made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          ewitab;
86     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     __m128d          dummy_mask,cutoff_mask;
89     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
90     __m128d          one     = _mm_set1_pd(1.0);
91     __m128d          two     = _mm_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
112     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
117     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
118     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
145                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
146
147         fix0             = _mm_setzero_pd();
148         fiy0             = _mm_setzero_pd();
149         fiz0             = _mm_setzero_pd();
150         fix1             = _mm_setzero_pd();
151         fiy1             = _mm_setzero_pd();
152         fiz1             = _mm_setzero_pd();
153         fix2             = _mm_setzero_pd();
154         fiy2             = _mm_setzero_pd();
155         fiz2             = _mm_setzero_pd();
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_pd();
159         vvdwsum          = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174             
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_pd(ix0,jx0);
177             dy00             = _mm_sub_pd(iy0,jy0);
178             dz00             = _mm_sub_pd(iz0,jz0);
179             dx10             = _mm_sub_pd(ix1,jx0);
180             dy10             = _mm_sub_pd(iy1,jy0);
181             dz10             = _mm_sub_pd(iz1,jz0);
182             dx20             = _mm_sub_pd(ix2,jx0);
183             dy20             = _mm_sub_pd(iy2,jy0);
184             dz20             = _mm_sub_pd(iz2,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
189             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
190
191             rinv00           = gmx_mm_invsqrt_pd(rsq00);
192             rinv10           = gmx_mm_invsqrt_pd(rsq10);
193             rinv20           = gmx_mm_invsqrt_pd(rsq20);
194
195             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
196             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
197             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203
204             fjx0             = _mm_setzero_pd();
205             fjy0             = _mm_setzero_pd();
206             fjz0             = _mm_setzero_pd();
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm_mul_pd(iq0,jq0);
216             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
217                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = _mm_mul_pd(r00,ewtabscale);
223             ewitab           = _mm_cvttpd_epi32(ewrt);
224             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
228             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
229             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
230             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
232             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
233             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
234             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
235             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
236
237             /* LENNARD-JONES DISPERSION/REPULSION */
238
239             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
240             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
241             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
242             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
243             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velecsum         = _mm_add_pd(velecsum,velec);
247             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
248
249             fscal            = _mm_add_pd(felec,fvdw);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_pd(fscal,dx00);
253             ty               = _mm_mul_pd(fscal,dy00);
254             tz               = _mm_mul_pd(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_pd(fix0,tx);
258             fiy0             = _mm_add_pd(fiy0,ty);
259             fiz0             = _mm_add_pd(fiz0,tz);
260
261             fjx0             = _mm_add_pd(fjx0,tx);
262             fjy0             = _mm_add_pd(fjy0,ty);
263             fjz0             = _mm_add_pd(fjz0,tz);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             r10              = _mm_mul_pd(rsq10,rinv10);
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm_mul_pd(iq1,jq0);
273
274             /* EWALD ELECTROSTATICS */
275
276             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
277             ewrt             = _mm_mul_pd(r10,ewtabscale);
278             ewitab           = _mm_cvttpd_epi32(ewrt);
279             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
280             ewitab           = _mm_slli_epi32(ewitab,2);
281             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
282             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
283             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
284             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
285             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
286             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
287             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
288             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
289             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
290             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_pd(fscal,dx10);
299             ty               = _mm_mul_pd(fscal,dy10);
300             tz               = _mm_mul_pd(fscal,dz10);
301
