9d38f68fc364f8af3be990291a9342da17d7aab6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse2_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     int              vdwjidx1A,vdwjidx1B;
75     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
76     int              vdwjidx2A,vdwjidx2B;
77     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
78     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
80     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
81     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
83     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
84     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
86     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128i          ewitab;
100     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     jq0              = _mm_set1_pd(charge[inr+0]);
139     jq1              = _mm_set1_pd(charge[inr+1]);
140     jq2              = _mm_set1_pd(charge[inr+2]);
141     vdwjidx0A        = 2*vdwtype[inr+0];
142     qq00             = _mm_mul_pd(iq0,jq0);
143     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
144     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
145     qq01             = _mm_mul_pd(iq0,jq1);
146     qq02             = _mm_mul_pd(iq0,jq2);
147     qq10             = _mm_mul_pd(iq1,jq0);
148     qq11             = _mm_mul_pd(iq1,jq1);
149     qq12             = _mm_mul_pd(iq1,jq2);
150     qq20             = _mm_mul_pd(iq2,jq0);
151     qq21             = _mm_mul_pd(iq2,jq1);
152     qq22             = _mm_mul_pd(iq2,jq2);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_pd();
192         vvdwsum          = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             
204             /* load j atom coordinates */
205             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
207             
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx01             = _mm_sub_pd(ix0,jx1);
213             dy01             = _mm_sub_pd(iy0,jy1);
214             dz01             = _mm_sub_pd(iz0,jz1);
215             dx02             = _mm_sub_pd(ix0,jx2);
216             dy02             = _mm_sub_pd(iy0,jy2);
217             dz02             = _mm_sub_pd(iz0,jz2);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx11             = _mm_sub_pd(ix1,jx1);
222             dy11             = _mm_sub_pd(iy1,jy1);
223             dz11             = _mm_sub_pd(iz1,jz1);
224             dx12             = _mm_sub_pd(ix1,jx2);
225             dy12             = _mm_sub_pd(iy1,jy2);
226             dz12             = _mm_sub_pd(iz1,jz2);
227             dx20             = _mm_sub_pd(ix2,jx0);
228             dy20             = _mm_sub_pd(iy2,jy0);
229             dz20             = _mm_sub_pd(iz2,jz0);
230             dx21             = _mm_sub_pd(ix2,jx1);
231             dy21             = _mm_sub_pd(iy2,jy1);
232             dz21             = _mm_sub_pd(iz2,jz1);
233             dx22             = _mm_sub_pd(ix2,jx2);
234             dy22             = _mm_sub_pd(iy2,jy2);
235             dz22             = _mm_sub_pd(iz2,jz2);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
239             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
240             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
241             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
242             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
243             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
244             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
245             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
246             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
247
248             rinv00           = gmx_mm_invsqrt_pd(rsq00);
249             rinv01           = gmx_mm_invsqrt_pd(rsq01);
250             rinv02           = gmx_mm_invsqrt_pd(rsq02);
251             rinv10           = gmx_mm_invsqrt_pd(rsq10);
252             rinv11           = gmx_mm_invsqrt_pd(rsq11);
253             rinv12           = gmx_mm_invsqrt_pd(rsq12);
254             rinv20           = gmx_mm_invsqrt_pd(rsq20);
255             rinv21           = gmx_mm_invsqrt_pd(rsq21);
256             rinv22           = gmx_mm_invsqrt_pd(rsq22);
257
258             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
259             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
260             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
261             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
262             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
263             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
264             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
265             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
266             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
267
268             fjx0             = _mm_setzero_pd();
269             fjy0             = _mm_setzero_pd();
270             fjz0             = _mm_setzero_pd();
271             fjx1             = _mm_setzero_pd();
272             fjy1             = _mm_setzero_pd();
273             fjz1             = _mm_setzero_pd();
274             fjx2             = _mm_setzero_pd();
275             fjy2             = _mm_setzero_pd();
276             fjz2             = _mm_setzero_pd();
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r00              = _mm_mul_pd(rsq00,rinv00);
283
284             /* Calculate table index by multiplying r with table scale and truncate to integer */
285             rt               = _mm_mul_pd(r00,vftabscale);
286             vfitab           = _mm_cvttpd_epi32(rt);
287             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
288             vfitab           = _mm_slli_epi32(vfitab,3);
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = _mm_mul_pd(r00,ewtabscale);
294             ewitab           = _mm_cvttpd_epi32(ewrt);
295             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
296             ewitab           = _mm_slli_epi32(ewitab,2);
297             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
298             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
299             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
300             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
301             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
302             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
303             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
304             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
305             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
306             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
307
308             /* CUBIC SPLINE TABLE DISPERSION */
309             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
310             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
311             GMX_MM_TRANSPOSE2_PD(Y,F);
312             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
313             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
314             GMX_MM_TRANSPOSE2_PD(G,H);
315             Heps             = _mm_mul_pd(vfeps,H);
316             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
317             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
318             vvdw6            = _mm_mul_pd(c6_00,VV);
319             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
320             fvdw6            = _mm_mul_pd(c6_00,FF);
321
322             /* CUBIC SPLINE TABLE REPULSION */
323             vfitab           = _mm_add_epi32(vfitab,ifour);
324             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
325             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
326             GMX_MM_TRANSPOSE2_PD(Y,F);
327             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
328             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
329             GMX_MM_TRANSPOSE2_PD(G,H);
330             Heps             = _mm_mul_pd(vfeps,H);
331             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
332             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
333             vvdw12           = _mm_mul_pd(c12_00,VV);
334             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
335             fvdw12           = _mm_mul_pd(c12_00,FF);
336             vvdw             = _mm_add_pd(vvdw12,vvdw6);
337             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_pd(velecsum,velec);
341             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
342
343             fscal            = _mm_add_pd(felec,fvdw);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx00);
347             ty               = _mm_mul_pd(fscal,dy00);
348             tz               = _mm_mul_pd(fscal,dz00);
349
350             /* Update vectorial force */
351             fix0             = _mm_add_pd(fix0,tx);
352             fiy0             = _mm_add_pd(fiy0,ty);
353             fiz0             = _mm_add_pd(fiz0,tz);
354
355             fjx0             = _mm_add_pd(fjx0,tx);
356             fjy0             = _mm_add_pd(fjy0,ty);
357             fjz0             = _mm_add_pd(fjz0,tz);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r01              = _mm_mul_pd(rsq01,rinv01);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = _mm_mul_pd(r01,ewtabscale);
369             ewitab           = _mm_cvttpd_epi32(ewrt);
370             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
371             ewitab           = _mm_slli_epi32(ewitab,2);
372             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
373             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
374             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
375             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
376             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
377             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
378             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
379             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
380             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
381             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velecsum         = _mm_add_pd(velecsum,velec);
385
386             fscal            = felec;
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm_mul_pd(fscal,dx01);
390             ty               = _mm_mul_pd(fscal,dy01);
391             tz               = _mm_mul_pd(fscal,dz01);
392
393             /* Update vectorial force */
394             fix0             = _mm_add_pd(fix0,tx);
395             fiy0             = _mm_add_pd(fiy0,ty);
396             fiz0             = _mm_add_pd(fiz0,tz);
397
398             fjx1             = _mm_add_pd(fjx1,tx);
399             fjy1             = _mm_add_pd(fjy1,ty);
400             fjz1             = _mm_add_pd(fjz1,tz);
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             r02              = _mm_mul_pd(rsq02,rinv02);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_pd(r02,ewtabscale);
412             ewitab           = _mm_cvttpd_epi32(ewrt);
413             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
414             ewitab           = _mm_slli_epi32(ewitab,2);
415             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
416             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
417             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
418             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
419             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
420             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
421             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
422             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
423             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
424             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velecsum         = _mm_add_pd(velecsum,velec);
428
429             fscal            = felec;
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_pd(fscal,dx02);
433             ty               = _mm_mul_pd(fscal,dy02);
