Fujitsu Sparc64 acceleration and general fixes for non-x86 builds
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Water4-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sparc64_hpc_ace_double
60                     (t_nblist * gmx_restrict                nlist,
61                      rvec * gmx_restrict                    xx,
62                      rvec * gmx_restrict                    ff,
63                      t_forcerec * gmx_restrict              fr,
64                      t_mdatoms * gmx_restrict               mdatoms,
65                      nb_kernel_data_t * gmx_restrict        kernel_data,
66                      t_nrnb * gmx_restrict                  nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B;
90     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
102     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
103     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     _fjsp_v2r8       itab_tmp;
108     _fjsp_v2r8       dummy_mask,cutoff_mask;
109     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
110     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
111     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
112
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
132
133     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
136     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
141     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
142     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _fjsp_setzero_v2r8();
172         fiy0             = _fjsp_setzero_v2r8();
173         fiz0             = _fjsp_setzero_v2r8();
174         fix1             = _fjsp_setzero_v2r8();
175         fiy1             = _fjsp_setzero_v2r8();
176         fiz1             = _fjsp_setzero_v2r8();
177         fix2             = _fjsp_setzero_v2r8();
178         fiy2             = _fjsp_setzero_v2r8();
179         fiz2             = _fjsp_setzero_v2r8();
180         fix3             = _fjsp_setzero_v2r8();
181         fiy3             = _fjsp_setzero_v2r8();
182         fiz3             = _fjsp_setzero_v2r8();
183
184         /* Reset potential sums */
185         velecsum         = _fjsp_setzero_v2r8();
186         vvdwsum          = _fjsp_setzero_v2r8();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _fjsp_sub_v2r8(ix0,jx0);
204             dy00             = _fjsp_sub_v2r8(iy0,jy0);
205             dz00             = _fjsp_sub_v2r8(iz0,jz0);
206             dx10             = _fjsp_sub_v2r8(ix1,jx0);
207             dy10             = _fjsp_sub_v2r8(iy1,jy0);
208             dz10             = _fjsp_sub_v2r8(iz1,jz0);
209             dx20             = _fjsp_sub_v2r8(ix2,jx0);
210             dy20             = _fjsp_sub_v2r8(iy2,jy0);
211             dz20             = _fjsp_sub_v2r8(iz2,jz0);
212             dx30             = _fjsp_sub_v2r8(ix3,jx0);
213             dy30             = _fjsp_sub_v2r8(iy3,jy0);
214             dz30             = _fjsp_sub_v2r8(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
218             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
219             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
220             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
221
222             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
223             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
224             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
225             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
226
227             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
228             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
229             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _fjsp_setzero_v2r8();
237             fjy0             = _fjsp_setzero_v2r8();
238             fjz0             = _fjsp_setzero_v2r8();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _fjsp_mul_v2r8(r00,vftabscale);
252             itab_tmp         = _fjsp_dtox_v2r8(rt);
253             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
254             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
255             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
256
257             vfconv.i[0]     *= 8;
258             vfconv.i[1]     *= 8;
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
262             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
263             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
264             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
265             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
266             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
267             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
268             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
269             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
270             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
271             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
275             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
276             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
277             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
278             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
279             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
280             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
281             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
282             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
283             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
284             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
285             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
286             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             /* Update vectorial force */
294             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
295             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
296             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
297             
298             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
299             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
300             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _fjsp_mul_v2r8(iq1,jq0);
310
311             /* EWALD ELECTROSTATICS */
312
313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
314             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
315             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
316             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
317             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
318
319             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
320             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
321             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
322             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
323             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
324             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
325             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
326             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
327             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
328             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _fjsp_add_v2r8(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Update vectorial force */
336             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
337             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
338             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
339             
340             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
341             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
342             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _fjsp_mul_v2r8(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
357             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
358             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
359             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
360
361             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
362             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
363             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
364             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
365             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
366             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
367             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
368             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
369             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
370             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _fjsp_add_v2r8(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Update vectorial force */
378             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
379             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
380             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
381             
382             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
383             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
384             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _fjsp_mul_v2r8(iq3,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
399             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
400             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
401             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
402
403             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
404             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
405             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
406             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
407             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
408             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
409             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
410             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
411             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
412             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velecsum         = _fjsp_add_v2r8(velecsum,velec);
416
417             fscal            = felec;
418
419             /* Update vectorial force */
420             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
421             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
422             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
423             
424             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
425             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
426             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
427
428             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 194 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _fjsp_sub_v2r8(ix0,jx0);
445             dy00             = _fjsp_sub_v2r8(iy0,jy0);
