Fujitsu Sparc64 acceleration and general fixes for non-x86 builds
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: ReactionField
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist * gmx_restrict                nlist,
61                      rvec * gmx_restrict                    xx,
62                      rvec * gmx_restrict                    ff,
63                      t_forcerec * gmx_restrict              fr,
64                      t_mdatoms * gmx_restrict               mdatoms,
65                      nb_kernel_data_t * gmx_restrict        kernel_data,
66                      t_nrnb * gmx_restrict                  nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
93     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
94     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
95     real             *vftab;
96     _fjsp_v2r8       itab_tmp;
97     _fjsp_v2r8       dummy_mask,cutoff_mask;
98     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
99     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
100     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = gmx_fjsp_set1_v2r8(fr->ic->k_rf);
116     krf2             = gmx_fjsp_set1_v2r8(fr->ic->k_rf*2.0);
117     crf              = gmx_fjsp_set1_v2r8(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
128     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _fjsp_setzero_v2r8();
156         fiy0             = _fjsp_setzero_v2r8();
157         fiz0             = _fjsp_setzero_v2r8();
158
159         /* Load parameters for i particles */
160         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _fjsp_setzero_v2r8();
165         vvdwsum          = _fjsp_setzero_v2r8();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _fjsp_sub_v2r8(ix0,jx0);
183             dy00             = _fjsp_sub_v2r8(iy0,jy0);
184             dz00             = _fjsp_sub_v2r8(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
188
189             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
190
191             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
203             {
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _fjsp_mul_v2r8(r00,vftabscale);
214             itab_tmp         = _fjsp_dtox_v2r8(rt);
215             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
216             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
217             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
218
219             vfconv.i[0]     *= 8;
220             vfconv.i[1]     *= 8;
221
222             /* REACTION-FIELD ELECTROSTATICS */
223             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_madd_v2r8(krf,rsq00,rinv00),crf));
224             felec            = _fjsp_mul_v2r8(qq00,_fjsp_msub_v2r8(rinv00,rinvsq00,krf2));
225
226             /* CUBIC SPLINE TABLE DISPERSION */
227             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
228             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
229             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
230             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
231             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
232             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
233             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
234             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
235             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
236             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
237             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
238
239             /* CUBIC SPLINE TABLE REPULSION */
240             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
241             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
242             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
243             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
244             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
245             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
246             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
247             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
248             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
249             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
250             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
251             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
252             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
253
254             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
258             velecsum         = _fjsp_add_v2r8(velecsum,velec);
259             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
260             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
261
262             fscal            = _fjsp_add_v2r8(felec,fvdw);
263
264             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
265
266             /* Update vectorial force */
267             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
268             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
269             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
270             
271             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
272
273             }
274
275             /* Inner loop uses 75 flops */
276         }
277
278         if(jidx<j_index_end)
279         {
280
281             jnrA             = jjnr[jidx];
282             j_coord_offsetA  = DIM*jnrA;
283
284             /* load j atom coordinates */
285             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
286                                               &jx0,&jy0,&jz0);
287
288             /* Calculate displacement vector */
289             dx00             = _fjsp_sub_v2r8(ix0,jx0);
290             dy00             = _fjsp_sub_v2r8(iy0,jy0);
291             dz00             = _fjsp_sub_v2r8(iz0,jz0);
292
293             /* Calculate squared distance and things based on it */
294             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
295
296             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
297
298             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
299
300             /* Load parameters for j particles */
301             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
302             vdwjidx0A        = 2*vdwtype[jnrA+0];
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
309             {
310
311             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq00             = _fjsp_mul_v2r8(iq0,jq0);
315             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
316
317             /* Calculate table index by multiplying r with table scale and truncate to integer */
318             rt               = _fjsp_mul_v2r8(r00,vftabscale);
319             itab_tmp         = _fjsp_dtox_v2r8(rt);
320             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
321             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
322             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
323
324             vfconv.i[0]     *= 8;
325             vfconv.i[1]     *= 8;
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(_fjsp_madd_v2r8(krf,rsq00,rinv00),crf));
329             felec            = _fjsp_mul_v2r8(qq00,_fjsp_msub_v2r8(rinv00,rinvsq00,krf2));
330
331             /* CUBIC SPLINE TABLE DISPERSION */
332             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
333             F                = _fjsp_setzero_v2r8();
334             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
335             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
336             H                = _fjsp_setzero_v2r8();
337             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
338             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
339             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