434             tz               = _mm_mul_pd(fscal,dz02);
435
436             /* Update vectorial force */
437             fix0             = _mm_add_pd(fix0,tx);
438             fiy0             = _mm_add_pd(fiy0,ty);
439             fiz0             = _mm_add_pd(fiz0,tz);
440
441             fjx2             = _mm_add_pd(fjx2,tx);
442             fjy2             = _mm_add_pd(fjy2,ty);
443             fjz2             = _mm_add_pd(fjz2,tz);
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r10              = _mm_mul_pd(rsq10,rinv10);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r10,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
457             ewitab           = _mm_slli_epi32(ewitab,2);
458             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
459             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
460             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
461             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
462             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
463             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
464             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
465             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
466             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
467             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velecsum         = _mm_add_pd(velecsum,velec);
471
472             fscal            = felec;
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_pd(fscal,dx10);
476             ty               = _mm_mul_pd(fscal,dy10);
477             tz               = _mm_mul_pd(fscal,dz10);
478
479             /* Update vectorial force */
480             fix1             = _mm_add_pd(fix1,tx);
481             fiy1             = _mm_add_pd(fiy1,ty);
482             fiz1             = _mm_add_pd(fiz1,tz);
483
484             fjx0             = _mm_add_pd(fjx0,tx);
485             fjy0             = _mm_add_pd(fjy0,ty);
486             fjz0             = _mm_add_pd(fjz0,tz);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r11              = _mm_mul_pd(rsq11,rinv11);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_pd(r11,ewtabscale);
498             ewitab           = _mm_cvttpd_epi32(ewrt);
499             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
503             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
505             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
506             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
508             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
509             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velecsum         = _mm_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx11);
519             ty               = _mm_mul_pd(fscal,dy11);
520             tz               = _mm_mul_pd(fscal,dz11);
521
522             /* Update vectorial force */
523             fix1             = _mm_add_pd(fix1,tx);
524             fiy1             = _mm_add_pd(fiy1,ty);
525             fiz1             = _mm_add_pd(fiz1,tz);
526
527             fjx1             = _mm_add_pd(fjx1,tx);
528             fjy1             = _mm_add_pd(fjy1,ty);
529             fjz1             = _mm_add_pd(fjz1,tz);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r12              = _mm_mul_pd(rsq12,rinv12);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _mm_mul_pd(r12,ewtabscale);
541             ewitab           = _mm_cvttpd_epi32(ewrt);
542             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
543             ewitab           = _mm_slli_epi32(ewitab,2);
544             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
545             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
546             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
547             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
548             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
549             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
550             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
551             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
552             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
553             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velecsum         = _mm_add_pd(velecsum,velec);
557
558             fscal            = felec;
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm_mul_pd(fscal,dx12);
562             ty               = _mm_mul_pd(fscal,dy12);
563             tz               = _mm_mul_pd(fscal,dz12);
564
565             /* Update vectorial force */
566             fix1             = _mm_add_pd(fix1,tx);
567             fiy1             = _mm_add_pd(fiy1,ty);
568             fiz1             = _mm_add_pd(fiz1,tz);
569
570             fjx2             = _mm_add_pd(fjx2,tx);
571             fjy2             = _mm_add_pd(fjy2,ty);
572             fjz2             = _mm_add_pd(fjz2,tz);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             r20              = _mm_mul_pd(rsq20,rinv20);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_pd(r20,ewtabscale);
584             ewitab           = _mm_cvttpd_epi32(ewrt);
585             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
589             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
590             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
591             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
592             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
593             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
594             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
595             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
596             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velecsum         = _mm_add_pd(velecsum,velec);
600
601             fscal            = felec;
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm_mul_pd(fscal,dx20);
605             ty               = _mm_mul_pd(fscal,dy20);
606             tz               = _mm_mul_pd(fscal,dz20);
607
608             /* Update vectorial force */
609             fix2             = _mm_add_pd(fix2,tx);
610             fiy2             = _mm_add_pd(fiy2,ty);
611             fiz2             = _mm_add_pd(fiz2,tz);
612
613             fjx0             = _mm_add_pd(fjx0,tx);
614             fjy0             = _mm_add_pd(fjy0,ty);
615             fjz0             = _mm_add_pd(fjz0,tz);
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r21              = _mm_mul_pd(rsq21,rinv21);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r21,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
632             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
633             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
634             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
635             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
636             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
637             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
638             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
639             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velecsum         = _mm_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm_mul_pd(fscal,dx21);
648             ty               = _mm_mul_pd(fscal,dy21);
649             tz               = _mm_mul_pd(fscal,dz21);
650
651             /* Update vectorial force */
652             fix2             = _mm_add_pd(fix2,tx);
653             fiy2             = _mm_add_pd(fiy2,ty);
654             fiz2             = _mm_add_pd(fiz2,tz);
655
656             fjx1             = _mm_add_pd(fjx1,tx);
657             fjy1             = _mm_add_pd(fjy1,ty);
658             fjz1             = _mm_add_pd(fjz1,tz);
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             r22              = _mm_mul_pd(rsq22,rinv22);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
669             ewrt             = _mm_mul_pd(r22,ewtabscale);
670             ewitab           = _mm_cvttpd_epi32(ewrt);
671             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
672             ewitab           = _mm_slli_epi32(ewitab,2);
673             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
674             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
675             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
676             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
677             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
678             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
679             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
680             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
681             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
682             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
683
684             /* Update potential sum for this i atom from the interaction with this j atom. */
685             velecsum         = _mm_add_pd(velecsum,velec);
686
687             fscal            = felec;
688
689             /* Calculate temporary vectorial force */
690             tx               = _mm_mul_pd(fscal,dx22);
691             ty               = _mm_mul_pd(fscal,dy22);
692             tz               = _mm_mul_pd(fscal,dz22);
693
694             /* Update vectorial force */
695             fix2             = _mm_add_pd(fix2,tx);
696             fiy2             = _mm_add_pd(fiy2,ty);
697             fiz2             = _mm_add_pd(fiz2,tz);
698
699             fjx2             = _mm_add_pd(fjx2,tx);
700             fjy2             = _mm_add_pd(fjy2,ty);
701             fjz2             = _mm_add_pd(fjz2,tz);
702
703             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
704
705             /* Inner loop uses 403 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             jnrA             = jjnr[jidx];
712             j_coord_offsetA  = DIM*jnrA;
713
714             /* load j atom coordinates */
715             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
716                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
717             
718             /* Calculate displacement vector */
719             dx00             = _mm_sub_pd(ix0,jx0);
720             dy00             = _mm_sub_pd(iy0,jy0);
721             dz00             = _mm_sub_pd(iz0,jz0);
722             dx01             = _mm_sub_pd(ix0,jx1);
723             dy01             = _mm_sub_pd(iy0,jy1);
724             dz01             = _mm_sub_pd(iz0,jz1);
725             dx02             = _mm_sub_pd(ix0,jx2);
726             dy02             = _mm_sub_pd(iy0,jy2);
727             dz02             = _mm_sub_pd(iz0,jz2);
728             dx10             = _mm_sub_pd(ix1,jx0);
729             dy10             = _mm_sub_pd(iy1,jy0);
730             dz10             = _mm_sub_pd(iz1,jz0);
731             dx11             = _mm_sub_pd(ix1,jx1);
732             dy11             = _mm_sub_pd(iy1,jy1);
733             dz11             = _mm_sub_pd(iz1,jz1);
734             dx12             = _mm_sub_pd(ix1,jx2);
735             dy12             = _mm_sub_pd(iy1,jy2);
736             dz12             = _mm_sub_pd(iz1,jz2);
737             dx20             = _mm_sub_pd(ix2,jx0);
738             dy20             = _mm_sub_pd(iy2,jy0);
739             dz20             = _mm_sub_pd(iz2,jz0);
740             dx21             = _mm_sub_pd(ix2,jx1);
741             dy21             = _mm_sub_pd(iy2,jy1);
742             dz21             = _mm_sub_pd(iz2,jz1);
743             dx22             = _mm_sub_pd(ix2,jx2);
744             dy22             = _mm_sub_pd(iy2,jy2);
745             dz22             = _mm_sub_pd(iz2,jz2);
746
747             /* Calculate squared distance and things based on it */
748             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
749             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
750             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
751             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
