Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            None
37  * Geometry:                   Water3-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
65     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
66     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69
70     x                = xx[0];
71     f                = ff[0];
72
73     nri              = nlist->nri;
74     iinr             = nlist->iinr;
75     jindex           = nlist->jindex;
76     jjnr             = nlist->jjnr;
77     shiftidx         = nlist->shift;
78     gid              = nlist->gid;
79     shiftvec         = fr->shift_vec[0];
80     fshift           = fr->fshift[0];
81     facel            = fr->epsfac;
82     charge           = mdatoms->chargeA;
83     krf              = fr->ic->k_rf;
84     krf2             = krf*2.0;
85     crf              = fr->ic->c_rf;
86
87     /* Setup water-specific parameters */
88     inr              = nlist->iinr[0];
89     iq0              = facel*charge[inr+0];
90     iq1              = facel*charge[inr+1];
91     iq2              = facel*charge[inr+2];
92
93     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
94     rcutoff          = fr->rcoulomb;
95     rcutoff2         = rcutoff*rcutoff;
96
97     outeriter        = 0;
98     inneriter        = 0;
99
100     /* Start outer loop over neighborlists */
101     for(iidx=0; iidx<nri; iidx++)
102     {
103         /* Load shift vector for this list */
104         i_shift_offset   = DIM*shiftidx[iidx];
105         shX              = shiftvec[i_shift_offset+XX];
106         shY              = shiftvec[i_shift_offset+YY];
107         shZ              = shiftvec[i_shift_offset+ZZ];
108
109         /* Load limits for loop over neighbors */
110         j_index_start    = jindex[iidx];
111         j_index_end      = jindex[iidx+1];
112
113         /* Get outer coordinate index */
114         inr              = iinr[iidx];
115         i_coord_offset   = DIM*inr;
116
117         /* Load i particle coords and add shift vector */
118         ix0              = shX + x[i_coord_offset+DIM*0+XX];
119         iy0              = shY + x[i_coord_offset+DIM*0+YY];
120         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
121         ix1              = shX + x[i_coord_offset+DIM*1+XX];
122         iy1              = shY + x[i_coord_offset+DIM*1+YY];
123         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
124         ix2              = shX + x[i_coord_offset+DIM*2+XX];
125         iy2              = shY + x[i_coord_offset+DIM*2+YY];
126         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
127
128         fix0             = 0.0;
129         fiy0             = 0.0;
130         fiz0             = 0.0;
131         fix1             = 0.0;
132         fiy1             = 0.0;
133         fiz1             = 0.0;
134         fix2             = 0.0;
135         fiy2             = 0.0;
136         fiz2             = 0.0;
137
138         /* Reset potential sums */
139         velecsum         = 0.0;
140
141         /* Start inner kernel loop */
142         for(jidx=j_index_start; jidx<j_index_end; jidx++)
143         {
144             /* Get j neighbor index, and coordinate index */
145             jnr              = jjnr[jidx];
146             j_coord_offset   = DIM*jnr;
147
148             /* load j atom coordinates */
149             jx0              = x[j_coord_offset+DIM*0+XX];
150             jy0              = x[j_coord_offset+DIM*0+YY];
151             jz0              = x[j_coord_offset+DIM*0+ZZ];
152
153             /* Calculate displacement vector */
154             dx00             = ix0 - jx0;
155             dy00             = iy0 - jy0;
156             dz00             = iz0 - jz0;
157             dx10             = ix1 - jx0;
158             dy10             = iy1 - jy0;
159             dz10             = iz1 - jz0;
160             dx20             = ix2 - jx0;
161             dy20             = iy2 - jy0;
162             dz20             = iz2 - jz0;
163
164             /* Calculate squared distance and things based on it */
165             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
166             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
167             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
168
169             rinv00           = gmx_invsqrt(rsq00);
170             rinv10           = gmx_invsqrt(rsq10);
171             rinv20           = gmx_invsqrt(rsq20);
172
173             rinvsq00         = rinv00*rinv00;
174             rinvsq10         = rinv10*rinv10;
175             rinvsq20         = rinv20*rinv20;
176
177             /* Load parameters for j particles */
178             jq0              = charge[jnr+0];
179
180             /**************************
