made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
124     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
125     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
126     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157         fix1             = _mm_setzero_pd();
158         fiy1             = _mm_setzero_pd();
159         fiz1             = _mm_setzero_pd();
160         fix2             = _mm_setzero_pd();
161         fiy2             = _mm_setzero_pd();
162         fiz2             = _mm_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181             
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186             dx10             = _mm_sub_pd(ix1,jx0);
187             dy10             = _mm_sub_pd(iy1,jy0);
188             dz10             = _mm_sub_pd(iz1,jz0);
189             dx20             = _mm_sub_pd(ix2,jx0);
190             dy20             = _mm_sub_pd(iy2,jy0);
191             dz20             = _mm_sub_pd(iz2,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
196             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199             rinv10           = gmx_mm_invsqrt_pd(rsq10);
200             rinv20           = gmx_mm_invsqrt_pd(rsq20);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
204             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             fjx0             = _mm_setzero_pd();
212             fjy0             = _mm_setzero_pd();
213             fjz0             = _mm_setzero_pd();
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             r00              = _mm_mul_pd(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_pd(iq0,jq0);
223             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
224                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = _mm_mul_pd(r00,vftabscale);
228             vfitab           = _mm_cvttpd_epi32(rt);
229             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
230             vfitab           = _mm_slli_epi32(vfitab,3);
231
232             /* EWALD ELECTROSTATICS */
233
234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
235             ewrt             = _mm_mul_pd(r00,ewtabscale);
236             ewitab           = _mm_cvttpd_epi32(ewrt);
237             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
238             ewitab           = _mm_slli_epi32(ewitab,2);
239             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
240             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
241             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
242             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
243             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
244             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
245             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
246             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
247             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
248             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
249
250             /* CUBIC SPLINE TABLE DISPERSION */
251             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Heps             = _mm_mul_pd(vfeps,H);
258             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
259             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
260             vvdw6            = _mm_mul_pd(c6_00,VV);
261             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
262             fvdw6            = _mm_mul_pd(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             GMX_MM_TRANSPOSE2_PD(Y,F);
269             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
270             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
271             GMX_MM_TRANSPOSE2_PD(G,H);
272             Heps             = _mm_mul_pd(vfeps,H);
273             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
274             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
275             vvdw12           = _mm_mul_pd(c12_00,VV);
276             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
277             fvdw12           = _mm_mul_pd(c12_00,FF);
278             vvdw             = _mm_add_pd(vvdw12,vvdw6);
279             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm_add_pd(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx00);
289             ty               = _mm_mul_pd(fscal,dy00);
290             tz               = _mm_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_pd(fix0,tx);
294             fiy0             = _mm_add_pd(fiy0,ty);
295             fiz0             = _mm_add_pd(fiz0,tz);
296
297             fjx0             = _mm_add_pd(fjx0,tx);
298             fjy0             = _mm_add_pd(fjy0,ty);
299             fjz0             = _mm_add_pd(fjz0,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r10              = _mm_mul_pd(rsq10,rinv10);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_pd(iq1,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_pd(r10,ewtabscale);
314             ewitab           = _mm_cvttpd_epi32(ewrt);
315             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
320             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
321             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
322             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
323             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
324             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
325             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
326             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_pd(fscal,dx10);
335             ty               = _mm_mul_pd(fscal,dy10);
336             tz               = _mm_mul_pd(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_pd(fix1,tx);
340             fiy1             = _mm_add_pd(fiy1,ty);
341             fiz1             = _mm_add_pd(fiz1,tz);
342
343             fjx0             = _mm_add_pd(fjx0,tx);
344             fjy0             = _mm_add_pd(fjy0,ty);