752             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
753             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
754             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
755             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
756             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
757
758             rinv00           = gmx_mm_invsqrt_pd(rsq00);
759             rinv01           = gmx_mm_invsqrt_pd(rsq01);
760             rinv02           = gmx_mm_invsqrt_pd(rsq02);
761             rinv10           = gmx_mm_invsqrt_pd(rsq10);
762             rinv11           = gmx_mm_invsqrt_pd(rsq11);
763             rinv12           = gmx_mm_invsqrt_pd(rsq12);
764             rinv20           = gmx_mm_invsqrt_pd(rsq20);
765             rinv21           = gmx_mm_invsqrt_pd(rsq21);
766             rinv22           = gmx_mm_invsqrt_pd(rsq22);
767
768             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
769             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
770             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
771             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
772             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
773             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
774             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
775             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
776             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
777
778             fjx0             = _mm_setzero_pd();
779             fjy0             = _mm_setzero_pd();
780             fjz0             = _mm_setzero_pd();
781             fjx1             = _mm_setzero_pd();
782             fjy1             = _mm_setzero_pd();
783             fjz1             = _mm_setzero_pd();
784             fjx2             = _mm_setzero_pd();
785             fjy2             = _mm_setzero_pd();
786             fjz2             = _mm_setzero_pd();
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             r00              = _mm_mul_pd(rsq00,rinv00);
793
794             /* Calculate table index by multiplying r with table scale and truncate to integer */
795             rt               = _mm_mul_pd(r00,vftabscale);
796             vfitab           = _mm_cvttpd_epi32(rt);
797             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
798             vfitab           = _mm_slli_epi32(vfitab,3);
799
800             /* EWALD ELECTROSTATICS */
801
802             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
803             ewrt             = _mm_mul_pd(r00,ewtabscale);
804             ewitab           = _mm_cvttpd_epi32(ewrt);
805             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
806             ewitab           = _mm_slli_epi32(ewitab,2);
807             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
808             ewtabD           = _mm_setzero_pd();
809             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
810             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
811             ewtabFn          = _mm_setzero_pd();
812             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
813             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
814             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
815             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
816             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
817
818             /* CUBIC SPLINE TABLE DISPERSION */
819             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
820             F                = _mm_setzero_pd();
821             GMX_MM_TRANSPOSE2_PD(Y,F);
822             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
823             H                = _mm_setzero_pd();
824             GMX_MM_TRANSPOSE2_PD(G,H);
825             Heps             = _mm_mul_pd(vfeps,H);
826             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
827             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
828             vvdw6            = _mm_mul_pd(c6_00,VV);
829             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
830             fvdw6            = _mm_mul_pd(c6_00,FF);
831
832             /* CUBIC SPLINE TABLE REPULSION */
833             vfitab           = _mm_add_epi32(vfitab,ifour);
834             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
835             F                = _mm_setzero_pd();
836             GMX_MM_TRANSPOSE2_PD(Y,F);
837             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
838             H                = _mm_setzero_pd();
839             GMX_MM_TRANSPOSE2_PD(G,H);
840             Heps             = _mm_mul_pd(vfeps,H);
841             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
842             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
843             vvdw12           = _mm_mul_pd(c12_00,VV);
844             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
845             fvdw12           = _mm_mul_pd(c12_00,FF);
846             vvdw             = _mm_add_pd(vvdw12,vvdw6);
847             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
848
849             /* Update potential sum for this i atom from the interaction with this j atom. */
850             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
851             velecsum         = _mm_add_pd(velecsum,velec);
852             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
853             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
854
855             fscal            = _mm_add_pd(felec,fvdw);
856
857             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
858
859             /* Calculate temporary vectorial force */
860             tx               = _mm_mul_pd(fscal,dx00);
861             ty               = _mm_mul_pd(fscal,dy00);
862             tz               = _mm_mul_pd(fscal,dz00);
863
864             /* Update vectorial force */
865             fix0             = _mm_add_pd(fix0,tx);
866             fiy0             = _mm_add_pd(fiy0,ty);
867             fiz0             = _mm_add_pd(fiz0,tz);
868
869             fjx0             = _mm_add_pd(fjx0,tx);
870             fjy0             = _mm_add_pd(fjy0,ty);
871             fjz0             = _mm_add_pd(fjz0,tz);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             r01              = _mm_mul_pd(rsq01,rinv01);
878
879             /* EWALD ELECTROSTATICS */
880
881             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
882             ewrt             = _mm_mul_pd(r01,ewtabscale);
883             ewitab           = _mm_cvttpd_epi32(ewrt);
884             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
885             ewitab           = _mm_slli_epi32(ewitab,2);
886             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
887             ewtabD           = _mm_setzero_pd();
888             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
889             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
890             ewtabFn          = _mm_setzero_pd();
891             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
892             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
893             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
894             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
895             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
896
897             /* Update potential sum for this i atom from the interaction with this j atom. */
898             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
899             velecsum         = _mm_add_pd(velecsum,velec);
900
901             fscal            = felec;
902
903             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
904
905             /* Calculate temporary vectorial force */
906             tx               = _mm_mul_pd(fscal,dx01);
907             ty               = _mm_mul_pd(fscal,dy01);
908             tz               = _mm_mul_pd(fscal,dz01);
909
910             /* Update vectorial force */
911             fix0             = _mm_add_pd(fix0,tx);
912             fiy0             = _mm_add_pd(fiy0,ty);
913             fiz0             = _mm_add_pd(fiz0,tz);
914
915             fjx1             = _mm_add_pd(fjx1,tx);
916             fjy1             = _mm_add_pd(fjy1,ty);
917             fjz1             = _mm_add_pd(fjz1,tz);
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r02              = _mm_mul_pd(rsq02,rinv02);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
928             ewrt             = _mm_mul_pd(r02,ewtabscale);
929             ewitab           = _mm_cvttpd_epi32(ewrt);
930             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
931             ewitab           = _mm_slli_epi32(ewitab,2);
932             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
933             ewtabD           = _mm_setzero_pd();
934             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
935             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
936             ewtabFn          = _mm_setzero_pd();
937             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
938             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
939             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
940             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
941             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
942
943             /* Update potential sum for this i atom from the interaction with this j atom. */
944             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
945             velecsum         = _mm_add_pd(velecsum,velec);
946
947             fscal            = felec;
948
949             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm_mul_pd(fscal,dx02);
953             ty               = _mm_mul_pd(fscal,dy02);
954             tz               = _mm_mul_pd(fscal,dz02);
955
956             /* Update vectorial force */
957             fix0             = _mm_add_pd(fix0,tx);
958             fiy0             = _mm_add_pd(fiy0,ty);
959             fiz0             = _mm_add_pd(fiz0,tz);
960
961             fjx2             = _mm_add_pd(fjx2,tx);
962             fjy2             = _mm_add_pd(fjy2,ty);
963             fjz2             = _mm_add_pd(fjz2,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             r10              = _mm_mul_pd(rsq10,rinv10);
970
971             /* EWALD ELECTROSTATICS */
972
973             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
974             ewrt             = _mm_mul_pd(r10,ewtabscale);
975             ewitab           = _mm_cvttpd_epi32(ewrt);
976             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
977             ewitab           = _mm_slli_epi32(ewitab,2);
978             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
979             ewtabD           = _mm_setzero_pd();
980             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
981             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
982             ewtabFn          = _mm_setzero_pd();
983             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
984             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
985             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
986             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
987             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
988
989             /* Update potential sum for this i atom from the interaction with this j atom. */
990             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
991             velecsum         = _mm_add_pd(velecsum,velec);
992
993             fscal            = felec;
994
995             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm_mul_pd(fscal,dx10);
999             ty               = _mm_mul_pd(fscal,dy10);
1000             tz               = _mm_mul_pd(fscal,dz10);
1001
1002             /* Update vectorial force */
1003             fix1             = _mm_add_pd(fix1,tx);
1004             fiy1             = _mm_add_pd(fiy1,ty);
1005             fiz1             = _mm_add_pd(fiz1,tz);
1006
1007             fjx0             = _mm_add_pd(fjx0,tx);