340             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
341             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
342             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
343
344             /* CUBIC SPLINE TABLE REPULSION */
345             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
346             F                = _fjsp_setzero_v2r8();
347             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
348             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
349             H                = _fjsp_setzero_v2r8();
350             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
351             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
352             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
353             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
354             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
355             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
356             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
357             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
358
359             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _fjsp_and_v2r8(velec,cutoff_mask);
363             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
364             velecsum         = _fjsp_add_v2r8(velecsum,velec);
365             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
366             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
367             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
368
369             fscal            = _fjsp_add_v2r8(felec,fvdw);
370
371             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
372
373             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
374
375             /* Update vectorial force */
376             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
377             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
378             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
379             
380             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
381
382             }
383
384             /* Inner loop uses 75 flops */
385         }
386
387         /* End of innermost loop */
388
389         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
390                                               f+i_coord_offset,fshift+i_shift_offset);
391
392         ggid                        = gid[iidx];
393         /* Update potential energies */
394         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
395         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
396
397         /* Increment number of inner iterations */
398         inneriter                  += j_index_end - j_index_start;
399
400         /* Outer loop uses 9 flops */
401     }
402
403     /* Increment number of outer iterations */
404     outeriter        += nri;
405
406     /* Update outer/inner flops */
407
408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
409 }
410 /*
411  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
412  * Electrostatics interaction: ReactionField
413  * VdW interaction:            CubicSplineTable
414  * Geometry:                   Particle-Particle
415  * Calculate force/pot:        Force
416  */
417 void
418 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
419                     (t_nblist * gmx_restrict                nlist,
420                      rvec * gmx_restrict                    xx,
421                      rvec * gmx_restrict                    ff,
422                      t_forcerec * gmx_restrict              fr,
423                      t_mdatoms * gmx_restrict               mdatoms,
424                      nb_kernel_data_t * gmx_restrict        kernel_data,
425                      t_nrnb * gmx_restrict                  nrnb)
426 {
427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
428      * just 0 for non-waters.
429      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
430      * jnr indices corresponding to data put in the four positions in the SIMD register.
431      */
432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
434     int              jnrA,jnrB;
435     int              j_coord_offsetA,j_coord_offsetB;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
440     int              vdwioffset0;
441     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
442     int              vdwjidx0A,vdwjidx0B;
443     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
444     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
445     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
446     real             *charge;
447     int              nvdwtype;
448     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
449     int              *vdwtype;
450     real             *vdwparam;
451     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
452     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
453     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
454     real             *vftab;
455     _fjsp_v2r8       itab_tmp;
456     _fjsp_v2r8       dummy_mask,cutoff_mask;
457     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
458     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
459     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
460
461     x                = xx[0];
462     f                = ff[0];
463
464     nri              = nlist->nri;
465     iinr             = nlist->iinr;
466     jindex           = nlist->jindex;
467     jjnr             = nlist->jjnr;
468     shiftidx         = nlist->shift;
469     gid              = nlist->gid;
470     shiftvec         = fr->shift_vec[0];
471     fshift           = fr->fshift[0];
472     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
473     charge           = mdatoms->chargeA;
474     krf              = gmx_fjsp_set1_v2r8(fr->ic->k_rf);
475     krf2             = gmx_fjsp_set1_v2r8(fr->ic->k_rf*2.0);
476     crf              = gmx_fjsp_set1_v2r8(fr->ic->c_rf);
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480
481     vftab            = kernel_data->table_vdw->data;
482     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
483
484     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
485     rcutoff_scalar   = fr->rcoulomb;
486     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
487     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
488
489     /* Avoid stupid compiler warnings */
490     jnrA = jnrB = 0;
491     j_coord_offsetA = 0;
492     j_coord_offsetB = 0;
493
494     outeriter        = 0;
495     inneriter        = 0;
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502
503         /* Load limits for loop over neighbors */
504         j_index_start    = jindex[iidx];
505         j_index_end      = jindex[iidx+1];
506
507         /* Get outer coordinate index */
508         inr              = iinr[iidx];
509         i_coord_offset   = DIM*inr;
510
511         /* Load i particle coords and add shift vector */
512         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
513
514         fix0             = _fjsp_setzero_v2r8();
515         fiy0             = _fjsp_setzero_v2r8();
516         fiz0             = _fjsp_setzero_v2r8();
517
518         /* Load parameters for i particles */
519         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
520         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
521
522         /* Start inner kernel loop */
523         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
524         {
525
526             /* Get j neighbor index, and coordinate index */
527             jnrA             = jjnr[jidx];
528             jnrB             = jjnr[jidx+1];
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531
532             /* load j atom coordinates */
533             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
534                                               &jx0,&jy0,&jz0);