345             fjz0             = _mm_add_pd(fjz0,tz);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm_mul_pd(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_pd(iq2,jq0);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359             ewrt             = _mm_mul_pd(r20,ewtabscale);
360             ewitab           = _mm_cvttpd_epi32(ewrt);
361             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
362             ewitab           = _mm_slli_epi32(ewitab,2);
363             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
364             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
365             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
366             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
367             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
368             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
369             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
370             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
371             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
372             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_pd(fscal,dx20);
381             ty               = _mm_mul_pd(fscal,dy20);
382             tz               = _mm_mul_pd(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm_add_pd(fix2,tx);
386             fiy2             = _mm_add_pd(fiy2,ty);
387             fiz2             = _mm_add_pd(fiz2,tz);
388
389             fjx0             = _mm_add_pd(fjx0,tx);
390             fjy0             = _mm_add_pd(fjy0,ty);
391             fjz0             = _mm_add_pd(fjz0,tz);
392
393             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 160 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             jnrA             = jjnr[jidx];
402             j_coord_offsetA  = DIM*jnrA;
403
404             /* load j atom coordinates */
405             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
406                                               &jx0,&jy0,&jz0);
407             
408             /* Calculate displacement vector */
409             dx00             = _mm_sub_pd(ix0,jx0);
410             dy00             = _mm_sub_pd(iy0,jy0);
411             dz00             = _mm_sub_pd(iz0,jz0);
412             dx10             = _mm_sub_pd(ix1,jx0);
413             dy10             = _mm_sub_pd(iy1,jy0);
414             dz10             = _mm_sub_pd(iz1,jz0);
415             dx20             = _mm_sub_pd(ix2,jx0);
416             dy20             = _mm_sub_pd(iy2,jy0);
417             dz20             = _mm_sub_pd(iz2,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
421             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
422             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
423
424             rinv00           = gmx_mm_invsqrt_pd(rsq00);
425             rinv10           = gmx_mm_invsqrt_pd(rsq10);
426             rinv20           = gmx_mm_invsqrt_pd(rsq20);
427
428             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
429             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
430             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
431
432             /* Load parameters for j particles */
433             jq0              = _mm_load_sd(charge+jnrA+0);
434             vdwjidx0A        = 2*vdwtype[jnrA+0];
435
436             fjx0             = _mm_setzero_pd();
437             fjy0             = _mm_setzero_pd();
438             fjz0             = _mm_setzero_pd();
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r00              = _mm_mul_pd(rsq00,rinv00);
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq00             = _mm_mul_pd(iq0,jq0);
448             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
449
450             /* Calculate table index by multiplying r with table scale and truncate to integer */
451             rt               = _mm_mul_pd(r00,vftabscale);
452             vfitab           = _mm_cvttpd_epi32(rt);
453             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
454             vfitab           = _mm_slli_epi32(vfitab,3);
455
456             /* EWALD ELECTROSTATICS */
457
458             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
459             ewrt             = _mm_mul_pd(r00,ewtabscale);
460             ewitab           = _mm_cvttpd_epi32(ewrt);
461             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
462             ewitab           = _mm_slli_epi32(ewitab,2);
463             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
464             ewtabD           = _mm_setzero_pd();
465             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
466             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
467             ewtabFn          = _mm_setzero_pd();
468             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
469             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
470             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
471             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
472             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
473
474             /* CUBIC SPLINE TABLE DISPERSION */
475             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
476             F                = _mm_setzero_pd();
477             GMX_MM_TRANSPOSE2_PD(Y,F);
478             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
479             H                = _mm_setzero_pd();
480             GMX_MM_TRANSPOSE2_PD(G,H);
481             Heps             = _mm_mul_pd(vfeps,H);
482             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
483             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
484             vvdw6            = _mm_mul_pd(c6_00,VV);
485             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
486             fvdw6            = _mm_mul_pd(c6_00,FF);
487
488             /* CUBIC SPLINE TABLE REPULSION */
489             vfitab           = _mm_add_epi32(vfitab,ifour);