181              * CALCULATE INTERACTIONS *
182              **************************/
183
184             if (rsq00<rcutoff2)
185             {
186
187             qq00             = iq0*jq0;
188
189             /* REACTION-FIELD ELECTROSTATICS */
190             velec            = qq00*(rinv00+krf*rsq00-crf);
191             felec            = qq00*(rinv00*rinvsq00-krf2);
192
193             /* Update potential sums from outer loop */
194             velecsum        += velec;
195
196             fscal            = felec;
197
198             /* Calculate temporary vectorial force */
199             tx               = fscal*dx00;
200             ty               = fscal*dy00;
201             tz               = fscal*dz00;
202
203             /* Update vectorial force */
204             fix0            += tx;
205             fiy0            += ty;
206             fiz0            += tz;
207             f[j_coord_offset+DIM*0+XX] -= tx;
208             f[j_coord_offset+DIM*0+YY] -= ty;
209             f[j_coord_offset+DIM*0+ZZ] -= tz;
210
211             }
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (rsq10<rcutoff2)
218             {
219
220             qq10             = iq1*jq0;
221
222             /* REACTION-FIELD ELECTROSTATICS */
223             velec            = qq10*(rinv10+krf*rsq10-crf);
224             felec            = qq10*(rinv10*rinvsq10-krf2);
225
226             /* Update potential sums from outer loop */
227             velecsum        += velec;
228
229             fscal            = felec;
230
231             /* Calculate temporary vectorial force */
232             tx               = fscal*dx10;
233             ty               = fscal*dy10;
234             tz               = fscal*dz10;
235
236             /* Update vectorial force */
237             fix1            += tx;
238             fiy1            += ty;
239             fiz1            += tz;
240             f[j_coord_offset+DIM*0+XX] -= tx;
241             f[j_coord_offset+DIM*0+YY] -= ty;
242             f[j_coord_offset+DIM*0+ZZ] -= tz;
243
244             }
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             if (rsq20<rcutoff2)
251             {
252
253             qq20             = iq2*jq0;
254
255             /* REACTION-FIELD ELECTROSTATICS */
256             velec            = qq20*(rinv20+krf*rsq20-crf);
257             felec            = qq20*(rinv20*rinvsq20-krf2);
258
259             /* Update potential sums from outer loop */
260             velecsum        += velec;
261
262             fscal            = felec;
263
264             /* Calculate temporary vectorial force */
265             tx               = fscal*dx20;
266             ty               = fscal*dy20;
267             tz               = fscal*dz20;
268
269             /* Update vectorial force */
270             fix2            += tx;
271             fiy2            += ty;
272             fiz2            += tz;
273             f[j_coord_offset+DIM*0+XX] -= tx;
274             f[j_coord_offset+DIM*0+YY] -= ty;
275             f[j_coord_offset+DIM*0+ZZ] -= tz;
276
277             }
278
279             /* Inner loop uses 96 flops */
280         }
281         /* End of innermost loop */
282
283         tx = ty = tz = 0;
284         f[i_coord_offset+DIM*0+XX] += fix0;
285         f[i_coord_offset+DIM*0+YY] += fiy0;
286         f[i_coord_offset+DIM*0+ZZ] += fiz0;
287         tx                         += fix0;
288         ty                         += fiy0;
289         tz                         += fiz0;
290         f[i_coord_offset+DIM*1+XX] += fix1;
291         f[i_coord_offset+DIM*1+YY] += fiy1;
292         f[i_coord_offset+DIM*1+ZZ] += fiz1;
293         tx                         += fix1;
294         ty                         += fiy1;
295         tz                         += fiz1;
296         f[i_coord_offset+DIM*2+XX] += fix2;
297         f[i_coord_offset+DIM*2+YY] += fiy2;
298         f[i_coord_offset+DIM*2+ZZ] += fiz2;
299         tx                         += fix2;
300         ty                         += fiy2;
301         tz                         += fiz2;
302         fshift[i_shift_offset+XX]  += tx;
303         fshift[i_shift_offset+YY]  += ty;
304         fshift[i_shift_offset+ZZ]  += tz;
305
306         ggid                        = gid[iidx];
307         /* Update potential energies */
308         kernel_data->energygrp_elec[ggid] += velecsum;
309
310         /* Increment number of inner iterations */
311         inneriter                  += j_index_end - j_index_start;
312
313         /* Outer loop uses 31 flops */
314     }
315
316     /* Increment number of outer iterations */
317     outeriter        += nri;
318
319     /* Update outer/inner flops */
320
321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*96);
322 }
323 /*