302             /* Update vectorial force */
303             fix1             = _mm_add_pd(fix1,tx);
304             fiy1             = _mm_add_pd(fiy1,ty);
305             fiz1             = _mm_add_pd(fiz1,tz);
306
307             fjx0             = _mm_add_pd(fjx0,tx);
308             fjy0             = _mm_add_pd(fjy0,ty);
309             fjz0             = _mm_add_pd(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r20              = _mm_mul_pd(rsq20,rinv20);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm_mul_pd(iq2,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r20,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
329             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
330             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
331             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
333             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
334             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
335             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
336             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_pd(fscal,dx20);
345             ty               = _mm_mul_pd(fscal,dy20);
346             tz               = _mm_mul_pd(fscal,dz20);
347
348             /* Update vectorial force */
349             fix2             = _mm_add_pd(fix2,tx);
350             fiy2             = _mm_add_pd(fiy2,ty);
351             fiz2             = _mm_add_pd(fiz2,tz);
352
353             fjx0             = _mm_add_pd(fjx0,tx);
354             fjy0             = _mm_add_pd(fjy0,ty);
355             fjz0             = _mm_add_pd(fjz0,tz);
356
357             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
358
359             /* Inner loop uses 138 flops */
360         }
361
362         if(jidx<j_index_end)
363         {
364
365             jnrA             = jjnr[jidx];
366             j_coord_offsetA  = DIM*jnrA;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
370                                               &jx0,&jy0,&jz0);
371             
372             /* Calculate displacement vector */
373             dx00             = _mm_sub_pd(ix0,jx0);
374             dy00             = _mm_sub_pd(iy0,jy0);
375             dz00             = _mm_sub_pd(iz0,jz0);
376             dx10             = _mm_sub_pd(ix1,jx0);
377             dy10             = _mm_sub_pd(iy1,jy0);
378             dz10             = _mm_sub_pd(iz1,jz0);
379             dx20             = _mm_sub_pd(ix2,jx0);
380             dy20             = _mm_sub_pd(iy2,jy0);
381             dz20             = _mm_sub_pd(iz2,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
385             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
386             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
387
388             rinv00           = gmx_mm_invsqrt_pd(rsq00);
389             rinv10           = gmx_mm_invsqrt_pd(rsq10);
390             rinv20           = gmx_mm_invsqrt_pd(rsq20);
391
392             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
393             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
394             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
395
396             /* Load parameters for j particles */
397             jq0              = _mm_load_sd(charge+jnrA+0);
398             vdwjidx0A        = 2*vdwtype[jnrA+0];
399
400             fjx0             = _mm_setzero_pd();
401             fjy0             = _mm_setzero_pd();
402             fjz0             = _mm_setzero_pd();
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r00              = _mm_mul_pd(rsq00,rinv00);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq00             = _mm_mul_pd(iq0,jq0);
412             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
413
414             /* EWALD ELECTROSTATICS */
415
416             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
417             ewrt             = _mm_mul_pd(r00,ewtabscale);
418             ewitab           = _mm_cvttpd_epi32(ewrt);
419             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
420             ewitab           = _mm_slli_epi32(ewitab,2);
421             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
422             ewtabD           = _mm_setzero_pd();
423             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
424             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
425             ewtabFn          = _mm_setzero_pd();
426             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
427             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
428             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
429             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
430             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
431
432             /* LENNARD-JONES DISPERSION/REPULSION */
433
434             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
435             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
436             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
437             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
438             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
442             velecsum         = _mm_add_pd(velecsum,velec);
443             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
444             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
445
446             fscal            = _mm_add_pd(felec,fvdw);
447
448             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm_mul_pd(fscal,dx00);
452             ty               = _mm_mul_pd(fscal,dy00);
453             tz               = _mm_mul_pd(fscal,dz00);
454
455             /* Update vectorial force */
456             fix0             = _mm_add_pd(fix0,tx);
