epi32(ewrt);
393             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_setzero_pd();
397             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
398             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
399             ewtabFn          = _mm_setzero_pd();
400             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
401             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
402             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
403             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
404             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
408             velecsum         = _mm_add_pd(velecsum,velec);
409
410             fscal            = felec;
411
412             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm_mul_pd(fscal,dx10);
416             ty               = _mm_mul_pd(fscal,dy10);
417             tz               = _mm_mul_pd(fscal,dz10);
418
419             /* Update vectorial force */
420             fix1             = _mm_add_pd(fix1,tx);
421             fiy1             = _mm_add_pd(fiy1,ty);
422             fiz1             = _mm_add_pd(fiz1,tz);
423
424             fjx0             = _mm_add_pd(fjx0,tx);
425             fjy0             = _mm_add_pd(fjy0,ty);
426             fjz0             = _mm_add_pd(fjz0,tz);
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r20              = _mm_mul_pd(rsq20,rinv20);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq20             = _mm_mul_pd(iq2,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = _mm_mul_pd(r20,ewtabscale);
441             ewitab           = _mm_cvttpd_epi32(ewrt);
442             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
443             ewitab           = _mm_slli_epi32(ewitab,2);
444             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
445             ewtabD           = _mm_setzero_pd();
446             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
447             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
448             ewtabFn          = _mm_setzero_pd();
449             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
450             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
451             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
452             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
453             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
457             velecsum         = _mm_add_pd(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_pd(fscal,dx20);
465             ty               = _mm_mul_pd(fscal,dy20);
466             tz               = _mm_mul_pd(fscal,dz20);
467
468             /* Update vectorial force */
469             fix2             = _mm_add_pd(fix2,tx);
470             fiy2             = _mm_add_pd(fiy2,ty);
471             fiz2             = _mm_add_pd(fiz2,tz);
472
473             fjx0             = _mm_add_pd(fjx0,tx);
474             fjy0             = _mm_add_pd(fjy0,ty);
475             fjz0             = _mm_add_pd(fjz0,tz);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r30              = _mm_mul_pd(rsq30,rinv30);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq30             = _mm_mul_pd(iq3,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm_mul_pd(r30,ewtabscale);
490             ewitab           = _mm_cvttpd_epi32(ewrt);
491             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
492             ewitab           = _mm_slli_epi32(ewitab,2);
493             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
494             ewtabD           = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
496             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
497             ewtabFn          = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
499             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
500             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
501             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
502             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
506             velecsum         = _mm_add_pd(velecsum,velec);
507
508             fscal            = felec;
509
510             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_pd(fscal,dx30);
514             ty               = _mm_mul_pd(fscal,dy30);
515             tz               = _mm_mul_pd(fscal,dz30);
516
517             /* Update vectorial force */
518             fix3             = _mm_add_pd(fix3,tx);
519             fiy3             = _mm_add_pd(fiy3,ty);
520             fiz3             = _mm_add_pd(fiz3,tz);
521
522             fjx0             = _mm_add_pd(fjx0,tx);
523             fjy0             = _mm_add_pd(fjy0,ty);
524             fjz0             = _mm_add_pd(fjz0,tz);
525
526             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
527
528             /* Inner loop uses 126 flops */
529         }
530
531         /* End of innermost loop */
532
533         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
534                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
535
536         ggid                        = gid[iidx];
537         /* Update potential energies */
538         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
539
540         /* Increment number of inner iterations */
541         inneriter                  += j_index_end - j_index_start;
542
543         /* Outer loop uses 19 flops */
544     }
545
546     /* Increment number of outer iterations */
547     outeriter        += nri;
548
549     /* Update outer/inner flops */
550
551     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
552 }
553 /*
554  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_double
555  * Electrostatics interaction: Ewald
556  * VdW interaction:            None
557  * Geometry:                   Water4-Particle
558  * Calculate force/pot:        Force
559  */
560 void
561 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_double
562                     (t_nblist * gmx_restrict                nlist,
563                      rvec * gmx_restrict                    xx,
564                      rvec * gmx_restrict                    ff,
565                      t_forcerec * gmx_restrict              fr,
566                      t_mdatoms * gmx_restrict               mdatoms,
567                      nb_kernel_data_t * gmx_restrict        kernel_data,
568                      t_nrnb * gmx_restrict                  nrnb)
569 {
570     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
571      * just 0 for non-waters.