490             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
491             F                = _mm_setzero_pd();
492             GMX_MM_TRANSPOSE2_PD(Y,F);
493             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
494             H                = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(G,H);
496             Heps             = _mm_mul_pd(vfeps,H);
497             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
498             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
499             vvdw12           = _mm_mul_pd(c12_00,VV);
500             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
501             fvdw12           = _mm_mul_pd(c12_00,FF);
502             vvdw             = _mm_add_pd(vvdw12,vvdw6);
503             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
507             velecsum         = _mm_add_pd(velecsum,velec);
508             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
509             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
510
511             fscal            = _mm_add_pd(felec,fvdw);
512
513             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_pd(fscal,dx00);
517             ty               = _mm_mul_pd(fscal,dy00);
518             tz               = _mm_mul_pd(fscal,dz00);
519
520             /* Update vectorial force */
521             fix0             = _mm_add_pd(fix0,tx);
522             fiy0             = _mm_add_pd(fiy0,ty);
523             fiz0             = _mm_add_pd(fiz0,tz);
524
525             fjx0             = _mm_add_pd(fjx0,tx);
526             fjy0             = _mm_add_pd(fjy0,ty);
527             fjz0             = _mm_add_pd(fjz0,tz);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r10              = _mm_mul_pd(rsq10,rinv10);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq10             = _mm_mul_pd(iq1,jq0);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _mm_mul_pd(r10,ewtabscale);
542             ewitab           = _mm_cvttpd_epi32(ewrt);
543             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
544             ewitab           = _mm_slli_epi32(ewitab,2);
545             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
546             ewtabD           = _mm_setzero_pd();
547             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
548             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
549             ewtabFn          = _mm_setzero_pd();
550             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
551             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
552             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
553             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
554             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
558             velecsum         = _mm_add_pd(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_pd(fscal,dx10);
566             ty               = _mm_mul_pd(fscal,dy10);
567             tz               = _mm_mul_pd(fscal,dz10);
568
569             /* Update vectorial force */
570             fix1             = _mm_add_pd(fix1,tx);
571             fiy1             = _mm_add_pd(fiy1,ty);
572             fiz1             = _mm_add_pd(fiz1,tz);
573
574             fjx0             = _mm_add_pd(fjx0,tx);
575             fjy0             = _mm_add_pd(fjy0,ty);
576             fjz0             = _mm_add_pd(fjz0,tz);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r20              = _mm_mul_pd(rsq20,rinv20);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_pd(iq2,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _mm_mul_pd(r20,ewtabscale);
591             ewitab           = _mm_cvttpd_epi32(ewrt);
592             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
597             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
598             ewtabFn          = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
600             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
601             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
602             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
603             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_pd(fscal,dx20);
615             ty               = _mm_mul_pd(fscal,dy20);
616             tz               = _mm_mul_pd(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_pd(fix2,tx);
620             fiy2             = _mm_add_pd(fiy2,ty);
621             fiz2             = _mm_add_pd(fiz2,tz);
622
623             fjx0             = _mm_add_pd(fjx0,tx);
624             fjy0             = _mm_add_pd(fjy0,ty);
625             fjz0             = _mm_add_pd(fjz0,tz);
626
627             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
628
629             /* Inner loop uses 160 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         ggid                        = gid[iidx];
638         /* Update potential energies */
639         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
640         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 20 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
654 }
655 /*
656  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_double
657  * Electrostatics interaction: Ewald
658  * VdW interaction:            CubicSplineTable
659  * Geometry:                   Water3-Particle
660  * Calculate force/pot:        Force
661  */
662 void
663 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_double
664                     (t_nblist * gmx_restrict                nlist,
665                      rvec * gmx_restrict                    xx,
666                      rvec * gmx_restrict                    ff,
667                      t_forcerec * gmx_restrict              fr,
668                      t_mdatoms * gmx_restrict               mdatoms,
669                      nb_kernel_data_t * gmx_restrict        kernel_data,
670                      t_nrnb * gmx_restrict                  nrnb)
671 {
672     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
673      * just 0 for non-waters.