457             fiy0             = _mm_add_pd(fiy0,ty);
458             fiz0             = _mm_add_pd(fiz0,tz);
459
460             fjx0             = _mm_add_pd(fjx0,tx);
461             fjy0             = _mm_add_pd(fjy0,ty);
462             fjz0             = _mm_add_pd(fjz0,tz);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r10              = _mm_mul_pd(rsq10,rinv10);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq10             = _mm_mul_pd(iq1,jq0);
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = _mm_mul_pd(r10,ewtabscale);
477             ewitab           = _mm_cvttpd_epi32(ewrt);
478             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
479             ewitab           = _mm_slli_epi32(ewitab,2);
480             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
481             ewtabD           = _mm_setzero_pd();
482             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
483             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
484             ewtabFn          = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
486             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
487             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
488             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
489             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
493             velecsum         = _mm_add_pd(velecsum,velec);
494
495             fscal            = felec;
496
497             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm_mul_pd(fscal,dx10);
501             ty               = _mm_mul_pd(fscal,dy10);
502             tz               = _mm_mul_pd(fscal,dz10);
503
504             /* Update vectorial force */
505             fix1             = _mm_add_pd(fix1,tx);
506             fiy1             = _mm_add_pd(fiy1,ty);
507             fiz1             = _mm_add_pd(fiz1,tz);
508
509             fjx0             = _mm_add_pd(fjx0,tx);
510             fjy0             = _mm_add_pd(fjy0,ty);
511             fjz0             = _mm_add_pd(fjz0,tz);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             r20              = _mm_mul_pd(rsq20,rinv20);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq20             = _mm_mul_pd(iq2,jq0);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm_mul_pd(r20,ewtabscale);
526             ewitab           = _mm_cvttpd_epi32(ewrt);
527             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm_setzero_pd();
531             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
532             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
533             ewtabFn          = _mm_setzero_pd();
534             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
535             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
536             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
537             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
538             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
542             velecsum         = _mm_add_pd(velecsum,velec);
543
544             fscal            = felec;
545
546             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm_mul_pd(fscal,dx20);
550             ty               = _mm_mul_pd(fscal,dy20);
551             tz               = _mm_mul_pd(fscal,dz20);
552
553             /* Update vectorial force */
554             fix2             = _mm_add_pd(fix2,tx);
555             fiy2             = _mm_add_pd(fiy2,ty);
556             fiz2             = _mm_add_pd(fiz2,tz);
557
558             fjx0             = _mm_add_pd(fjx0,tx);
559             fjy0             = _mm_add_pd(fjy0,ty);
560             fjz0             = _mm_add_pd(fjz0,tz);
561
562             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
563
564             /* Inner loop uses 138 flops */
565         }
566
567         /* End of innermost loop */
568
569         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
570                                               f+i_coord_offset,fshift+i_shift_offset);
571
572         ggid                        = gid[iidx];
573         /* Update potential energies */
574         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
575         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
576
577         /* Increment number of inner iterations */
578         inneriter                  += j_index_end - j_index_start;
579
580         /* Outer loop uses 20 flops */
581     }
582
583     /* Increment number of outer iterations */
584     outeriter        += nri;
585
586     /* Update outer/inner flops */
587
588     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
589 }
590 /*
591  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_double
592  * Electrostatics interaction: Ewald
593  * VdW interaction:            LennardJones
594  * Geometry:                   Water3-Particle
595  * Calculate force/pot:        Force
596  */
597 void
598 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_double
599                     (t_nblist * gmx_restrict                nlist,
600                      rvec * gmx_restrict                    xx,
601                      rvec * gmx_restrict                    ff,
602                      t_forcerec * gmx_restrict              fr,
603                      t_mdatoms * gmx_restrict               mdatoms,
604                      nb_kernel_data_t * gmx_restrict        kernel_data,
605                      t_nrnb * gmx_restrict                  nrnb)
606 {
607     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
608      * just 0 for non-waters.
609      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
610      * jnr indices corresponding to data put in the four positions in the SIMD register.