572      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
573      * jnr indices corresponding to data put in the four positions in the SIMD register.
574      */
575     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
576     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
577     int              jnrA,jnrB;
578     int              j_coord_offsetA,j_coord_offsetB;
579     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
580     real             rcutoff_scalar;
581     real             *shiftvec,*fshift,*x,*f;
582     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
583     int              vdwioffset1;
584     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
585     int              vdwioffset2;
586     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
587     int              vdwioffset3;
588     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
589     int              vdwjidx0A,vdwjidx0B;
590     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
591     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
592     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
593     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
594     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
595     real             *charge;
596     __m128i          ewitab;
597     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
598     real             *ewtab;
599     __m128d          dummy_mask,cutoff_mask;
600     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
601     __m128d          one     = _mm_set1_pd(1.0);
602     __m128d          two     = _mm_set1_pd(2.0);
603     x                = xx[0];
604     f                = ff[0];
605
606     nri              = nlist->nri;
607     iinr             = nlist->iinr;
608     jindex           = nlist->jindex;
609     jjnr             = nlist->jjnr;
610     shiftidx         = nlist->shift;
611     gid              = nlist->gid;
612     shiftvec         = fr->shift_vec[0];
613     fshift           = fr->fshift[0];
614     facel            = _mm_set1_pd(fr->epsfac);
615     charge           = mdatoms->chargeA;
616
617     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
618     ewtab            = fr->ic->tabq_coul_F;
619     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
620     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
621
622     /* Setup water-specific parameters */
623     inr              = nlist->iinr[0];
624     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
625     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
626     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
627
628     /* Avoid stupid compiler warnings */
629     jnrA = jnrB = 0;
630     j_coord_offsetA = 0;
631     j_coord_offsetB = 0;
632
633     outeriter        = 0;
634     inneriter        = 0;
635
636     /* Start outer loop over neighborlists */
637     for(iidx=0; iidx<nri; iidx++)
638     {
639         /* Load shift vector for this list */
640         i_shift_offset   = DIM*shiftidx[iidx];
641
642         /* Load limits for loop over neighbors */
643         j_index_start    = jindex[iidx];
644         j_index_end      = jindex[iidx+1];
645
646         /* Get outer coordinate index */
647         inr              = iinr[iidx];
648         i_coord_offset   = DIM*inr;
649
650         /* Load i particle coords and add shift vector */
651         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
652                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
653
654         fix1             = _mm_setzero_pd();
655         fiy1             = _mm_setzero_pd();
656         fiz1             = _mm_setzero_pd();
657         fix2             = _mm_setzero_pd();
658         fiy2             = _mm_setzero_pd();
659         fiz2             = _mm_setzero_pd();
660         fix3             = _mm_setzero_pd();
661         fiy3             = _mm_setzero_pd();
662         fiz3             = _mm_setzero_pd();
663
664         /* Start inner kernel loop */
665         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
666         {
667
668             /* Get j neighbor index, and coordinate index */
669             jnrA             = jjnr[jidx];
670             jnrB             = jjnr[jidx+1];
671             j_coord_offsetA  = DIM*jnrA;
672             j_coord_offsetB  = DIM*jnrB;
673             
674             /* load j atom coordinates */
675             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
676                                               &jx0,&jy0,&jz0);
677             
678             /* Calculate displacement vector */
679             dx10             = _mm_sub_pd(ix1,jx0);
680             dy10             = _mm_sub_pd(iy1,jy0);
681             dz10             = _mm_sub_pd(iz1,jz0);
682             dx20             = _mm_sub_pd(ix2,jx0);
683             dy20             = _mm_sub_pd(iy2,jy0);
684             dz20             = _mm_sub_pd(iz2,jz0);
685             dx30             = _mm_sub_pd(ix3,jx0);
686             dy30             = _mm_sub_pd(iy3,jy0);
687             dz30             = _mm_sub_pd(iz3,jz0);
688
689             /* Calculate squared distance and things based on it */
690             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
691             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
692             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
693
694             rinv10           = gmx_mm_invsqrt_pd(rsq10);
695             rinv20           = gmx_mm_invsqrt_pd(rsq20);
696             rinv30           = gmx_mm_invsqrt_pd(rsq30);
697