674      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
675      * jnr indices corresponding to data put in the four positions in the SIMD register.
676      */
677     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
678     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
679     int              jnrA,jnrB;
680     int              j_coord_offsetA,j_coord_offsetB;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
685     int              vdwioffset0;
686     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
687     int              vdwioffset1;
688     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
689     int              vdwioffset2;
690     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
691     int              vdwjidx0A,vdwjidx0B;
692     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
693     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
694     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
695     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
696     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
697     real             *charge;
698     int              nvdwtype;
699     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
700     int              *vdwtype;
701     real             *vdwparam;
702     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
703     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
704     __m128i          vfitab;
705     __m128i          ifour       = _mm_set1_epi32(4);
706     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
707     real             *vftab;
708     __m128i          ewitab;
709     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
710     real             *ewtab;
711     __m128d          dummy_mask,cutoff_mask;
712     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
713     __m128d          one     = _mm_set1_pd(1.0);
714     __m128d          two     = _mm_set1_pd(2.0);
715     x                = xx[0];
716     f                = ff[0];
717
718     nri              = nlist->nri;
719     iinr             = nlist->iinr;
720     jindex           = nlist->jindex;
721     jjnr             = nlist->jjnr;
722     shiftidx         = nlist->shift;
723     gid              = nlist->gid;
724     shiftvec         = fr->shift_vec[0];
725     fshift           = fr->fshift[0];
726     facel            = _mm_set1_pd(fr->epsfac);
727     charge           = mdatoms->chargeA;
728     nvdwtype         = fr->ntype;
729     vdwparam         = fr->nbfp;
730     vdwtype          = mdatoms->typeA;
731
732     vftab            = kernel_data->table_vdw->data;
733     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
734
735     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
736     ewtab            = fr->ic->tabq_coul_F;
737     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
738     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
739
740     /* Setup water-specific parameters */
741     inr              = nlist->iinr[0];
742     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
743     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
744     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
745     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
746
747     /* Avoid stupid compiler warnings */
748     jnrA = jnrB = 0;
749     j_coord_offsetA = 0;
750     j_coord_offsetB = 0;
751
752     outeriter        = 0;
753     inneriter        = 0;
754
755     /* Start outer loop over neighborlists */
756     for(iidx=0; iidx<nri; iidx++)
757     {
758         /* Load shift vector for this list */
759         i_shift_offset   = DIM*shiftidx[iidx];
760
761         /* Load limits for loop over neighbors */
762         j_index_start    = jindex[iidx];
763         j_index_end      = jindex[iidx+1];
764
765         /* Get outer coordinate index */
766         inr              = iinr[iidx];
767         i_coord_offset   = DIM*inr;
768
769         /* Load i particle coords and add shift vector */
770         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
771                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
772
773         fix0             = _mm_setzero_pd();
774         fiy0             = _mm_setzero_pd();
775         fiz0             = _mm_setzero_pd();
776         fix1             = _mm_setzero_pd();
777         fiy1             = _mm_setzero_pd();
778         fiz1             = _mm_setzero_pd();
779         fix2             = _mm_setzero_pd();
780         fiy2             = _mm_setzero_pd();
781         fiz2             = _mm_setzero_pd();
782
783         /* Start inner kernel loop */
784         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
785         {
786
787             /* Get j neighbor index, and coordinate index */
788             jnrA             = jjnr[jidx];
789             jnrB             = jjnr[jidx+1];
790             j_coord_offsetA  = DIM*jnrA;
791             j_coord_offsetB  = DIM*jnrB;
792             
793             /* load j atom coordinates */
794             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
795                                               &jx0,&jy0,&jz0);
796             
797             /* Calculate displacement vector */
798             dx00             = _mm_sub_pd(ix0,jx0);
799             dy00             = _mm_sub_pd(iy0,jy0);
