made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_elec_vdw->data;
105     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
131
132         fix0             = _mm_setzero_pd();
133         fiy0             = _mm_setzero_pd();
134         fiz0             = _mm_setzero_pd();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_pd();
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153             
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157             
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinv00           = gmx_mm_invsqrt_pd(rsq00);
167
168             /* Load parameters for j particles */
169             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
170             vdwjidx0A        = 2*vdwtype[jnrA+0];
171             vdwjidx0B        = 2*vdwtype[jnrB+0];
172
173             /**************************
174              * CALCULATE INTERACTIONS *
175              **************************/
176
177             r00              = _mm_mul_pd(rsq00,rinv00);
178
179             /* Compute parameters for interactions between i and j atoms */
180             qq00             = _mm_mul_pd(iq0,jq0);
181             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
182                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
183
184             /* Calculate table index by multiplying r with table scale and truncate to integer */
185             rt               = _mm_mul_pd(r00,vftabscale);
186             vfitab           = _mm_cvttpd_epi32(rt);
187             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
188             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
189
190             /* CUBIC SPLINE TABLE ELECTROSTATICS */
191             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
192             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
193             GMX_MM_TRANSPOSE2_PD(Y,F);
194             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
195             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
196             GMX_MM_TRANSPOSE2_PD(G,H);
197             Heps             = _mm_mul_pd(vfeps,H);
198             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
199             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
200             velec            = _mm_mul_pd(qq00,VV);
201             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
202             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
203
204             /* CUBIC SPLINE TABLE DISPERSION */
205             vfitab           = _mm_add_epi32(vfitab,ifour);
206             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
207             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
208             GMX_MM_TRANSPOSE2_PD(Y,F);
209             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
210             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
211             GMX_MM_TRANSPOSE2_PD(G,H);
212             Heps             = _mm_mul_pd(vfeps,H);
213             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
214             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
215             vvdw6            = _mm_mul_pd(c6_00,VV);
216             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
217             fvdw6            = _mm_mul_pd(c6_00,FF);
218
219             /* CUBIC SPLINE TABLE REPULSION */
220             vfitab           = _mm_add_epi32(vfitab,ifour);
221             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
222             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
223             GMX_MM_TRANSPOSE2_PD(Y,F);
224             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
225             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
226             GMX_MM_TRANSPOSE2_PD(G,H);
227             Heps             = _mm_mul_pd(vfeps,H);
228             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
229             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
230             vvdw12           = _mm_mul_pd(c12_00,VV);
231             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
232             fvdw12           = _mm_mul_pd(c12_00,FF);
233             vvdw             = _mm_add_pd(vvdw12,vvdw6);
234             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm_add_pd(velecsum,velec);
238             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
239
240             fscal            = _mm_add_pd(felec,fvdw);
241
242             /* Calculate temporary vectorial force */
243             tx               = _mm_mul_pd(fscal,dx00);
244             ty               = _mm_mul_pd(fscal,dy00);
245             tz               = _mm_mul_pd(fscal,dz00);
246
247             /* Update vectorial force */
248             fix0             = _mm_add_pd(fix0,tx);
249             fiy0             = _mm_add_pd(fiy0,ty);
250             fiz0             = _mm_add_pd(fiz0,tz);
251
252             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
253
254             /* Inner loop uses 73 flops */
255         }
256
257         if(jidx<j_index_end)
258         {
259
260             jnrA             = jjnr[jidx];
261             j_coord_offsetA  = DIM*jnrA;
262
263             /* load j atom coordinates */
264             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
265                                               &jx0,&jy0,&jz0);
266             
267             /* Calculate displacement vector */
268             dx00             = _mm_sub_pd(ix0,jx0);
269             dy00             = _mm_sub_pd(iy0,jy0);
270             dz00             = _mm_sub_pd(iz0,jz0);
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
274
275             rinv00           = gmx_mm_invsqrt_pd(rsq00);
276
277             /* Load parameters for j particles */
278             jq0              = _mm_load_sd(charge+jnrA+0);
279             vdwjidx0A        = 2*vdwtype[jnrA+0];
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             r00              = _mm_mul_pd(rsq00,rinv00);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_pd(iq0,jq0);
289             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
290
291             /* Calculate table index by multiplying r with table scale and truncate to integer */
292             rt               = _mm_mul_pd(r00,vftabscale);
293             vfitab           = _mm_cvttpd_epi32(rt);
294             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
295             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
296
297             /* CUBIC SPLINE TABLE ELECTROSTATICS */
298             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
299             F                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(Y,F);
301             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
302             H                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(G,H);
304             Heps             = _mm_mul_pd(vfeps,H);
305             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
306             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
307             velec            = _mm_mul_pd(qq00,VV);
308             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
309             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
310
311             /* CUBIC SPLINE TABLE DISPERSION */
312             vfitab           = _mm_add_epi32(vfitab,ifour);
313             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