1008             fjy0             = _mm_add_pd(fjy0,ty);
1009             fjz0             = _mm_add_pd(fjz0,tz);
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             r11              = _mm_mul_pd(rsq11,rinv11);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm_mul_pd(r11,ewtabscale);
1021             ewitab           = _mm_cvttpd_epi32(ewrt);
1022             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1023             ewitab           = _mm_slli_epi32(ewitab,2);
1024             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1025             ewtabD           = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1027             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1028             ewtabFn          = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1030             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1031             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1032             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1033             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1034
1035             /* Update potential sum for this i atom from the interaction with this j atom. */
1036             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1037             velecsum         = _mm_add_pd(velecsum,velec);
1038
1039             fscal            = felec;
1040
1041             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm_mul_pd(fscal,dx11);
1045             ty               = _mm_mul_pd(fscal,dy11);
1046             tz               = _mm_mul_pd(fscal,dz11);
1047
1048             /* Update vectorial force */
1049             fix1             = _mm_add_pd(fix1,tx);
1050             fiy1             = _mm_add_pd(fiy1,ty);
1051             fiz1             = _mm_add_pd(fiz1,tz);
1052
1053             fjx1             = _mm_add_pd(fjx1,tx);
1054             fjy1             = _mm_add_pd(fjy1,ty);
1055             fjz1             = _mm_add_pd(fjz1,tz);
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             r12              = _mm_mul_pd(rsq12,rinv12);
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = _mm_mul_pd(r12,ewtabscale);
1067             ewitab           = _mm_cvttpd_epi32(ewrt);
1068             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1069             ewitab           = _mm_slli_epi32(ewitab,2);
1070             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1071             ewtabD           = _mm_setzero_pd();
1072             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1073             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1074             ewtabFn          = _mm_setzero_pd();
1075             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1076             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1077             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1078             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1079             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1080
1081             /* Update potential sum for this i atom from the interaction with this j atom. */
1082             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1083             velecsum         = _mm_add_pd(velecsum,velec);
1084
1085             fscal            = felec;
1086
1087             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm_mul_pd(fscal,dx12);
1091             ty               = _mm_mul_pd(fscal,dy12);
1092             tz               = _mm_mul_pd(fscal,dz12);
1093
1094             /* Update vectorial force */
1095             fix1             = _mm_add_pd(fix1,tx);
1096             fiy1             = _mm_add_pd(fiy1,ty);
1097             fiz1             = _mm_add_pd(fiz1,tz);
1098
1099             fjx2             = _mm_add_pd(fjx2,tx);
1100             fjy2             = _mm_add_pd(fjy2,ty);
1101             fjz2             = _mm_add_pd(fjz2,tz);
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             r20              = _mm_mul_pd(rsq20,rinv20);
1108
1109             /* EWALD ELECTROSTATICS */
1110
1111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112             ewrt             = _mm_mul_pd(r20,ewtabscale);
1113             ewitab           = _mm_cvttpd_epi32(ewrt);
1114             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1115             ewitab           = _mm_slli_epi32(ewitab,2);
1116             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1117             ewtabD           = _mm_setzero_pd();
1118             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1119             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1120             ewtabFn          = _mm_setzero_pd();
1121             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1122             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1123             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1124             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1125             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1126
1127             /* Update potential sum for this i atom from the interaction with this j atom. */
1128             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1129             velecsum         = _mm_add_pd(velecsum,velec);
1130
1131             fscal            = felec;
1132
1133             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = _mm_mul_pd(fscal,dx20);
1137             ty               = _mm_mul_pd(fscal,dy20);
1138             tz               = _mm_mul_pd(fscal,dz20);
1139
1140             /* Update vectorial force */
1141             fix2             = _mm_add_pd(fix2,tx);
1142             fiy2             = _mm_add_pd(fiy2,ty);
1143             fiz2             = _mm_add_pd(fiz2,tz);
1144
1145             fjx0             = _mm_add_pd(fjx0,tx);
1146             fjy0             = _mm_add_pd(fjy0,ty);
1147             fjz0             = _mm_add_pd(fjz0,tz);
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             r21              = _mm_mul_pd(rsq21,rinv21);
1154
1155             /* EWALD ELECTROSTATICS */
1156
1157             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1158             ewrt             = _mm_mul_pd(r21,ewtabscale);
1159             ewitab           = _mm_cvttpd_epi32(ewrt);
1160             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1161             ewitab           = _mm_slli_epi32(ewitab,2);
1162             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1163             ewtabD           = _mm_setzero_pd();
1164             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1165             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1166             ewtabFn          = _mm_setzero_pd();
1167             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1168             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1169             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1170             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1171             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1172
1173             /* Update potential sum for this i atom from the interaction with this j atom. */
1174             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1175             velecsum         = _mm_add_pd(velecsum,velec);
1176
1177             fscal            = felec;
1178
1179             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1180
1181             /* Calculate temporary vectorial force */
1182             tx               = _mm_mul_pd(fscal,dx21);
1183             ty               = _mm_mul_pd(fscal,dy21);
1184             tz               = _mm_mul_pd(fscal,dz21);
1185
1186             /* Update vectorial force */
1187             fix2             = _mm_add_pd(fix2,tx);
1188             fiy2             = _mm_add_pd(fiy2,ty);
1189             fiz2             = _mm_add_pd(fiz2,tz);
1190
1191             fjx1             = _mm_add_pd(fjx1,tx);
1192             fjy1             = _mm_add_pd(fjy1,ty);
1193             fjz1             = _mm_add_pd(fjz1,tz);
1194
1195             /**************************
1196              * CALCULATE INTERACTIONS *
1197              **************************/
1198
1199             r22              = _mm_mul_pd(rsq22,rinv22);
1200
1201             /* EWALD ELECTROSTATICS */
1202
1203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204             ewrt             = _mm_mul_pd(r22,ewtabscale);
1205             ewitab           = _mm_cvttpd_epi32(ewrt);
1206             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1207             ewitab           = _mm_slli_epi32(ewitab,2);
1208             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1209             ewtabD           = _mm_setzero_pd();
1210             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1211             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1212             ewtabFn          = _mm_setzero_pd();
1213             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1214             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1215             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1216             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1217             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1218
1219             /* Update potential sum for this i atom from the interaction with this j atom. */
1220             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1221             velecsum         = _mm_add_pd(velecsum,velec);
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm_mul_pd(fscal,dx22);
1229             ty               = _mm_mul_pd(fscal,dy22);
1230             tz               = _mm_mul_pd(fscal,dz22);
1231
1232             /* Update vectorial force */
1233             fix2             = _mm_add_pd(fix2,tx);
1234             fiy2             = _mm_add_pd(fiy2,ty);
1235             fiz2             = _mm_add_pd(fiz2,tz);
1236
1237             fjx2             = _mm_add_pd(fjx2,tx);
1238             fjy2             = _mm_add_pd(fjy2,ty);
1239             fjz2             = _mm_add_pd(fjz2,tz);
1240
1241             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1242
1243             /* Inner loop uses 403 flops */
1244         }
1245
1246         /* End of innermost loop */
1247
1248         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1249                                               f+i_coord_offset,fshift+i_shift_offset);
1250
1251         ggid                        = gid[iidx];
1252         /* Update potential energies */
1253         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1254         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1255
1256         /* Increment number of inner iterations */
1257         inneriter                  += j_index_end - j_index_start;
1258
1259         /* Outer loop uses 20 flops */
1260     }
1261
1262     /* Increment number of outer iterations */
1263     outeriter        += nri;
1264
1265     /* Update outer/inner flops */
1266
1267     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*403);
1268 }
1269 /*
1270  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse2_double
1271  * Electrostatics interaction: Ewald
1272  * VdW interaction:            CubicSplineTable
1273  * Geometry:                   Water3-Water3
1274  * Calculate force/pot:        Force
1275  */
1276 void
1277 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse2_double
1278                     (t_nblist * gmx_restrict                nlist,
1279                      rvec * gmx_restrict                    xx,
1280                      rvec * gmx_restrict                    ff,
1281                      t_forcerec * gmx_restrict              fr,
1282                      t_mdatoms * gmx_restrict               mdatoms,
1283                      nb_kernel_data_t * gmx_restrict        kernel_data,
1284                      t_nrnb * gmx_restrict                  nrnb)
1285 {
1286     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1287      * just 0 for non-waters.
1288      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1289      * jnr indices corresponding to data put in the four positions in the SIMD register.