446             dz00             = _fjsp_sub_v2r8(iz0,jz0);
447             dx10             = _fjsp_sub_v2r8(ix1,jx0);
448             dy10             = _fjsp_sub_v2r8(iy1,jy0);
449             dz10             = _fjsp_sub_v2r8(iz1,jz0);
450             dx20             = _fjsp_sub_v2r8(ix2,jx0);
451             dy20             = _fjsp_sub_v2r8(iy2,jy0);
452             dz20             = _fjsp_sub_v2r8(iz2,jz0);
453             dx30             = _fjsp_sub_v2r8(ix3,jx0);
454             dy30             = _fjsp_sub_v2r8(iy3,jy0);
455             dz30             = _fjsp_sub_v2r8(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
459             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
460             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
461             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
462
463             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
464             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
465             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
466             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
467
468             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
469             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
470             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475
476             fjx0             = _fjsp_setzero_v2r8();
477             fjy0             = _fjsp_setzero_v2r8();
478             fjz0             = _fjsp_setzero_v2r8();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
488
489             /* Calculate table index by multiplying r with table scale and truncate to integer */
490             rt               = _fjsp_mul_v2r8(r00,vftabscale);
491             itab_tmp         = _fjsp_dtox_v2r8(rt);
492             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
493             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
494             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
495
496             vfconv.i[0]     *= 8;
497             vfconv.i[1]     *= 8;
498
499             /* CUBIC SPLINE TABLE DISPERSION */
500             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
501             F                = _fjsp_setzero_v2r8();
502             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
503             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
504             H                = _fjsp_setzero_v2r8();
505             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
506             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
507             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
508             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
509             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
510             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
511
512             /* CUBIC SPLINE TABLE REPULSION */
513             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
514             F                = _fjsp_setzero_v2r8();
515             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
516             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
517             H                = _fjsp_setzero_v2r8();
518             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
519             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
520             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
521             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
522             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
523             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
524             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
525             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
529             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
530
531             fscal            = fvdw;
532
533             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
534
535             /* Update vectorial force */
536             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
537             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
538             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
539             
540             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
541             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
542             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _fjsp_mul_v2r8(iq1,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
557             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
558             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
559             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
560
561             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
562             ewtabD           = _fjsp_setzero_v2r8();
563             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
564             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
565             ewtabFn          = _fjsp_setzero_v2r8();
566             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
567             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
568             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
569             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
570             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
574             velecsum         = _fjsp_add_v2r8(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
579
580             /* Update vectorial force */
581             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
582             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
583             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
584             
585             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
586             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
587             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq20             = _fjsp_mul_v2r8(iq2,jq0);
597
598             /* EWALD ELECTROSTATICS */
599
600             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
601             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
602             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
603             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
604             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
605
606             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
607             ewtabD           = _fjsp_setzero_v2r8();
608             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
609             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
610             ewtabFn          = _fjsp_setzero_v2r8();
611             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
612             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
613             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
614             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
615             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
619             velecsum         = _fjsp_add_v2r8(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
624
625             /* Update vectorial force */
626             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
627             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
628             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
629             
630             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
631             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
632             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq30             = _fjsp_mul_v2r8(iq3,jq0);
642
643             /* EWALD ELECTROSTATICS */
644
645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
647             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
648             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
649             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
650
651             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
652             ewtabD           = _fjsp_setzero_v2r8();
653             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
654             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
655             ewtabFn          = _fjsp_setzero_v2r8();
656             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
657             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
658             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
659             velec            = _fjsp_mul_v2r8(qq30,_fjsp_sub_v2r8(rinv30,velec));
660             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
664             velecsum         = _fjsp_add_v2r8(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
669
670             /* Update vectorial force */
671             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
672             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
673             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
674             
675             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
676             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
677             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
678
679             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
680
681             /* Inner loop uses 194 flops */
682         }
683
684         /* End of innermost loop */
685
686         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
687                                               f+i_coord_offset,fshift+i_shift_offset);
688
689         ggid                        = gid[iidx];
690         /* Update potential energies */
691         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
692         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
693
694         /* Increment number of inner iterations */
695         inneriter                  += j_index_end - j_index_start;
696
697         /* Outer loop uses 26 flops */
698     }
699
700     /* Increment number of outer iterations */
701     outeriter        += nri;
702
703     /* Update outer/inner flops */
704
705     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
706 }
707 /*
708  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
709  * Electrostatics interaction: Ewald
710  * VdW interaction:            CubicSplineTable
711  * Geometry:                   Water4-Particle
712  * Calculate force/pot:        Force
713  */
714 void
715 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sparc64_hpc_ace_double
716                     (t_nblist * gmx_restrict                nlist,
717                      rvec * gmx_restrict                    xx,
718                      rvec * gmx_restrict                    ff,
719                      t_forcerec * gmx_restrict              fr,
720                      t_mdatoms * gmx_restrict               mdatoms,
721                      nb_kernel_data_t * gmx_restrict        kernel_data,
722                      t_nrnb * gmx_restrict                  nrnb)
723 {
724     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
725      * just 0 for non-waters.