314             F                = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(Y,F);
316             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
317             H                = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(G,H);
319             Heps             = _mm_mul_pd(vfeps,H);
320             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
321             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
322             vvdw6            = _mm_mul_pd(c6_00,VV);
323             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
324             fvdw6            = _mm_mul_pd(c6_00,FF);
325
326             /* CUBIC SPLINE TABLE REPULSION */
327             vfitab           = _mm_add_epi32(vfitab,ifour);
328             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
329             F                = _mm_setzero_pd();
330             GMX_MM_TRANSPOSE2_PD(Y,F);
331             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
332             H                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(G,H);
334             Heps             = _mm_mul_pd(vfeps,H);
335             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
336             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
337             vvdw12           = _mm_mul_pd(c12_00,VV);
338             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
339             fvdw12           = _mm_mul_pd(c12_00,FF);
340             vvdw             = _mm_add_pd(vvdw12,vvdw6);
341             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
345             velecsum         = _mm_add_pd(velecsum,velec);
346             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
347             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
348
349             fscal            = _mm_add_pd(felec,fvdw);
350
351             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_pd(fscal,dx00);
355             ty               = _mm_mul_pd(fscal,dy00);
356             tz               = _mm_mul_pd(fscal,dz00);
357
358             /* Update vectorial force */
359             fix0             = _mm_add_pd(fix0,tx);
360             fiy0             = _mm_add_pd(fiy0,ty);
361             fiz0             = _mm_add_pd(fiz0,tz);
362
363             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
364
365             /* Inner loop uses 73 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
376         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 9 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_double
393  * Electrostatics interaction: CubicSplineTable
394  * VdW interaction:            CubicSplineTable
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_double
400                     (t_nblist * gmx_restrict                nlist,
401                      rvec * gmx_restrict                    xx,
402                      rvec * gmx_restrict                    ff,
403                      t_forcerec * gmx_restrict              fr,
404                      t_mdatoms * gmx_restrict               mdatoms,
405                      nb_kernel_data_t * gmx_restrict        kernel_data,
406                      t_nrnb * gmx_restrict                  nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
409      * just 0 for non-waters.
410      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB;
416     int              j_coord_offsetA,j_coord_offsetB;
417     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
418     real             rcutoff_scalar;
419     real             *shiftvec,*fshift,*x,*f;
420     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
421     int              vdwioffset0;
422     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
423     int              vdwjidx0A,vdwjidx0B;
424     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
425     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
426     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
427     real             *charge;
428     int              nvdwtype;
429     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
430     int              *vdwtype;
431     real             *vdwparam;
432     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
433     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
434     __m128i          vfitab;
435     __m128i          ifour       = _mm_set1_epi32(4);
436     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
437     real             *vftab;
438     __m128d          dummy_mask,cutoff_mask;
439     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
440     __m128d          one     = _mm_set1_pd(1.0);
441     __m128d          two     = _mm_set1_pd(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     facel            = _mm_set1_pd(fr->epsfac);
454     charge           = mdatoms->chargeA;
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458
459     vftab            = kernel_data->table_elec_vdw->data;
460     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
461
462     /* Avoid stupid compiler warnings */
463     jnrA = jnrB = 0;
464     j_coord_offsetA = 0;
465     j_coord_offsetB = 0;
466
467     outeriter        = 0;
468     inneriter        = 0;
469
470     /* Start outer loop over neighborlists */
471     for(iidx=0; iidx<nri; iidx++)
472     {
473         /* Load shift vector for this list */
474         i_shift_offset   = DIM*shiftidx[iidx];
475
476         /* Load limits for loop over neighbors */
477         j_index_start    = jindex[iidx];
478         j_index_end      = jindex[iidx+1];
479
480         /* Get outer coordinate index */
481         inr              = iinr[iidx];
482         i_coord_offset   = DIM*inr;
483
484         /* Load i particle coords and add shift vector */
485         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
486
487         fix0             = _mm_setzero_pd();
488         fiy0             = _mm_setzero_pd();
489         fiz0             = _mm_setzero_pd();
490
491         /* Load parameters for i particles */
492         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
493         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
494
495         /* Start inner kernel loop */
496         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrA             = jjnr[jidx];
501             jnrB             = jjnr[jidx+1];
502             j_coord_offsetA  = DIM*jnrA;
503             j_coord_offsetB  = DIM*jnrB;
504             
505             /* load j atom coordinates */
506             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
507                                               &jx0,&jy0,&jz0);
508             
509             /* Calculate displacement vector */
510             dx00             = _mm_sub_pd(ix0,jx0);
511             dy00             = _mm_sub_pd(iy0,jy0);
512             dz00             = _mm_sub_pd(iz0,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
516
517             rinv00           = gmx_mm_invsqrt_pd(rsq00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _mm_mul_pd(rsq00,rinv00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _mm_mul_pd(iq0,jq0);
532             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_pd(r00,vftabscale);
537             vfitab           = _mm_cvttpd_epi32(rt);
538             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
539             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
540
541             /* CUBIC SPLINE TABLE ELECTROSTATICS */
542             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