611      */
612     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
613     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
614     int              jnrA,jnrB;
615     int              j_coord_offsetA,j_coord_offsetB;
616     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
617     real             rcutoff_scalar;
618     real             *shiftvec,*fshift,*x,*f;
619     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
620     int              vdwioffset0;
621     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
622     int              vdwioffset1;
623     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
624     int              vdwioffset2;
625     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
626     int              vdwjidx0A,vdwjidx0B;
627     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
628     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
629     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
630     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
631     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
632     real             *charge;
633     int              nvdwtype;
634     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
635     int              *vdwtype;
636     real             *vdwparam;
637     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
638     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
639     __m128i          ewitab;
640     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
641     real             *ewtab;
642     __m128d          dummy_mask,cutoff_mask;
643     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
644     __m128d          one     = _mm_set1_pd(1.0);
645     __m128d          two     = _mm_set1_pd(2.0);
646     x                = xx[0];
647     f                = ff[0];
648
649     nri              = nlist->nri;
650     iinr             = nlist->iinr;
651     jindex           = nlist->jindex;
652     jjnr             = nlist->jjnr;
653     shiftidx         = nlist->shift;
654     gid              = nlist->gid;
655     shiftvec         = fr->shift_vec[0];
656     fshift           = fr->fshift[0];
657     facel            = _mm_set1_pd(fr->epsfac);
658     charge           = mdatoms->chargeA;
659     nvdwtype         = fr->ntype;
660     vdwparam         = fr->nbfp;
661     vdwtype          = mdatoms->typeA;
662
663     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
664     ewtab            = fr->ic->tabq_coul_F;
665     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
666     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
667
668     /* Setup water-specific parameters */
669     inr              = nlist->iinr[0];
670     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
671     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
672     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
673     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
674
675     /* Avoid stupid compiler warnings */
676     jnrA = jnrB = 0;
677     j_coord_offsetA = 0;
678     j_coord_offsetB = 0;
679
680     outeriter        = 0;
681     inneriter        = 0;
682
683     /* Start outer loop over neighborlists */
684     for(iidx=0; iidx<nri; iidx++)
685     {
686         /* Load shift vector for this list */
687         i_shift_offset   = DIM*shiftidx[iidx];
688
689         /* Load limits for loop over neighbors */
690         j_index_start    = jindex[iidx];
691         j_index_end      = jindex[iidx+1];
692
693         /* Get outer coordinate index */
694         inr              = iinr[iidx];
695         i_coord_offset   = DIM*inr;
696
697         /* Load i particle coords and add shift vector */
698         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
699                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
700
701         fix0             = _mm_setzero_pd();
702         fiy0             = _mm_setzero_pd();
703         fiz0             = _mm_setzero_pd();
704         fix1             = _mm_setzero_pd();
705         fiy1             = _mm_setzero_pd();
706         fiz1             = _mm_setzero_pd();
707         fix2             = _mm_setzero_pd();
708         fiy2             = _mm_setzero_pd();
709         fiz2             = _mm_setzero_pd();
710
711         /* Start inner kernel loop */
712         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
713         {
714
715             /* Get j neighbor index, and coordinate index */
716             jnrA             = jjnr[jidx];
717             jnrB             = jjnr[jidx+1];
718             j_coord_offsetA  = DIM*jnrA;
719             j_coord_offsetB  = DIM*jnrB;
720             
721             /* load j atom coordinates */
722             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
723                                               &jx0,&jy0,&jz0);
724             
725             /* Calculate displacement vector */
726             dx00             = _mm_sub_pd(ix0,jx0);
727             dy00             = _mm_sub_pd(iy0,jy0);
728             dz00             = _mm_sub_pd(iz0,jz0);
729             dx10             = _mm_sub_pd(ix1,jx0);
730             dy10             = _mm_sub_pd(iy1,jy0);
731             dz10             = _mm_sub_pd(iz1,jz0);
732             dx20             = _mm_sub_pd(ix2,jx0);
733             dy20             = _mm_sub_pd(iy2,jy0);
734             dz20             = _mm_sub_pd(iz2,jz0);
735
736             /* Calculate squared distance and things based on it */
737             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
738             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
739             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
740
741             rinv00           = gmx_mm_invsqrt_pd(rsq00);
742             rinv10           = gmx_mm_invsqrt_pd(rsq10);
743             rinv20           = gmx_mm_invsqrt_pd(rsq20);
744
745             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