800             dz00             = _mm_sub_pd(iz0,jz0);
801             dx10             = _mm_sub_pd(ix1,jx0);
802             dy10             = _mm_sub_pd(iy1,jy0);
803             dz10             = _mm_sub_pd(iz1,jz0);
804             dx20             = _mm_sub_pd(ix2,jx0);
805             dy20             = _mm_sub_pd(iy2,jy0);
806             dz20             = _mm_sub_pd(iz2,jz0);
807
808             /* Calculate squared distance and things based on it */
809             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
810             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
811             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
812
813             rinv00           = gmx_mm_invsqrt_pd(rsq00);
814             rinv10           = gmx_mm_invsqrt_pd(rsq10);
815             rinv20           = gmx_mm_invsqrt_pd(rsq20);
816
817             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
818             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
819             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
820
821             /* Load parameters for j particles */
822             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
823             vdwjidx0A        = 2*vdwtype[jnrA+0];
824             vdwjidx0B        = 2*vdwtype[jnrB+0];
825
826             fjx0             = _mm_setzero_pd();
827             fjy0             = _mm_setzero_pd();
828             fjz0             = _mm_setzero_pd();
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             r00              = _mm_mul_pd(rsq00,rinv00);
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq00             = _mm_mul_pd(iq0,jq0);
838             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
839                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
840
841             /* Calculate table index by multiplying r with table scale and truncate to integer */
842             rt               = _mm_mul_pd(r00,vftabscale);
843             vfitab           = _mm_cvttpd_epi32(rt);
844             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
845             vfitab           = _mm_slli_epi32(vfitab,3);
846
847             /* EWALD ELECTROSTATICS */
848
849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
850             ewrt             = _mm_mul_pd(r00,ewtabscale);
851             ewitab           = _mm_cvttpd_epi32(ewrt);
852             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
853             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
854                                          &ewtabF,&ewtabFn);
855             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
856             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
857
858             /* CUBIC SPLINE TABLE DISPERSION */
859             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
860             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
861             GMX_MM_TRANSPOSE2_PD(Y,F);
862             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
863             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
864             GMX_MM_TRANSPOSE2_PD(G,H);
865             Heps             = _mm_mul_pd(vfeps,H);
866             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
867             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
868             fvdw6            = _mm_mul_pd(c6_00,FF);
869
870             /* CUBIC SPLINE TABLE REPULSION */
871             vfitab           = _mm_add_epi32(vfitab,ifour);
872             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
873             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
874             GMX_MM_TRANSPOSE2_PD(Y,F);
875             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
876             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
877             GMX_MM_TRANSPOSE2_PD(G,H);
878             Heps             = _mm_mul_pd(vfeps,H);
879             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
880             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
881             fvdw12           = _mm_mul_pd(c12_00,FF);
882             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
883
884             fscal            = _mm_add_pd(felec,fvdw);
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx00);
888             ty               = _mm_mul_pd(fscal,dy00);
889             tz               = _mm_mul_pd(fscal,dz00);
890
891             /* Update vectorial force */
892             fix0             = _mm_add_pd(fix0,tx);
893             fiy0             = _mm_add_pd(fiy0,ty);
894             fiz0             = _mm_add_pd(fiz0,tz);
895
896             fjx0             = _mm_add_pd(fjx0,tx);
897             fjy0             = _mm_add_pd(fjy0,ty);
898             fjz0             = _mm_add_pd(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r10              = _mm_mul_pd(rsq10,rinv10);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq10             = _mm_mul_pd(iq1,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912             ewrt             = _mm_mul_pd(r10,ewtabscale);
913             ewitab           = _mm_cvttpd_epi32(ewrt);
914             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
915             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