726      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
727      * jnr indices corresponding to data put in the four positions in the SIMD register.
728      */
729     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
730     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
731     int              jnrA,jnrB;
732     int              j_coord_offsetA,j_coord_offsetB;
733     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
734     real             rcutoff_scalar;
735     real             *shiftvec,*fshift,*x,*f;
736     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
737     int              vdwioffset0;
738     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
739     int              vdwioffset1;
740     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
741     int              vdwioffset2;
742     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
743     int              vdwioffset3;
744     _fjsp_v2r8       ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
745     int              vdwjidx0A,vdwjidx0B;
746     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
747     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
748     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
749     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
750     _fjsp_v2r8       dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
751     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
752     real             *charge;
753     int              nvdwtype;
754     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
755     int              *vdwtype;
756     real             *vdwparam;
757     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
758     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
759     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
760     real             *vftab;
761     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
762     real             *ewtab;
763     _fjsp_v2r8       itab_tmp;
764     _fjsp_v2r8       dummy_mask,cutoff_mask;
765     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
766     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
767     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
768
769     x                = xx[0];
770     f                = ff[0];
771
772     nri              = nlist->nri;
773     iinr             = nlist->iinr;
774     jindex           = nlist->jindex;
775     jjnr             = nlist->jjnr;
776     shiftidx         = nlist->shift;
777     gid              = nlist->gid;
778     shiftvec         = fr->shift_vec[0];
779     fshift           = fr->fshift[0];
780     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
781     charge           = mdatoms->chargeA;
782     nvdwtype         = fr->ntype;
783     vdwparam         = fr->nbfp;
784     vdwtype          = mdatoms->typeA;
785
786     vftab            = kernel_data->table_vdw->data;
787     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
788
789     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
790     ewtab            = fr->ic->tabq_coul_F;
791     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
792     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
793
794     /* Setup water-specific parameters */
795     inr              = nlist->iinr[0];
796     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
797     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
798     iq3              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+3]));
799     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
800
801     /* Avoid stupid compiler warnings */
802     jnrA = jnrB = 0;
803     j_coord_offsetA = 0;
804     j_coord_offsetB = 0;
805
806     outeriter        = 0;
807     inneriter        = 0;
808
809     /* Start outer loop over neighborlists */
810     for(iidx=0; iidx<nri; iidx++)
811     {
812         /* Load shift vector for this list */
813         i_shift_offset   = DIM*shiftidx[iidx];
814
815         /* Load limits for loop over neighbors */
816         j_index_start    = jindex[iidx];
817         j_index_end      = jindex[iidx+1];
818
819         /* Get outer coordinate index */
820         inr              = iinr[iidx];
821         i_coord_offset   = DIM*inr;
822
823         /* Load i particle coords and add shift vector */
824         gmx_fjsp_load_shift_and_4rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
825                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
826
827         fix0             = _fjsp_setzero_v2r8();
828         fiy0             = _fjsp_setzero_v2r8();
829         fiz0             = _fjsp_setzero_v2r8();
830         fix1             = _fjsp_setzero_v2r8();
831         fiy1             = _fjsp_setzero_v2r8();
832         fiz1             = _fjsp_setzero_v2r8();
833         fix2             = _fjsp_setzero_v2r8();
834         fiy2             = _fjsp_setzero_v2r8();
835         fiz2             = _fjsp_setzero_v2r8();
836         fix3             = _fjsp_setzero_v2r8();
837         fiy3             = _fjsp_setzero_v2r8();
838         fiz3             = _fjsp_setzero_v2r8();
839
840         /* Start inner kernel loop */
841         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
842         {
843
844             /* Get j neighbor index, and coordinate index */
845             jnrA             = jjnr[jidx];
846             jnrB             = jjnr[jidx+1];
847             j_coord_offsetA  = DIM*jnrA;
848             j_coord_offsetB  = DIM*jnrB;
849
850             /* load j atom coordinates */
851             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
852                                               &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx00             = _fjsp_sub_v2r8(ix0,jx0);
856             dy00             = _fjsp_sub_v2r8(iy0,jy0);
857             dz00             = _fjsp_sub_v2r8(iz0,jz0);
858             dx10             = _fjsp_sub_v2r8(ix1,jx0);
859             dy10             = _fjsp_sub_v2r8(iy1,jy0);
860             dz10             = _fjsp_sub_v2r8(iz1,jz0);
861             dx20             = _fjsp_sub_v2r8(ix2,jx0);
862             dy20             = _fjsp_sub_v2r8(iy2,jy0);
863             dz20             = _fjsp_sub_v2r8(iz2,jz0);
864             dx30             = _fjsp_sub_v2r8(ix3,jx0);
865             dy30             = _fjsp_sub_v2r8(iy3,jy0);
866             dz30             = _fjsp_sub_v2r8(iz3,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
870             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
871             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
872             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
873
874             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
875             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
876             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
877             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
878
879             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
880             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
881             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887
888             fjx0             = _fjsp_setzero_v2r8();
889             fjy0             = _fjsp_setzero_v2r8();
890             fjz0             = _fjsp_setzero_v2r8();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
900                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
901
902             /* Calculate table index by multiplying r with table scale and truncate to integer */
903             rt               = _fjsp_mul_v2r8(r00,vftabscale);
904             itab_tmp         = _fjsp_dtox_v2r8(rt);
905             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