746             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
747             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
748
749             /* Load parameters for j particles */
750             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
751             vdwjidx0A        = 2*vdwtype[jnrA+0];
752             vdwjidx0B        = 2*vdwtype[jnrB+0];
753
754             fjx0             = _mm_setzero_pd();
755             fjy0             = _mm_setzero_pd();
756             fjz0             = _mm_setzero_pd();
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             r00              = _mm_mul_pd(rsq00,rinv00);
763
764             /* Compute parameters for interactions between i and j atoms */
765             qq00             = _mm_mul_pd(iq0,jq0);
766             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
767                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
768
769             /* EWALD ELECTROSTATICS */
770
771             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
772             ewrt             = _mm_mul_pd(r00,ewtabscale);
773             ewitab           = _mm_cvttpd_epi32(ewrt);
774             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
775             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
776                                          &ewtabF,&ewtabFn);
777             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
778             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
779
780             /* LENNARD-JONES DISPERSION/REPULSION */
781
782             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
783             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
784
785             fscal            = _mm_add_pd(felec,fvdw);
786
787             /* Calculate temporary vectorial force */
788             tx               = _mm_mul_pd(fscal,dx00);
789             ty               = _mm_mul_pd(fscal,dy00);
790             tz               = _mm_mul_pd(fscal,dz00);
791
792             /* Update vectorial force */
793             fix0             = _mm_add_pd(fix0,tx);
794             fiy0             = _mm_add_pd(fiy0,ty);
795             fiz0             = _mm_add_pd(fiz0,tz);
796
797             fjx0             = _mm_add_pd(fjx0,tx);
798             fjy0             = _mm_add_pd(fjy0,ty);
799             fjz0             = _mm_add_pd(fjz0,tz);
800
801             /**************************
802              * CALCULATE INTERACTIONS *
803              **************************/
804
805             r10              = _mm_mul_pd(rsq10,rinv10);
806
807             /* Compute parameters for interactions between i and j atoms */
808             qq10             = _mm_mul_pd(iq1,jq0);
809
810             /* EWALD ELECTROSTATICS */
811
812             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
813             ewrt             = _mm_mul_pd(r10,ewtabscale);
814             ewitab           = _mm_cvttpd_epi32(ewrt);
815             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
816             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
817                                          &ewtabF,&ewtabFn);
818             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
819             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
820
821             fscal            = felec;
822
823             /* Calculate temporary vectorial force */
824             tx               = _mm_mul_pd(fscal,dx10);
825             ty               = _mm_mul_pd(fscal,dy10);
826             tz               = _mm_mul_pd(fscal,dz10);
827
828             /* Update vectorial force */
829             fix1             = _mm_add_pd(fix1,tx);
830             fiy1             = _mm_add_pd(fiy1,ty);
831             fiz1             = _mm_add_pd(fiz1,tz);
832
833             fjx0             = _mm_add_pd(fjx0,tx);
834             fjy0             = _mm_add_pd(fjy0,ty);
835             fjz0             = _mm_add_pd(fjz0,tz);
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             r20              = _mm_mul_pd(rsq20,rinv20);
842
843             /* Compute parameters for interactions between i and j atoms */
844             qq20             = _mm_mul_pd(iq2,jq0);
845
846             /* EWALD ELECTROSTATICS */
847
848             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
849             ewrt             = _mm_mul_pd(r20,ewtabscale);
850             ewitab           = _mm_cvttpd_epi32(ewrt);
851             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
852             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
853                                          &ewtabF,&ewtabFn);
854             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
855             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
856
857             fscal            = felec;
858
859             /* Calculate temporary vectorial force */
860             tx               = _mm_mul_pd(fscal,dx20);
861             ty               = _mm_mul_pd(fscal,dy20);
862             tz               = _mm_mul_pd(fscal,dz20);
863
864             /* Update vectorial force */
865             fix2             = _mm_add_pd(fix2,tx);
866             fiy2             = _mm_add_pd(fiy2,ty);
867             fiz2             = _mm_add_pd(fiz2,tz);
868
869             fjx0             = _mm_add_pd(fjx0,tx);
870             fjy0             = _mm_add_pd(fjy0,ty);
871             fjz0             = _mm_add_pd(fjz0,tz);
872
873             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
874
875             /* Inner loop uses 118 flops */
876         }
877
878         if(jidx<j_index_end)
879         {
880
881             jnrA             = jjnr[jidx];
882             j_coord_offsetA  = DIM*jnrA;
883
884             /* load j atom coordinates */
885             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
886                                               &jx0,&jy0,&jz0);
887             