543             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
544             GMX_MM_TRANSPOSE2_PD(Y,F);
545             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
546             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
547             GMX_MM_TRANSPOSE2_PD(G,H);
548             Heps             = _mm_mul_pd(vfeps,H);
549             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
550             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
551             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
552
553             /* CUBIC SPLINE TABLE DISPERSION */
554             vfitab           = _mm_add_epi32(vfitab,ifour);
555             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
556             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
557             GMX_MM_TRANSPOSE2_PD(Y,F);
558             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
559             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
560             GMX_MM_TRANSPOSE2_PD(G,H);
561             Heps             = _mm_mul_pd(vfeps,H);
562             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
563             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
564             fvdw6            = _mm_mul_pd(c6_00,FF);
565
566             /* CUBIC SPLINE TABLE REPULSION */
567             vfitab           = _mm_add_epi32(vfitab,ifour);
568             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
569             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
570             GMX_MM_TRANSPOSE2_PD(Y,F);
571             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
572             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
573             GMX_MM_TRANSPOSE2_PD(G,H);
574             Heps             = _mm_mul_pd(vfeps,H);
575             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
576             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
577             fvdw12           = _mm_mul_pd(c12_00,FF);
578             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
579
580             fscal            = _mm_add_pd(felec,fvdw);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_pd(fscal,dx00);
584             ty               = _mm_mul_pd(fscal,dy00);
585             tz               = _mm_mul_pd(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm_add_pd(fix0,tx);
589             fiy0             = _mm_add_pd(fiy0,ty);
590             fiz0             = _mm_add_pd(fiz0,tz);
591
592             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
593
594             /* Inner loop uses 61 flops */
595         }
596
597         if(jidx<j_index_end)
598         {
599
600             jnrA             = jjnr[jidx];
601             j_coord_offsetA  = DIM*jnrA;
602
603             /* load j atom coordinates */
604             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
605                                               &jx0,&jy0,&jz0);
606             
607             /* Calculate displacement vector */
608             dx00             = _mm_sub_pd(ix0,jx0);
609             dy00             = _mm_sub_pd(iy0,jy0);
610             dz00             = _mm_sub_pd(iz0,jz0);
611
612             /* Calculate squared distance and things based on it */
613             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
614
615             rinv00           = gmx_mm_invsqrt_pd(rsq00);
616
617             /* Load parameters for j particles */
618             jq0              = _mm_load_sd(charge+jnrA+0);
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r00              = _mm_mul_pd(rsq00,rinv00);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq00             = _mm_mul_pd(iq0,jq0);
629             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
630
631             /* Calculate table index by multiplying r with table scale and truncate to integer */
632             rt               = _mm_mul_pd(r00,vftabscale);
633             vfitab           = _mm_cvttpd_epi32(rt);
634             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
635             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
636
637             /* CUBIC SPLINE TABLE ELECTROSTATICS */
638             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
639             F                = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(Y,F);
641             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
642             H                = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(G,H);
644             Heps             = _mm_mul_pd(vfeps,H);
645             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
646             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
647             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
648
649             /* CUBIC SPLINE TABLE DISPERSION */
650             vfitab           = _mm_add_epi32(vfitab,ifour);
651             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
652             F                = _mm_setzero_pd();
653             GMX_MM_TRANSPOSE2_PD(Y,F);
654             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
655             H                = _mm_setzero_pd();
656             GMX_MM_TRANSPOSE2_PD(G,H);
657             Heps             = _mm_mul_pd(vfeps,H);
658             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
659             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
660             fvdw6            = _mm_mul_pd(c6_00,FF);
661
662             /* CUBIC SPLINE TABLE REPULSION */
663             vfitab           = _mm_add_epi32(vfitab,ifour);
664             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
665             F                = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(Y,F);
667             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
668             H                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(G,H);
670             Heps             = _mm_mul_pd(vfeps,H);
671             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
672             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
673             fvdw12           = _mm_mul_pd(c12_00,FF);
674             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
675
676             fscal            = _mm_add_pd(felec,fvdw);
677
678             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm_mul_pd(fscal,dx00);
682             ty               = _mm_mul_pd(fscal,dy00);
683             tz               = _mm_mul_pd(fscal,dz00);
684
685             /* Update vectorial force */
686             fix0             = _mm_add_pd(fix0,tx);
687             fiy0             = _mm_add_pd(fiy0,ty);
688             fiz0             = _mm_add_pd(fiz0,tz);
689
690             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
691
692             /* Inner loop uses 61 flops */
693         }
694
695         /* End of innermost loop */
696
697         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
698                                               f+i_coord_offset,fshift+i_shift_offset);
699
700         /* Increment number of inner iterations */
701         inneriter                  += j_index_end - j_index_start;
702
703         /* Outer loop uses 7 flops */
704     }
705
706     /* Increment number of outer iterations */
707     outeriter        += nri;
708
709     /* Update outer/inner flops */
710
711     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
712 }