906             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
907             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
908
909             vfconv.i[0]     *= 8;
910             vfconv.i[1]     *= 8;
911
912             /* CUBIC SPLINE TABLE DISPERSION */
913             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
914             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
915             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
916             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
917             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
918             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
919             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
920             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
921             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
922
923             /* CUBIC SPLINE TABLE REPULSION */
924             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
925             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
926             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
927             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
928             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
929             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
930             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
931             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
932             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
933             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
934
935             fscal            = fvdw;
936
937             /* Update vectorial force */
938             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
939             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
940             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
941             
942             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
943             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
944             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _fjsp_mul_v2r8(iq1,jq0);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
959             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
960             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
961             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
962
963             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
964                                          &ewtabF,&ewtabFn);
965             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
966             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
967
968             fscal            = felec;
969
970             /* Update vectorial force */
971             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
972             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
973             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
974             
975             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
976             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
977             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq20             = _fjsp_mul_v2r8(iq2,jq0);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
992             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
993             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
994             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
995
996             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
997                                          &ewtabF,&ewtabFn);
998             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
999             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1000
1001             fscal            = felec;
1002
1003             /* Update vectorial force */
1004             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1005             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1006             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1007             
1008             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1009             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1010             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1025             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1026             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1027             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1028
1029             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
1030                                          &ewtabF,&ewtabFn);
1031             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1032             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1033
1034             fscal            = felec;
1035
1036             /* Update vectorial force */
1037             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1038             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1039             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1040             
1041             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1042             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1043             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1044
1045             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1046
1047             /* Inner loop uses 171 flops */
1048         }
1049
1050         if(jidx<j_index_end)
1051         {
1052
1053             jnrA             = jjnr[jidx];
1054             j_coord_offsetA  = DIM*jnrA;
1055
1056             /* load j atom coordinates */
1057             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
1058                                               &jx0,&jy0,&jz0);
1059
1060             /* Calculate displacement vector */
1061             dx00             = _fjsp_sub_v2r8(ix0,jx0);
1062             dy00             = _fjsp_sub_v2r8(iy0,jy0);
1063             dz00             = _fjsp_sub_v2r8(iz0,jz0);
1064             dx10             = _fjsp_sub_v2r8(ix1,jx0);
1065             dy10             = _fjsp_sub_v2r8(iy1,jy0);
1066             dz10             = _fjsp_sub_v2r8(iz1,jz0);
1067             dx20             = _fjsp_sub_v2r8(ix2,jx0);
1068             dy20             = _fjsp_sub_v2r8(iy2,jy0);
1069             dz20             = _fjsp_sub_v2r8(iz2,jz0);
1070             dx30             = _fjsp_sub_v2r8(ix3,jx0);
1071             dy30             = _fjsp_sub_v2r8(iy3,jy0);
1072             dz30             = _fjsp_sub_v2r8(iz3,jz0);
1073
1074             /* Calculate squared distance and things based on it */
1075             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
1076             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
1077             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
1078             rsq30            = gmx_fjsp_calc_rsq_v2r8(dx30,dy30,dz30);
1079
1080             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
1081             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
1082             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
1083             rinv30           = gmx_fjsp_invsqrt_v2r8(rsq30);
1084
1085             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
1086             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
1087             rinvsq30         = _fjsp_mul_v2r8(rinv30,rinv30);
1088
1089             /* Load parameters for j particles */
1090             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
1091             vdwjidx0A        = 2*vdwtype[jnrA+0];
1092