1290      */
1291     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1292     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1293     int              jnrA,jnrB;
1294     int              j_coord_offsetA,j_coord_offsetB;
1295     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1296     real             rcutoff_scalar;
1297     real             *shiftvec,*fshift,*x,*f;
1298     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1299     int              vdwioffset0;
1300     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1301     int              vdwioffset1;
1302     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1303     int              vdwioffset2;
1304     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1305     int              vdwjidx0A,vdwjidx0B;
1306     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1307     int              vdwjidx1A,vdwjidx1B;
1308     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1309     int              vdwjidx2A,vdwjidx2B;
1310     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1311     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1312     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1313     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1314     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1315     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1316     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1317     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1318     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1319     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1320     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1321     real             *charge;
1322     int              nvdwtype;
1323     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1324     int              *vdwtype;
1325     real             *vdwparam;
1326     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1327     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1328     __m128i          vfitab;
1329     __m128i          ifour       = _mm_set1_epi32(4);
1330     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1331     real             *vftab;
1332     __m128i          ewitab;
1333     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1334     real             *ewtab;
1335     __m128d          dummy_mask,cutoff_mask;
1336     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1337     __m128d          one     = _mm_set1_pd(1.0);
1338     __m128d          two     = _mm_set1_pd(2.0);
1339     x                = xx[0];
1340     f                = ff[0];
1341
1342     nri              = nlist->nri;
1343     iinr             = nlist->iinr;
1344     jindex           = nlist->jindex;
1345     jjnr             = nlist->jjnr;
1346     shiftidx         = nlist->shift;
1347     gid              = nlist->gid;
1348     shiftvec         = fr->shift_vec[0];
1349     fshift           = fr->fshift[0];
1350     facel            = _mm_set1_pd(fr->epsfac);
1351     charge           = mdatoms->chargeA;
1352     nvdwtype         = fr->ntype;
1353     vdwparam         = fr->nbfp;
1354     vdwtype          = mdatoms->typeA;
1355
1356     vftab            = kernel_data->table_vdw->data;
1357     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1358
1359     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1360     ewtab            = fr->ic->tabq_coul_F;
1361     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1362     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1363
1364     /* Setup water-specific parameters */
1365     inr              = nlist->iinr[0];
1366     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1367     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1368     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1369     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1370
1371     jq0              = _mm_set1_pd(charge[inr+0]);
1372     jq1              = _mm_set1_pd(charge[inr+1]);
1373     jq2              = _mm_set1_pd(charge[inr+2]);
1374     vdwjidx0A        = 2*vdwtype[inr+0];
1375     qq00             = _mm_mul_pd(iq0,jq0);
1376     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1377     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1378     qq01             = _mm_mul_pd(iq0,jq1);
1379     qq02             = _mm_mul_pd(iq0,jq2);
1380     qq10             = _mm_mul_pd(iq1,jq0);
1381     qq11             = _mm_mul_pd(iq1,jq1);
1382     qq12             = _mm_mul_pd(iq1,jq2);
1383     qq20             = _mm_mul_pd(iq2,jq0);
1384     qq21             = _mm_mul_pd(iq2,jq1);
1385     qq22             = _mm_mul_pd(iq2,jq2);
1386
1387     /* Avoid stupid compiler warnings */
1388     jnrA = jnrB = 0;
1389     j_coord_offsetA = 0;
1390     j_coord_offsetB = 0;
1391
1392     outeriter        = 0;
1393     inneriter        = 0;
1394
1395     /* Start outer loop over neighborlists */
1396     for(iidx=0; iidx<nri; iidx++)
1397     {
1398         /* Load shift vector for this list */
1399         i_shift_offset   = DIM*shiftidx[iidx];
1400
1401         /* Load limits for loop over neighbors */
1402         j_index_start    = jindex[iidx];
1403         j_index_end      = jindex[iidx+1];
1404
1405         /* Get outer coordinate index */
1406         inr              = iinr[iidx];
1407         i_coord_offset   = DIM*inr;
1408
1409         /* Load i particle coords and add shift vector */
1410         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1411                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1412
1413         fix0             = _mm_setzero_pd();
1414         fiy0             = _mm_setzero_pd();
1415         fiz0             = _mm_setzero_pd();
1416         fix1             = _mm_setzero_pd();
1417         fiy1             = _mm_setzero_pd();
1418         fiz1             = _mm_setzero_pd();
1419         fix2             = _mm_setzero_pd();
1420         fiy2             = _mm_setzero_pd();
1421         fiz2             = _mm_setzero_pd();
1422
1423         /* Start inner kernel loop */
1424         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1425         {
1426
1427             /* Get j neighbor index, and coordinate index */
1428             jnrA             = jjnr[jidx];
1429             jnrB             = jjnr[jidx+1];
1430             j_coord_offsetA  = DIM*jnrA;
1431             j_coord_offsetB  = DIM*jnrB;
1432             
1433             /* load j atom coordinates */
1434             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1435                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1436             
1437             /* Calculate displacement vector */
1438             dx00             = _mm_sub_pd(ix0,jx0);
1439             dy00             = _mm_sub_pd(iy0,jy0);
1440             dz00             = _mm_sub_pd(iz0,jz0);
1441             dx01             = _mm_sub_pd(ix0,jx1);
1442             dy01             = _mm_sub_pd(iy0,jy1);
1443             dz01             = _mm_sub_pd(iz0,jz1);
1444             dx02             = _mm_sub_pd(ix0,jx2);
1445             dy02             = _mm_sub_pd(iy0,jy2);
1446             dz02             = _mm_sub_pd(iz0,jz2);
1447             dx10             = _mm_sub_pd(ix1,jx0);
1448             dy10             = _mm_sub_pd(iy1,jy0);
1449             dz10             = _mm_sub_pd(iz1,jz0);
1450             dx11             = _mm_sub_pd(ix1,jx1);
1451             dy11             = _mm_sub_pd(iy1,jy1);
1452             dz11             = _mm_sub_pd(iz1,jz1);
1453             dx12             = _mm_sub_pd(ix1,jx2);
1454             dy12             = _mm_sub_pd(iy1,jy2);
1455             dz12             = _mm_sub_pd(iz1,jz2);
1456             dx20             = _mm_sub_pd(ix2,jx0);
1457             dy20             = _mm_sub_pd(iy2,jy0);
1458             dz20             = _mm_sub_pd(iz2,jz0);
1459             dx21             = _mm_sub_pd(ix2,jx1);
1460             dy21             = _mm_sub_pd(iy2,jy1);
1461             dz21             = _mm_sub_pd(iz2,jz1);
1462             dx22             = _mm_sub_pd(ix2,jx2);
1463             dy22             = _mm_sub_pd(iy2,jy2);
1464             dz22             = _mm_sub_pd(iz2,jz2);
1465
1466             /* Calculate squared distance and things based on it */
1467             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1468             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1469             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1470             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1471             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1472             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1473             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1474             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1475             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1476
1477             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1478             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1479             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1480             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1481             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1482             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1483             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1484             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1485             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1486
1487             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1488             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1489             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1490             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1491             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1492             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1493             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1494             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1495             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1496
1497             fjx0             = _mm_setzero_pd();
1498             fjy0             = _mm_setzero_pd();
1499             fjz0             = _mm_setzero_pd();
1500             fjx1             = _mm_setzero_pd();
1501             fjy1             = _mm_setzero_pd();
1502             fjz1             = _mm_setzero_pd();
1503             fjx2             = _mm_setzero_pd();
1504             fjy2             = _mm_setzero_pd();
1505             fjz2             = _mm_setzero_pd();
1506
1507             /**************************
1508              * CALCULATE INTERACTIONS *
1509              **************************/
1510
1511             r00              = _mm_mul_pd(rsq00,rinv00);
1512
1513             /* Calculate table index by multiplying r with table scale and truncate to integer */
1514             rt               = _mm_mul_pd(r00,vftabscale);
1515             vfitab           = _mm_cvttpd_epi32(rt);
1516             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1517             vfitab           = _mm_slli_epi32(vfitab,3);
1518
1519             /* EWALD ELECTROSTATICS */
1520
1521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1522             ewrt             = _mm_mul_pd(r00,ewtabscale);
1523             ewitab           = _mm_cvttpd_epi32(ewrt);