698             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
699             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
700             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
701
702             /* Load parameters for j particles */
703             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
704
705             fjx0             = _mm_setzero_pd();
706             fjy0             = _mm_setzero_pd();
707             fjz0             = _mm_setzero_pd();
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             r10              = _mm_mul_pd(rsq10,rinv10);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq10             = _mm_mul_pd(iq1,jq0);
717
718             /* EWALD ELECTROSTATICS */
719
720             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
721             ewrt             = _mm_mul_pd(r10,ewtabscale);
722             ewitab           = _mm_cvttpd_epi32(ewrt);
723             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
724             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
725                                          &ewtabF,&ewtabFn);
726             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
727             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
728
729             fscal            = felec;
730
731             /* Calculate temporary vectorial force */
732             tx               = _mm_mul_pd(fscal,dx10);
733             ty               = _mm_mul_pd(fscal,dy10);
734             tz               = _mm_mul_pd(fscal,dz10);
735
736             /* Update vectorial force */
737             fix1             = _mm_add_pd(fix1,tx);
738             fiy1             = _mm_add_pd(fiy1,ty);
739             fiz1             = _mm_add_pd(fiz1,tz);
740
741             fjx0             = _mm_add_pd(fjx0,tx);
742             fjy0             = _mm_add_pd(fjy0,ty);
743             fjz0             = _mm_add_pd(fjz0,tz);
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             r20              = _mm_mul_pd(rsq20,rinv20);
750
751             /* Compute parameters for interactions between i and j atoms */
752             qq20             = _mm_mul_pd(iq2,jq0);
753
754             /* EWALD ELECTROSTATICS */
755
756             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
757             ewrt             = _mm_mul_pd(r20,ewtabscale);
758             ewitab           = _mm_cvttpd_epi32(ewrt);
759             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
760             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
761                                          &ewtabF,&ewtabFn);
762             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
763             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
764
765             fscal            = felec;
766
767             /* Calculate temporary vectorial force */
768             tx               = _mm_mul_pd(fscal,dx20);
769             ty               = _mm_mul_pd(fscal,dy20);
770             tz               = _mm_mul_pd(fscal,dz20);
771
772             /* Update vectorial force */
773             fix2             = _mm_add_pd(fix2,tx);
774             fiy2             = _mm_add_pd(fiy2,ty);
775             fiz2             = _mm_add_pd(fiz2,tz);
776
777             fjx0             = _mm_add_pd(fjx0,tx);
778             fjy0             = _mm_add_pd(fjy0,ty);
779             fjz0             = _mm_add_pd(fjz0,tz);
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             r30              = _mm_mul_pd(rsq30,rinv30);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq30             = _mm_mul_pd(iq3,jq0);
789
790             /* EWALD ELECTROSTATICS */
791
792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
793             ewrt             = _mm_mul_pd(r30,ewtabscale);
794             ewitab           = _mm_cvttpd_epi32(ewrt);
795             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
796             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
797                                          &ewtabF,&ewtabFn);
798             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
799             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
800
801             fscal            = felec;
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_pd(fscal,dx30);
805             ty               = _mm_mul_pd(fscal,dy30);
806             tz               = _mm_mul_pd(fscal,dz30);
807
808             /* Update vectorial force */
809             fix3             = _mm_add_pd(fix3,tx);
810             fiy3             = _mm_add_pd(fiy3,ty);
811             fiz3             = _mm_add_pd(fiz3,tz);
812
813             fjx0             = _mm_add_pd(fjx0,tx);
814             fjy0             = _mm_add_pd(fjy0,ty);
815             fjz0             = _mm_add_pd(fjz0,tz);
816
817             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
818
819             /* Inner loop uses 111 flops */
820         }
821
822         if(jidx<j_index_end)
823         {
824
825             jnrA             = jjnr[jidx];
826             j_coord_offsetA  = DIM*jnrA;
827
828             /* load j atom coordinates */
829             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
830                                               &jx0,&jy0,&jz0);
831             
832             /* Calculate displacement vector */
833             dx10             = _mm_sub_pd(ix1,jx0);
834             dy10             = _mm_sub_pd(iy1,jy0);
835             dz10             = _mm_sub_pd(iz1,jz0);
836             dx20             = _mm_sub_pd(ix2,jx0);