888             /* Calculate displacement vector */
889             dx00             = _mm_sub_pd(ix0,jx0);
890             dy00             = _mm_sub_pd(iy0,jy0);
891             dz00             = _mm_sub_pd(iz0,jz0);
892             dx10             = _mm_sub_pd(ix1,jx0);
893             dy10             = _mm_sub_pd(iy1,jy0);
894             dz10             = _mm_sub_pd(iz1,jz0);
895             dx20             = _mm_sub_pd(ix2,jx0);
896             dy20             = _mm_sub_pd(iy2,jy0);
897             dz20             = _mm_sub_pd(iz2,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
903
904             rinv00           = gmx_mm_invsqrt_pd(rsq00);
905             rinv10           = gmx_mm_invsqrt_pd(rsq10);
906             rinv20           = gmx_mm_invsqrt_pd(rsq20);
907
908             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
909             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
910             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
911
912             /* Load parameters for j particles */
913             jq0              = _mm_load_sd(charge+jnrA+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915
916             fjx0             = _mm_setzero_pd();
917             fjy0             = _mm_setzero_pd();
918             fjz0             = _mm_setzero_pd();
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             r00              = _mm_mul_pd(rsq00,rinv00);
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq00             = _mm_mul_pd(iq0,jq0);
928             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _mm_mul_pd(r00,ewtabscale);
934             ewitab           = _mm_cvttpd_epi32(ewrt);
935             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
936             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
937             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
938             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
939
940             /* LENNARD-JONES DISPERSION/REPULSION */
941
942             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
943             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
944
945             fscal            = _mm_add_pd(felec,fvdw);
946
947             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_pd(fscal,dx00);
951             ty               = _mm_mul_pd(fscal,dy00);
952             tz               = _mm_mul_pd(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm_add_pd(fix0,tx);
956             fiy0             = _mm_add_pd(fiy0,ty);
957             fiz0             = _mm_add_pd(fiz0,tz);
958
959             fjx0             = _mm_add_pd(fjx0,tx);
960             fjy0             = _mm_add_pd(fjy0,ty);
961             fjz0             = _mm_add_pd(fjz0,tz);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r10              = _mm_mul_pd(rsq10,rinv10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm_mul_pd(iq1,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_pd(r10,ewtabscale);
976             ewitab           = _mm_cvttpd_epi32(ewrt);
977             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
978             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
979             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
980             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
981
982             fscal            = felec;
983
984             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm_mul_pd(fscal,dx10);
988             ty               = _mm_mul_pd(fscal,dy10);
989             tz               = _mm_mul_pd(fscal,dz10);
990
991             /* Update vectorial force */
992             fix1             = _mm_add_pd(fix1,tx);
993             fiy1             = _mm_add_pd(fiy1,ty);
994             fiz1             = _mm_add_pd(fiz1,tz);
995
996             fjx0             = _mm_add_pd(fjx0,tx);
997             fjy0             = _mm_add_pd(fjy0,ty);
998             fjz0             = _mm_add_pd(fjz0,tz);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r20              = _mm_mul_pd(rsq20,rinv20);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm_mul_pd(iq2,jq0);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm_mul_pd(r20,ewtabscale);
1013             ewitab           = _mm_cvttpd_epi32(ewrt);
1014             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1015             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1016             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1017             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1018
1019             fscal            = felec;
1020
1021             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_pd(fscal,dx20);
1025             ty               = _mm_mul_pd(fscal,dy20);
1026             tz               = _mm_mul_pd(fscal,dz20);
1027
1028             /* Update vectorial force */
1029             fix2             = _mm_add_pd(fix2,tx);
1030             fiy2             = _mm_add_pd(fiy2,ty);
1031             fiz2             = _mm_add_pd(fiz2,tz);
1032
1033             fjx0             = _mm_add_pd(fjx0,tx);
1034             fjy0             = _mm_add_pd(fjy0,ty);
1035             fjz0             = _mm_add_pd(fjz0,tz);
1036
1037             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1038
1039             /* Inner loop uses 118 flops */
1040         }
1041
1042         /* End of innermost loop */
1043
1044         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1045                                               f+i_coord_offset,fshift+i_shift_offset);
1046
1047         /* Increment number of inner iterations */
1048         inneriter                  += j_index_end - j_index_start;
1049
1050         /* Outer loop uses 18 flops */
1051     }
1052
1053     /* Increment number of outer iterations */
1054     outeriter        += nri;
1055
1056     /* Update outer/inner flops */
1057
1058     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1059 }