1524             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1525             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1526                                          &ewtabF,&ewtabFn);
1527             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1528             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1529
1530             /* CUBIC SPLINE TABLE DISPERSION */
1531             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1532             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1533             GMX_MM_TRANSPOSE2_PD(Y,F);
1534             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1535             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1536             GMX_MM_TRANSPOSE2_PD(G,H);
1537             Heps             = _mm_mul_pd(vfeps,H);
1538             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1539             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1540             fvdw6            = _mm_mul_pd(c6_00,FF);
1541
1542             /* CUBIC SPLINE TABLE REPULSION */
1543             vfitab           = _mm_add_epi32(vfitab,ifour);
1544             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1545             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1546             GMX_MM_TRANSPOSE2_PD(Y,F);
1547             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1548             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1549             GMX_MM_TRANSPOSE2_PD(G,H);
1550             Heps             = _mm_mul_pd(vfeps,H);
1551             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1552             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1553             fvdw12           = _mm_mul_pd(c12_00,FF);
1554             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1555
1556             fscal            = _mm_add_pd(felec,fvdw);
1557
1558             /* Calculate temporary vectorial force */
1559             tx               = _mm_mul_pd(fscal,dx00);
1560             ty               = _mm_mul_pd(fscal,dy00);
1561             tz               = _mm_mul_pd(fscal,dz00);
1562
1563             /* Update vectorial force */
1564             fix0             = _mm_add_pd(fix0,tx);
1565             fiy0             = _mm_add_pd(fiy0,ty);
1566             fiz0             = _mm_add_pd(fiz0,tz);
1567
1568             fjx0             = _mm_add_pd(fjx0,tx);
1569             fjy0             = _mm_add_pd(fjy0,ty);
1570             fjz0             = _mm_add_pd(fjz0,tz);
1571
1572             /**************************
1573              * CALCULATE INTERACTIONS *
1574              **************************/
1575
1576             r01              = _mm_mul_pd(rsq01,rinv01);
1577
1578             /* EWALD ELECTROSTATICS */
1579
1580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1581             ewrt             = _mm_mul_pd(r01,ewtabscale);
1582             ewitab           = _mm_cvttpd_epi32(ewrt);
1583             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1584             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1585                                          &ewtabF,&ewtabFn);
1586             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1587             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1588
1589             fscal            = felec;
1590
1591             /* Calculate temporary vectorial force */
1592             tx               = _mm_mul_pd(fscal,dx01);
1593             ty               = _mm_mul_pd(fscal,dy01);
1594             tz               = _mm_mul_pd(fscal,dz01);
1595
1596             /* Update vectorial force */
1597             fix0             = _mm_add_pd(fix0,tx);
1598             fiy0             = _mm_add_pd(fiy0,ty);
1599             fiz0             = _mm_add_pd(fiz0,tz);
1600
1601             fjx1             = _mm_add_pd(fjx1,tx);
1602             fjy1             = _mm_add_pd(fjy1,ty);
1603             fjz1             = _mm_add_pd(fjz1,tz);
1604
1605             /**************************
1606              * CALCULATE INTERACTIONS *
1607              **************************/
1608
1609             r02              = _mm_mul_pd(rsq02,rinv02);
1610
1611             /* EWALD ELECTROSTATICS */
1612
1613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1614             ewrt             = _mm_mul_pd(r02,ewtabscale);
1615             ewitab           = _mm_cvttpd_epi32(ewrt);
1616             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1617             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1618                                          &ewtabF,&ewtabFn);
1619             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1620             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1621
1622             fscal            = felec;
1623
1624             /* Calculate temporary vectorial force */
1625             tx               = _mm_mul_pd(fscal,dx02);
1626             ty               = _mm_mul_pd(fscal,dy02);
1627             tz               = _mm_mul_pd(fscal,dz02);
1628
1629             /* Update vectorial force */
1630             fix0             = _mm_add_pd(fix0,tx);
1631             fiy0             = _mm_add_pd(fiy0,ty);
1632             fiz0             = _mm_add_pd(fiz0,tz);
1633
1634             fjx2             = _mm_add_pd(fjx2,tx);
1635             fjy2             = _mm_add_pd(fjy2,ty);
1636             fjz2             = _mm_add_pd(fjz2,tz);
1637
1638             /**************************
1639              * CALCULATE INTERACTIONS *
1640              **************************/
1641
1642             r10              = _mm_mul_pd(rsq10,rinv10);
1643
1644             /* EWALD ELECTROSTATICS */
1645
1646             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1647             ewrt             = _mm_mul_pd(r10,ewtabscale);
1648             ewitab           = _mm_cvttpd_epi32(ewrt);
1649             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1650             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1651                                          &ewtabF,&ewtabFn);
1652             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1653             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1654
1655             fscal            = felec;
1656
1657             /* Calculate temporary vectorial force */
1658             tx               = _mm_mul_pd(fscal,dx10);
1659             ty               = _mm_mul_pd(fscal,dy10);
1660             tz               = _mm_mul_pd(fscal,dz10);
1661
1662             /* Update vectorial force */
1663             fix1             = _mm_add_pd(fix1,tx);
1664             fiy1             = _mm_add_pd(fiy1,ty);
1665             fiz1             = _mm_add_pd(fiz1,tz);
1666
1667             fjx0             = _mm_add_pd(fjx0,tx);
1668             fjy0             = _mm_add_pd(fjy0,ty);
1669             fjz0             = _mm_add_pd(fjz0,tz);
1670
1671             /**************************
1672              * CALCULATE INTERACTIONS *
1673              **************************/
1674
1675             r11              = _mm_mul_pd(rsq11,rinv11);
1676
1677             /* EWALD ELECTROSTATICS */
1678
1679             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1680             ewrt             = _mm_mul_pd(r11,ewtabscale);
1681             ewitab           = _mm_cvttpd_epi32(ewrt);
1682             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1683             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1684                                          &ewtabF,&ewtabFn);
1685             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1686             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1687
1688             fscal            = felec;
1689
1690             /* Calculate temporary vectorial force */
1691             tx               = _mm_mul_pd(fscal,dx11);
1692             ty               = _mm_mul_pd(fscal,dy11);
1693             tz               = _mm_mul_pd(fscal,dz11);
1694
1695             /* Update vectorial force */
1696             fix1             = _mm_add_pd(fix1,tx);
1697             fiy1             = _mm_add_pd(fiy1,ty);
1698             fiz1             = _mm_add_pd(fiz1,tz);
1699
1700             fjx1             = _mm_add_pd(fjx1,tx);
1701             fjy1             = _mm_add_pd(fjy1,ty);
1702             fjz1             = _mm_add_pd(fjz1,tz);
1703
1704             /**************************
1705              * CALCULATE INTERACTIONS *
1706              **************************/
1707
1708             r12              = _mm_mul_pd(rsq12,rinv12);
1709
1710             /* EWALD ELECTROSTATICS */
1711
1712             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1713             ewrt             = _mm_mul_pd(r12,ewtabscale);
1714             ewitab           = _mm_cvttpd_epi32(ewrt);
1715             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1716             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1717                                          &ewtabF,&ewtabFn);
1718             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1719             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1720
1721             fscal            = felec;
1722
1723             /* Calculate temporary vectorial force */
1724             tx               = _mm_mul_pd(fscal,dx12);
1725             ty               = _mm_mul_pd(fscal,dy12);
1726             tz               = _mm_mul_pd(fscal,dz12);
1727
1728             /* Update vectorial force */
1729             fix1             = _mm_add_pd(fix1,tx);
1730             fiy1             = _mm_add_pd(fiy1,ty);
1731             fiz1             = _mm_add_pd(fiz1,tz);
1732
1733             fjx2             = _mm_add_pd(fjx2,tx);
1734             fjy2             = _mm_add_pd(fjy2,ty);
1735             fjz2             = _mm_add_pd(fjz2,tz);
1736
1737             /**************************
1738              * CALCULATE INTERACTIONS *
1739              **************************/
1740
1741             r20              = _mm_mul_pd(rsq20,rinv20);
1742
1743             /* EWALD ELECTROSTATICS */
1744
1745             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1746             ewrt             = _mm_mul_pd(r20,ewtabscale);
1747             ewitab           = _mm_cvttpd_epi32(ewrt);
1748             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1749             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1750                                          &ewtabF,&ewtabFn);
1751             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1752             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1753
1754             fscal            = felec;
1755
1756             /* Calculate temporary vectorial force */
1757             tx               = _mm_mul_pd(fscal,dx20);
1758             ty               = _mm_mul_pd(fscal,dy20);
1759             tz               = _mm_mul_pd(fscal,dz20);
1760
1761             /* Update vectorial force */
1762             fix2             = _mm_add_pd(fix2,tx);
1763             fiy2             = _mm_add_pd(fiy2,ty);
1764             fiz2             = _mm_add_pd(fiz2,tz);
1765
1766             fjx0             = _mm_add_pd(fjx0,tx);
1767             fjy0             = _mm_add_pd(fjy0,ty);
1768             fjz0             = _mm_add_pd(fjz0,tz);
1769
1770             /**************************
1771              * CALCULATE INTERACTIONS *
1772              **************************/
1773
1774             r21              = _mm_mul_pd(rsq21,rinv21);
1775
1776             /* EWALD ELECTROSTATICS */