837             dy20             = _mm_sub_pd(iy2,jy0);
838             dz20             = _mm_sub_pd(iz2,jz0);
839             dx30             = _mm_sub_pd(ix3,jx0);
840             dy30             = _mm_sub_pd(iy3,jy0);
841             dz30             = _mm_sub_pd(iz3,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
845             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
846             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
847
848             rinv10           = gmx_mm_invsqrt_pd(rsq10);
849             rinv20           = gmx_mm_invsqrt_pd(rsq20);
850             rinv30           = gmx_mm_invsqrt_pd(rsq30);
851
852             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
853             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
854             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
855
856             /* Load parameters for j particles */
857             jq0              = _mm_load_sd(charge+jnrA+0);
858
859             fjx0             = _mm_setzero_pd();
860             fjy0             = _mm_setzero_pd();
861             fjz0             = _mm_setzero_pd();
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r10              = _mm_mul_pd(rsq10,rinv10);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq10             = _mm_mul_pd(iq1,jq0);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
875             ewrt             = _mm_mul_pd(r10,ewtabscale);
876             ewitab           = _mm_cvttpd_epi32(ewrt);
877             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
878             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
879             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
880             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
881
882             fscal            = felec;
883
884             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx10);
888             ty               = _mm_mul_pd(fscal,dy10);
889             tz               = _mm_mul_pd(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_pd(fix1,tx);
893             fiy1             = _mm_add_pd(fiy1,ty);
894             fiz1             = _mm_add_pd(fiz1,tz);
895
896             fjx0             = _mm_add_pd(fjx0,tx);
897             fjy0             = _mm_add_pd(fjy0,ty);
898             fjz0             = _mm_add_pd(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r20              = _mm_mul_pd(rsq20,rinv20);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_pd(iq2,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912             ewrt             = _mm_mul_pd(r20,ewtabscale);
913             ewitab           = _mm_cvttpd_epi32(ewrt);
914             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
915             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
916             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
917             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
918
919             fscal            = felec;
920
921             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm_mul_pd(fscal,dx20);
925             ty               = _mm_mul_pd(fscal,dy20);
926             tz               = _mm_mul_pd(fscal,dz20);
927
928             /* Update vectorial force */
929             fix2             = _mm_add_pd(fix2,tx);
930             fiy2             = _mm_add_pd(fiy2,ty);
931             fiz2             = _mm_add_pd(fiz2,tz);
932
933             fjx0             = _mm_add_pd(fjx0,tx);
934             fjy0             = _mm_add_pd(fjy0,ty);
935             fjz0             = _mm_add_pd(fjz0,tz);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r30              = _mm_mul_pd(rsq30,rinv30);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq30             = _mm_mul_pd(iq3,jq0);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _mm_mul_pd(r30,ewtabscale);
950             ewitab           = _mm_cvttpd_epi32(ewrt);
951             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
952             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
953             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
954             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
955
956             fscal            = felec;
957
958             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
959
960             /* Calculate temporary vectorial force */
961             tx               = _mm_mul_pd(fscal,dx30);
962             ty               = _mm_mul_pd(fscal,dy30);
963             tz               = _mm_mul_pd(fscal,dz30);
964
965             /* Update vectorial force */
966             fix3             = _mm_add_pd(fix3,tx);
967             fiy3             = _mm_add_pd(fiy3,ty);
968             fiz3             = _mm_add_pd(fiz3,tz);
969
970             fjx0             = _mm_add_pd(fjx0,tx);
971             fjy0             = _mm_add_pd(fjy0,ty);
972             fjz0             = _mm_add_pd(fjz0,tz);
973
974             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 111 flops */
977         }
978
979         /* End of innermost loop */
980
981         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
982                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
983
984         /* Increment number of inner iterations */
985         inneriter                  += j_index_end - j_index_start;
986
987         /* Outer loop uses 18 flops */
988     }
989
990     /* Increment number of outer iterations */
991     outeriter        += nri;
992
993     /* Update outer/inner flops */
994
995     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
996 }