916                                          &ewtabF,&ewtabFn);
917             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
918             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm_mul_pd(fscal,dx10);
924             ty               = _mm_mul_pd(fscal,dy10);
925             tz               = _mm_mul_pd(fscal,dz10);
926
927             /* Update vectorial force */
928             fix1             = _mm_add_pd(fix1,tx);
929             fiy1             = _mm_add_pd(fiy1,ty);
930             fiz1             = _mm_add_pd(fiz1,tz);
931
932             fjx0             = _mm_add_pd(fjx0,tx);
933             fjy0             = _mm_add_pd(fjy0,ty);
934             fjz0             = _mm_add_pd(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r20              = _mm_mul_pd(rsq20,rinv20);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq20             = _mm_mul_pd(iq2,jq0);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _mm_mul_pd(r20,ewtabscale);
949             ewitab           = _mm_cvttpd_epi32(ewrt);
950             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
951             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
952                                          &ewtabF,&ewtabFn);
953             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
954             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
955
956             fscal            = felec;
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_pd(fscal,dx20);
960             ty               = _mm_mul_pd(fscal,dy20);
961             tz               = _mm_mul_pd(fscal,dz20);
962
963             /* Update vectorial force */
964             fix2             = _mm_add_pd(fix2,tx);
965             fiy2             = _mm_add_pd(fiy2,ty);
966             fiz2             = _mm_add_pd(fiz2,tz);
967
968             fjx0             = _mm_add_pd(fjx0,tx);
969             fjy0             = _mm_add_pd(fjy0,ty);
970             fjz0             = _mm_add_pd(fjz0,tz);
971
972             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
973
974             /* Inner loop uses 137 flops */
975         }
976
977         if(jidx<j_index_end)
978         {
979
980             jnrA             = jjnr[jidx];
981             j_coord_offsetA  = DIM*jnrA;
982
983             /* load j atom coordinates */
984             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
985                                               &jx0,&jy0,&jz0);
986             
987             /* Calculate displacement vector */
988             dx00             = _mm_sub_pd(ix0,jx0);
989             dy00             = _mm_sub_pd(iy0,jy0);
990             dz00             = _mm_sub_pd(iz0,jz0);
991             dx10             = _mm_sub_pd(ix1,jx0);
992             dy10             = _mm_sub_pd(iy1,jy0);
993             dz10             = _mm_sub_pd(iz1,jz0);
994             dx20             = _mm_sub_pd(ix2,jx0);
995             dy20             = _mm_sub_pd(iy2,jy0);
996             dz20             = _mm_sub_pd(iz2,jz0);
997
998             /* Calculate squared distance and things based on it */
999             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1000             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1001             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1002
1003             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1004             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1005             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1006
1007             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1008             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1009             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1010
1011             /* Load parameters for j particles */
1012             jq0              = _mm_load_sd(charge+jnrA+0);
1013             vdwjidx0A        = 2*vdwtype[jnrA+0];
1014
1015             fjx0             = _mm_setzero_pd();
1016             fjy0             = _mm_setzero_pd();
1017             fjz0             = _mm_setzero_pd();
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r00              = _mm_mul_pd(rsq00,rinv00);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq00             = _mm_mul_pd(iq0,jq0);
1027             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1028
1029             /* Calculate table index by multiplying r with table scale and truncate to integer */
1030             rt               = _mm_mul_pd(r00,vftabscale);
1031             vfitab           = _mm_cvttpd_epi32(rt);
1032             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1033             vfitab           = _mm_slli_epi32(vfitab,3);
1034
1035             /* EWALD ELECTROSTATICS */
1036
1037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038             ewrt             = _mm_mul_pd(r00,ewtabscale);
1039             ewitab           = _mm_cvttpd_epi32(ewrt);
1040             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1041             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1042             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1043             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1044
1045             /* CUBIC SPLINE TABLE DISPERSION */