1777
1778             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1779             ewrt             = _mm_mul_pd(r21,ewtabscale);
1780             ewitab           = _mm_cvttpd_epi32(ewrt);
1781             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1782             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1783                                          &ewtabF,&ewtabFn);
1784             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1785             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1786
1787             fscal            = felec;
1788
1789             /* Calculate temporary vectorial force */
1790             tx               = _mm_mul_pd(fscal,dx21);
1791             ty               = _mm_mul_pd(fscal,dy21);
1792             tz               = _mm_mul_pd(fscal,dz21);
1793
1794             /* Update vectorial force */
1795             fix2             = _mm_add_pd(fix2,tx);
1796             fiy2             = _mm_add_pd(fiy2,ty);
1797             fiz2             = _mm_add_pd(fiz2,tz);
1798
1799             fjx1             = _mm_add_pd(fjx1,tx);
1800             fjy1             = _mm_add_pd(fjy1,ty);
1801             fjz1             = _mm_add_pd(fjz1,tz);
1802
1803             /**************************
1804              * CALCULATE INTERACTIONS *
1805              **************************/
1806
1807             r22              = _mm_mul_pd(rsq22,rinv22);
1808
1809             /* EWALD ELECTROSTATICS */
1810
1811             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1812             ewrt             = _mm_mul_pd(r22,ewtabscale);
1813             ewitab           = _mm_cvttpd_epi32(ewrt);
1814             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1815             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1816                                          &ewtabF,&ewtabFn);
1817             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1818             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1819
1820             fscal            = felec;
1821
1822             /* Calculate temporary vectorial force */
1823             tx               = _mm_mul_pd(fscal,dx22);
1824             ty               = _mm_mul_pd(fscal,dy22);
1825             tz               = _mm_mul_pd(fscal,dz22);
1826
1827             /* Update vectorial force */
1828             fix2             = _mm_add_pd(fix2,tx);
1829             fiy2             = _mm_add_pd(fiy2,ty);
1830             fiz2             = _mm_add_pd(fiz2,tz);
1831
1832             fjx2             = _mm_add_pd(fjx2,tx);
1833             fjy2             = _mm_add_pd(fjy2,ty);
1834             fjz2             = _mm_add_pd(fjz2,tz);
1835
1836             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1837
1838             /* Inner loop uses 350 flops */
1839         }
1840
1841         if(jidx<j_index_end)
1842         {
1843
1844             jnrA             = jjnr[jidx];
1845             j_coord_offsetA  = DIM*jnrA;
1846
1847             /* load j atom coordinates */
1848             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1849                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1850             
1851             /* Calculate displacement vector */
1852             dx00             = _mm_sub_pd(ix0,jx0);
1853             dy00             = _mm_sub_pd(iy0,jy0);
1854             dz00             = _mm_sub_pd(iz0,jz0);
1855             dx01             = _mm_sub_pd(ix0,jx1);
1856             dy01             = _mm_sub_pd(iy0,jy1);
1857             dz01             = _mm_sub_pd(iz0,jz1);
1858             dx02             = _mm_sub_pd(ix0,jx2);
1859             dy02             = _mm_sub_pd(iy0,jy2);
1860             dz02             = _mm_sub_pd(iz0,jz2);
1861             dx10             = _mm_sub_pd(ix1,jx0);
1862             dy10             = _mm_sub_pd(iy1,jy0);
1863             dz10             = _mm_sub_pd(iz1,jz0);
1864             dx11             = _mm_sub_pd(ix1,jx1);
1865             dy11             = _mm_sub_pd(iy1,jy1);
1866             dz11             = _mm_sub_pd(iz1,jz1);
1867             dx12             = _mm_sub_pd(ix1,jx2);
1868             dy12             = _mm_sub_pd(iy1,jy2);
1869             dz12             = _mm_sub_pd(iz1,jz2);
1870             dx20             = _mm_sub_pd(ix2,jx0);
1871             dy20             = _mm_sub_pd(iy2,jy0);
1872             dz20             = _mm_sub_pd(iz2,jz0);
1873             dx21             = _mm_sub_pd(ix2,jx1);
1874             dy21             = _mm_sub_pd(iy2,jy1);
1875             dz21             = _mm_sub_pd(iz2,jz1);
1876             dx22             = _mm_sub_pd(ix2,jx2);
1877             dy22             = _mm_sub_pd(iy2,jy2);
1878             dz22             = _mm_sub_pd(iz2,jz2);
1879
1880             /* Calculate squared distance and things based on it */
1881             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1882             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1883             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1884             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1885             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1886             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1887             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1888             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1889             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1890
1891             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1892             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1893             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1894             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1895             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1896             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1897             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1898             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1899             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1900
1901             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1902             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1903             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1904             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1905             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1906             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1907             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1908             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1909             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1910
1911             fjx0             = _mm_setzero_pd();
1912             fjy0             = _mm_setzero_pd();
1913             fjz0             = _mm_setzero_pd();
1914             fjx1             = _mm_setzero_pd();
1915             fjy1             = _mm_setzero_pd();
1916             fjz1             = _mm_setzero_pd();
1917             fjx2             = _mm_setzero_pd();
1918             fjy2             = _mm_setzero_pd();
1919             fjz2             = _mm_setzero_pd();
1920
1921             /**************************
1922              * CALCULATE INTERACTIONS *
1923              **************************/
1924
1925             r00              = _mm_mul_pd(rsq00,rinv00);
1926
1927             /* Calculate table index by multiplying r with table scale and truncate to integer */
1928             rt               = _mm_mul_pd(r00,vftabscale);
1929             vfitab           = _mm_cvttpd_epi32(rt);
1930             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1931             vfitab           = _mm_slli_epi32(vfitab,3);
1932
1933             /* EWALD ELECTROSTATICS */
1934
1935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1936             ewrt             = _mm_mul_pd(r00,ewtabscale);
1937             ewitab           = _mm_cvttpd_epi32(ewrt);
1938             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1939             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1940             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1941             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1942
1943             /* CUBIC SPLINE TABLE DISPERSION */
1944             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1945             F                = _mm_setzero_pd();
1946             GMX_MM_TRANSPOSE2_PD(Y,F);
1947             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1948             H                = _mm_setzero_pd();
1949             GMX_MM_TRANSPOSE2_PD(G,H);
1950             Heps             = _mm_mul_pd(vfeps,H);
1951             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1952             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1953             fvdw6            = _mm_mul_pd(c6_00,FF);
1954
1955             /* CUBIC SPLINE TABLE REPULSION */
1956             vfitab           = _mm_add_epi32(vfitab,ifour);
1957             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1958             F                = _mm_setzero_pd();
1959             GMX_MM_TRANSPOSE2_PD(Y,F);
1960             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1961             H                = _mm_setzero_pd();
1962             GMX_MM_TRANSPOSE2_PD(G,H);
1963             Heps             = _mm_mul_pd(vfeps,H);
1964             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1965             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1966             fvdw12           = _mm_mul_pd(c12_00,FF);
1967             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1968
1969             fscal            = _mm_add_pd(felec,fvdw);
1970
1971             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1972
1973             /* Calculate temporary vectorial force */
1974             tx               = _mm_mul_pd(fscal,dx00);
1975             ty               = _mm_mul_pd(fscal,dy00);
1976             tz               = _mm_mul_pd(fscal,dz00);
1977
1978             /* Update vectorial force */
1979             fix0             = _mm_add_pd(fix0,tx);
1980             fiy0             = _mm_add_pd(fiy0,ty);
1981             fiz0             = _mm_add_pd(fiz0,tz);
1982
1983             fjx0             = _mm_add_pd(fjx0,tx);
1984             fjy0             = _mm_add_pd(fjy0,ty);
1985             fjz0             = _mm_add_pd(fjz0,tz);
1986
1987             /**************************
1988              * CALCULATE INTERACTIONS *
1989              **************************/
1990
1991             r01              = _mm_mul_pd(rsq01,rinv01);
1992
1993             /* EWALD ELECTROSTATICS */
1994
1995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1996             ewrt             = _mm_mul_pd(r01,ewtabscale);
1997             ewitab           = _mm_cvttpd_epi32(ewrt);
1998             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1999             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2000             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2001             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2002
2003             fscal            = felec;
2004
2005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2006
2007             /* Calculate temporary vectorial force */
2008             tx               = _mm_mul_pd(fscal,dx01);
2009             ty               = _mm_mul_pd(fscal,dy01);