1093             fjx0             = _fjsp_setzero_v2r8();
1094             fjy0             = _fjsp_setzero_v2r8();
1095             fjz0             = _fjsp_setzero_v2r8();
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1105
1106             /* Calculate table index by multiplying r with table scale and truncate to integer */
1107             rt               = _fjsp_mul_v2r8(r00,vftabscale);
1108             itab_tmp         = _fjsp_dtox_v2r8(rt);
1109             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
1110             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
1111             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
1112
1113             vfconv.i[0]     *= 8;
1114             vfconv.i[1]     *= 8;
1115
1116             /* CUBIC SPLINE TABLE DISPERSION */
1117             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
1118             F                = _fjsp_setzero_v2r8();
1119             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1120             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
1121             H                = _fjsp_setzero_v2r8();
1122             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1123             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1124             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1125             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
1126
1127             /* CUBIC SPLINE TABLE REPULSION */
1128             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
1129             F                = _fjsp_setzero_v2r8();
1130             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
1131             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
1132             H                = _fjsp_setzero_v2r8();
1133             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
1134             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
1135             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
1136             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
1137             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
1138
1139             fscal            = fvdw;
1140
1141             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1142
1143             /* Update vectorial force */
1144             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
1145             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
1146             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
1147             
1148             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
1149             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
1150             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
1151
1152             /**************************
1153              * CALCULATE INTERACTIONS *
1154              **************************/
1155
1156             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq10             = _fjsp_mul_v2r8(iq1,jq0);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
1165             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1166             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1167             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1168
1169             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1170             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1171             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
1172
1173             fscal            = felec;
1174
1175             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1176
1177             /* Update vectorial force */
1178             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
1179             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
1180             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
1181             
1182             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
1183             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
1184             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
1185
1186             /**************************
1187              * CALCULATE INTERACTIONS *
1188              **************************/
1189
1190             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
1191
1192             /* Compute parameters for interactions between i and j atoms */
1193             qq20             = _fjsp_mul_v2r8(iq2,jq0);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
1199             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1200             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1201             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1202
1203             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1204             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1205             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1206
1207             fscal            = felec;
1208
1209             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1210
1211             /* Update vectorial force */
1212             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1213             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1214             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1215             
1216             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1217             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1218             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             r30              = _fjsp_mul_v2r8(rsq30,rinv30);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _fjsp_mul_v2r8(iq3,jq0);
1228
1229             /* EWALD ELECTROSTATICS */
1230
1231             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1232             ewrt             = _fjsp_mul_v2r8(r30,ewtabscale);
1233             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
1234             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
1235             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
1236
1237             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
1238             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
1239             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq30,rinv30),_fjsp_sub_v2r8(rinvsq30,felec));
1240
1241             fscal            = felec;
1242
1243             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1244
1245             /* Update vectorial force */
1246             fix3             = _fjsp_madd_v2r8(dx30,fscal,fix3);
1247             fiy3             = _fjsp_madd_v2r8(dy30,fscal,fiy3);
1248             fiz3             = _fjsp_madd_v2r8(dz30,fscal,fiz3);
1249             
1250             fjx0             = _fjsp_madd_v2r8(dx30,fscal,fjx0);
1251             fjy0             = _fjsp_madd_v2r8(dy30,fscal,fjy0);
1252             fjz0             = _fjsp_madd_v2r8(dz30,fscal,fjz0);
1253
1254             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1255
1256             /* Inner loop uses 171 flops */
1257         }
1258
1259         /* End of innermost loop */
1260
1261         gmx_fjsp_update_iforce_4atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1262                                               f+i_coord_offset,fshift+i_shift_offset);
1263
1264         /* Increment number of inner iterations */
1265         inneriter                  += j_index_end - j_index_start;
1266
1267         /* Outer loop uses 24 flops */
1268     }
1269
1270     /* Increment number of outer iterations */
1271     outeriter        += nri;
1272
1273     /* Update outer/inner flops */
1274
1275     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1276 }