535
536             /* Calculate displacement vector */
537             dx00             = _fjsp_sub_v2r8(ix0,jx0);
538             dy00             = _fjsp_sub_v2r8(iy0,jy0);
539             dz00             = _fjsp_sub_v2r8(iz0,jz0);
540
541             /* Calculate squared distance and things based on it */
542             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
543
544             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
545
546             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
547
548             /* Load parameters for j particles */
549             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
550             vdwjidx0A        = 2*vdwtype[jnrA+0];
551             vdwjidx0B        = 2*vdwtype[jnrB+0];
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
558             {
559
560             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq00             = _fjsp_mul_v2r8(iq0,jq0);
564             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
565                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
566
567             /* Calculate table index by multiplying r with table scale and truncate to integer */
568             rt               = _fjsp_mul_v2r8(r00,vftabscale);
569             itab_tmp         = _fjsp_dtox_v2r8(rt);
570             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
571             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
572             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
573
574             vfconv.i[0]     *= 8;
575             vfconv.i[1]     *= 8;
576
577             /* REACTION-FIELD ELECTROSTATICS */
578             felec            = _fjsp_mul_v2r8(qq00,_fjsp_msub_v2r8(rinv00,rinvsq00,krf2));
579
580             /* CUBIC SPLINE TABLE DISPERSION */
581             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
582             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
583             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
584             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
585             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
586             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
587             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
588             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
589             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
590
591             /* CUBIC SPLINE TABLE REPULSION */
592             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
593             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
594             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
595             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
596             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
597             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
598             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
599             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
600             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
601             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
602
603             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
604
605             fscal            = _fjsp_add_v2r8(felec,fvdw);
606
607             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
608
609             /* Update vectorial force */
610             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
611             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
612             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
613             
614             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
615
616             }
617
618             /* Inner loop uses 60 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             jnrA             = jjnr[jidx];
625             j_coord_offsetA  = DIM*jnrA;
626
627             /* load j atom coordinates */
628             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _fjsp_sub_v2r8(ix0,jx0);
633             dy00             = _fjsp_sub_v2r8(iy0,jy0);
634             dz00             = _fjsp_sub_v2r8(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
638
639             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
640
641             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
652             {
653
654             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq00             = _fjsp_mul_v2r8(iq0,jq0);
658             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
659
660             /* Calculate table index by multiplying r with table scale and truncate to integer */
661             rt               = _fjsp_mul_v2r8(r00,vftabscale);
662             itab_tmp         = _fjsp_dtox_v2r8(rt);
663             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
664             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
665             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
666
667             vfconv.i[0]     *= 8;
668             vfconv.i[1]     *= 8;
669
670             /* REACTION-FIELD ELECTROSTATICS */
671             felec            = _fjsp_mul_v2r8(qq00,_fjsp_msub_v2r8(rinv00,rinvsq00,krf2));
672
673             /* CUBIC SPLINE TABLE DISPERSION */
674             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
675             F                = _fjsp_setzero_v2r8();
676             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
677             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
678             H                = _fjsp_setzero_v2r8();
679             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
680             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
681             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
682             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
683
684             /* CUBIC SPLINE TABLE REPULSION */
685             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
686             F                = _fjsp_setzero_v2r8();
687             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
688             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
689             H                = _fjsp_setzero_v2r8();
690             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
691             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
692             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
693             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
694             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
695
696             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
697
698             fscal            = _fjsp_add_v2r8(felec,fvdw);
699
700             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
701
702             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
703
704             /* Update vectorial force */
705             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
706             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
707             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
708             
709             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
710
711             }
712
713             /* Inner loop uses 60 flops */
714         }
715
716         /* End of innermost loop */
717
718         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
719                                               f+i_coord_offset,fshift+i_shift_offset);
720
721         /* Increment number of inner iterations */
722         inneriter                  += j_index_end - j_index_start;
723
724         /* Outer loop uses 7 flops */
725     }
726
727     /* Increment number of outer iterations */
728     outeriter        += nri;
729
730     /* Update outer/inner flops */
731
732     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
733 }