2010             tz               = _mm_mul_pd(fscal,dz01);
2011
2012             /* Update vectorial force */
2013             fix0             = _mm_add_pd(fix0,tx);
2014             fiy0             = _mm_add_pd(fiy0,ty);
2015             fiz0             = _mm_add_pd(fiz0,tz);
2016
2017             fjx1             = _mm_add_pd(fjx1,tx);
2018             fjy1             = _mm_add_pd(fjy1,ty);
2019             fjz1             = _mm_add_pd(fjz1,tz);
2020
2021             /**************************
2022              * CALCULATE INTERACTIONS *
2023              **************************/
2024
2025             r02              = _mm_mul_pd(rsq02,rinv02);
2026
2027             /* EWALD ELECTROSTATICS */
2028
2029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2030             ewrt             = _mm_mul_pd(r02,ewtabscale);
2031             ewitab           = _mm_cvttpd_epi32(ewrt);
2032             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2033             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2034             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2035             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2036
2037             fscal            = felec;
2038
2039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2040
2041             /* Calculate temporary vectorial force */
2042             tx               = _mm_mul_pd(fscal,dx02);
2043             ty               = _mm_mul_pd(fscal,dy02);
2044             tz               = _mm_mul_pd(fscal,dz02);
2045
2046             /* Update vectorial force */
2047             fix0             = _mm_add_pd(fix0,tx);
2048             fiy0             = _mm_add_pd(fiy0,ty);
2049             fiz0             = _mm_add_pd(fiz0,tz);
2050
2051             fjx2             = _mm_add_pd(fjx2,tx);
2052             fjy2             = _mm_add_pd(fjy2,ty);
2053             fjz2             = _mm_add_pd(fjz2,tz);
2054
2055             /**************************
2056              * CALCULATE INTERACTIONS *
2057              **************************/
2058
2059             r10              = _mm_mul_pd(rsq10,rinv10);
2060
2061             /* EWALD ELECTROSTATICS */
2062
2063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2064             ewrt             = _mm_mul_pd(r10,ewtabscale);
2065             ewitab           = _mm_cvttpd_epi32(ewrt);
2066             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2067             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2068             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2069             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2070
2071             fscal            = felec;
2072
2073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2074
2075             /* Calculate temporary vectorial force */
2076             tx               = _mm_mul_pd(fscal,dx10);
2077             ty               = _mm_mul_pd(fscal,dy10);
2078             tz               = _mm_mul_pd(fscal,dz10);
2079
2080             /* Update vectorial force */
2081             fix1             = _mm_add_pd(fix1,tx);
2082             fiy1             = _mm_add_pd(fiy1,ty);
2083             fiz1             = _mm_add_pd(fiz1,tz);
2084
2085             fjx0             = _mm_add_pd(fjx0,tx);
2086             fjy0             = _mm_add_pd(fjy0,ty);
2087             fjz0             = _mm_add_pd(fjz0,tz);
2088
2089             /**************************
2090              * CALCULATE INTERACTIONS *
2091              **************************/
2092
2093             r11              = _mm_mul_pd(rsq11,rinv11);
2094
2095             /* EWALD ELECTROSTATICS */
2096
2097             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2098             ewrt             = _mm_mul_pd(r11,ewtabscale);
2099             ewitab           = _mm_cvttpd_epi32(ewrt);
2100             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2101             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2102             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2103             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2104
2105             fscal            = felec;
2106
2107             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2108
2109             /* Calculate temporary vectorial force */
2110             tx               = _mm_mul_pd(fscal,dx11);
2111             ty               = _mm_mul_pd(fscal,dy11);
2112             tz               = _mm_mul_pd(fscal,dz11);
2113
2114             /* Update vectorial force */
2115             fix1             = _mm_add_pd(fix1,tx);
2116             fiy1             = _mm_add_pd(fiy1,ty);
2117             fiz1             = _mm_add_pd(fiz1,tz);
2118
2119             fjx1             = _mm_add_pd(fjx1,tx);
2120             fjy1             = _mm_add_pd(fjy1,ty);
2121             fjz1             = _mm_add_pd(fjz1,tz);
2122
2123             /**************************
2124              * CALCULATE INTERACTIONS *
2125              **************************/
2126
2127             r12              = _mm_mul_pd(rsq12,rinv12);
2128
2129             /* EWALD ELECTROSTATICS */
2130
2131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2132             ewrt             = _mm_mul_pd(r12,ewtabscale);
2133             ewitab           = _mm_cvttpd_epi32(ewrt);
2134             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2135             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2136             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2137             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2138
2139             fscal            = felec;
2140
2141             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2142
2143             /* Calculate temporary vectorial force */
2144             tx               = _mm_mul_pd(fscal,dx12);
2145             ty               = _mm_mul_pd(fscal,dy12);
2146             tz               = _mm_mul_pd(fscal,dz12);
2147
2148             /* Update vectorial force */
2149             fix1             = _mm_add_pd(fix1,tx);
2150             fiy1             = _mm_add_pd(fiy1,ty);
2151             fiz1             = _mm_add_pd(fiz1,tz);
2152
2153             fjx2             = _mm_add_pd(fjx2,tx);
2154             fjy2             = _mm_add_pd(fjy2,ty);
2155             fjz2             = _mm_add_pd(fjz2,tz);
2156
2157             /**************************
2158              * CALCULATE INTERACTIONS *
2159              **************************/
2160
2161             r20              = _mm_mul_pd(rsq20,rinv20);
2162
2163             /* EWALD ELECTROSTATICS */
2164
2165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2166             ewrt             = _mm_mul_pd(r20,ewtabscale);
2167             ewitab           = _mm_cvttpd_epi32(ewrt);
2168             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2169             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2170             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2171             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2172
2173             fscal            = felec;
2174
2175             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2176
2177             /* Calculate temporary vectorial force */
2178             tx               = _mm_mul_pd(fscal,dx20);
2179             ty               = _mm_mul_pd(fscal,dy20);
2180             tz               = _mm_mul_pd(fscal,dz20);
2181
2182             /* Update vectorial force */
2183             fix2             = _mm_add_pd(fix2,tx);
2184             fiy2             = _mm_add_pd(fiy2,ty);
2185             fiz2             = _mm_add_pd(fiz2,tz);
2186
2187             fjx0             = _mm_add_pd(fjx0,tx);
2188             fjy0             = _mm_add_pd(fjy0,ty);
2189             fjz0             = _mm_add_pd(fjz0,tz);
2190
2191             /**************************
2192              * CALCULATE INTERACTIONS *
2193              **************************/
2194
2195             r21              = _mm_mul_pd(rsq21,rinv21);
2196
2197             /* EWALD ELECTROSTATICS */
2198
2199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2200             ewrt             = _mm_mul_pd(r21,ewtabscale);
2201             ewitab           = _mm_cvttpd_epi32(ewrt);
2202             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2203             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2204             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2205             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2206
2207             fscal            = felec;
2208
2209             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2210
2211             /* Calculate temporary vectorial force */
2212             tx               = _mm_mul_pd(fscal,dx21);
2213             ty               = _mm_mul_pd(fscal,dy21);
2214             tz               = _mm_mul_pd(fscal,dz21);
2215
2216             /* Update vectorial force */
2217             fix2             = _mm_add_pd(fix2,tx);
2218             fiy2             = _mm_add_pd(fiy2,ty);
2219             fiz2             = _mm_add_pd(fiz2,tz);
2220
2221             fjx1             = _mm_add_pd(fjx1,tx);
2222             fjy1             = _mm_add_pd(fjy1,ty);
2223             fjz1             = _mm_add_pd(fjz1,tz);
2224
2225             /**************************
2226              * CALCULATE INTERACTIONS *
2227              **************************/
2228
2229             r22              = _mm_mul_pd(rsq22,rinv22);
2230
2231             /* EWALD ELECTROSTATICS */
2232
2233             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2234             ewrt             = _mm_mul_pd(r22,ewtabscale);
2235             ewitab           = _mm_cvttpd_epi32(ewrt);
2236             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2237             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2238             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2239             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2240
2241             fscal            = felec;
2242
2243             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2244
2245             /* Calculate temporary vectorial force */
2246             tx               = _mm_mul_pd(fscal,dx22);
2247             ty               = _mm_mul_pd(fscal,dy22);
2248             tz               = _mm_mul_pd(fscal,dz22);
2249
2250             /* Update vectorial force */
2251             fix2             = _mm_add_pd(fix2,tx);
2252             fiy2             = _mm_add_pd(fiy2,ty);
2253             fiz2             = _mm_add_pd(fiz2,tz);
2254
2255             fjx2             = _mm_add_pd(fjx2,tx);
2256             fjy2             = _mm_add_pd(fjy2,ty);
2257             fjz2             = _mm_add_pd(fjz2,tz);
2258
2259             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2260
2261             /* Inner loop uses 350 flops */
2262         }
2263
2264         /* End of innermost loop */
2265
2266         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2267                                               f+i_coord_offset,fshift+i_shift_offset);
2268
2269         /* Increment number of inner iterations */
2270         inneriter                  += j_index_end - j_index_start;
2271
2272         /* Outer loop uses 18 flops */
2273     }
2274
2275     /* Increment number of outer iterations */
2276     outeriter        += nri;
2277
2278     /* Update outer/inner flops */
2279
2280     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*350);
2281 }