1046             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1047             F                = _mm_setzero_pd();
1048             GMX_MM_TRANSPOSE2_PD(Y,F);
1049             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1050             H                = _mm_setzero_pd();
1051             GMX_MM_TRANSPOSE2_PD(G,H);
1052             Heps             = _mm_mul_pd(vfeps,H);
1053             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1054             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1055             fvdw6            = _mm_mul_pd(c6_00,FF);
1056
1057             /* CUBIC SPLINE TABLE REPULSION */
1058             vfitab           = _mm_add_epi32(vfitab,ifour);
1059             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1060             F                = _mm_setzero_pd();
1061             GMX_MM_TRANSPOSE2_PD(Y,F);
1062             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1063             H                = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(G,H);
1065             Heps             = _mm_mul_pd(vfeps,H);
1066             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1067             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1068             fvdw12           = _mm_mul_pd(c12_00,FF);
1069             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1070
1071             fscal            = _mm_add_pd(felec,fvdw);
1072
1073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_pd(fscal,dx00);
1077             ty               = _mm_mul_pd(fscal,dy00);
1078             tz               = _mm_mul_pd(fscal,dz00);
1079
1080             /* Update vectorial force */
1081             fix0             = _mm_add_pd(fix0,tx);
1082             fiy0             = _mm_add_pd(fiy0,ty);
1083             fiz0             = _mm_add_pd(fiz0,tz);
1084
1085             fjx0             = _mm_add_pd(fjx0,tx);
1086             fjy0             = _mm_add_pd(fjy0,ty);
1087             fjz0             = _mm_add_pd(fjz0,tz);
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             r10              = _mm_mul_pd(rsq10,rinv10);
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq10             = _mm_mul_pd(iq1,jq0);
1097
1098             /* EWALD ELECTROSTATICS */
1099
1100             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1101             ewrt             = _mm_mul_pd(r10,ewtabscale);
1102             ewitab           = _mm_cvttpd_epi32(ewrt);
1103             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1104             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1105             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1106             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_pd(fscal,dx10);
1114             ty               = _mm_mul_pd(fscal,dy10);
1115             tz               = _mm_mul_pd(fscal,dz10);
1116
1117             /* Update vectorial force */
1118             fix1             = _mm_add_pd(fix1,tx);
1119             fiy1             = _mm_add_pd(fiy1,ty);
1120             fiz1             = _mm_add_pd(fiz1,tz);
1121
1122             fjx0             = _mm_add_pd(fjx0,tx);
1123             fjy0             = _mm_add_pd(fjy0,ty);
1124             fjz0             = _mm_add_pd(fjz0,tz);
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             r20              = _mm_mul_pd(rsq20,rinv20);
1131
1132             /* Compute parameters for interactions between i and j atoms */
1133             qq20             = _mm_mul_pd(iq2,jq0);
1134
1135             /* EWALD ELECTROSTATICS */
1136
1137             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1138             ewrt             = _mm_mul_pd(r20,ewtabscale);
1139             ewitab           = _mm_cvttpd_epi32(ewrt);
1140             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1141             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1142             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1143             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_pd(fscal,dx20);
1151             ty               = _mm_mul_pd(fscal,dy20);
1152             tz               = _mm_mul_pd(fscal,dz20);
1153
1154             /* Update vectorial force */
1155             fix2             = _mm_add_pd(fix2,tx);
1156             fiy2             = _mm_add_pd(fiy2,ty);
1157             fiz2             = _mm_add_pd(fiz2,tz);
1158
1159             fjx0             = _mm_add_pd(fjx0,tx);
1160             fjy0             = _mm_add_pd(fjy0,ty);
1161             fjz0             = _mm_add_pd(fjz0,tz);
1162
1163             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1164
1165             /* Inner loop uses 137 flops */
1166         }
1167
1168         /* End of innermost loop */
1169
1170         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1171                                               f+i_coord_offset,fshift+i_shift_offset);
1172
1173         /* Increment number of inner iterations */
1174         inneriter                  += j_index_end - j_index_start;
1175
1176         /* Outer loop uses 18 flops */
1177     }
1178
1179     /* Increment number of outer iterations */
1180     outeriter        += nri;
1181
1182     /* Update outer/inner flops */
1183
1184     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1185 }