324  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_c
325  * Electrostatics interaction: ReactionField
326  * VdW interaction:            None
327  * Geometry:                   Water3-Particle
328  * Calculate force/pot:        Force
329  */
330 void
331 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_c
332                     (t_nblist * gmx_restrict                nlist,
333                      rvec * gmx_restrict                    xx,
334                      rvec * gmx_restrict                    ff,
335                      t_forcerec * gmx_restrict              fr,
336                      t_mdatoms * gmx_restrict               mdatoms,
337                      nb_kernel_data_t * gmx_restrict        kernel_data,
338                      t_nrnb * gmx_restrict                  nrnb)
339 {
340     int              i_shift_offset,i_coord_offset,j_coord_offset;
341     int              j_index_start,j_index_end;
342     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
343     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
344     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
345     real             *shiftvec,*fshift,*x,*f;
346     int              vdwioffset0;
347     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
348     int              vdwioffset1;
349     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
350     int              vdwioffset2;
351     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
352     int              vdwjidx0;
353     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
354     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
355     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
356     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
357     real             velec,felec,velecsum,facel,crf,krf,krf2;
358     real             *charge;
359
360     x                = xx[0];
361     f                = ff[0];
362
363     nri              = nlist->nri;
364     iinr             = nlist->iinr;
365     jindex           = nlist->jindex;
366     jjnr             = nlist->jjnr;
367     shiftidx         = nlist->shift;
368     gid              = nlist->gid;
369     shiftvec         = fr->shift_vec[0];
370     fshift           = fr->fshift[0];
371     facel            = fr->epsfac;
372     charge           = mdatoms->chargeA;
373     krf              = fr->ic->k_rf;
374     krf2             = krf*2.0;
375     crf              = fr->ic->c_rf;
376
377     /* Setup water-specific parameters */
378     inr              = nlist->iinr[0];
379     iq0              = facel*charge[inr+0];
380     iq1              = facel*charge[inr+1];
381     iq2              = facel*charge[inr+2];
382
383     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
384     rcutoff          = fr->rcoulomb;
385     rcutoff2         = rcutoff*rcutoff;
386
387     outeriter        = 0;
388     inneriter        = 0;
389
390     /* Start outer loop over neighborlists */
391     for(iidx=0; iidx<nri; iidx++)
392     {
393         /* Load shift vector for this list */
394         i_shift_offset   = DIM*shiftidx[iidx];
395         shX              = shiftvec[i_shift_offset+XX];
396         shY              = shiftvec[i_shift_offset+YY];
397         shZ              = shiftvec[i_shift_offset+ZZ];
398
399         /* Load limits for loop over neighbors */
400         j_index_start    = jindex[iidx];
401         j_index_end      = jindex[iidx+1];
402
403         /* Get outer coordinate index */
404         inr              = iinr[iidx];
405         i_coord_offset   = DIM*inr;
406
407         /* Load i particle coords and add shift vector */
408         ix0              = shX + x[i_coord_offset+DIM*0+XX];
409         iy0              = shY + x[i_coord_offset+DIM*0+YY];
410         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
411         ix1              = shX + x[i_coord_offset+DIM*1+XX];
412         iy1              = shY + x[i_coord_offset+DIM*1+YY];
413         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
414         ix2              = shX + x[i_coord_offset+DIM*2+XX];
415         iy2              = shY + x[i_coord_offset+DIM*2+YY];
416         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
417
418         fix0             = 0.0;
419         fiy0             = 0.0;
420         fiz0             = 0.0;
421         fix1             = 0.0;
422         fiy1             = 0.0;
423         fiz1             = 0.0;
424         fix2             = 0.0;
425         fiy2             = 0.0;
426         fiz2             = 0.0;
427
428         /* Start inner kernel loop */
429         for(jidx=j_index_start; jidx<j_index_end; jidx++)
430         {
431             /* Get j neighbor index, and coordinate index */
432             jnr              = jjnr[jidx];
433             j_coord_offset   = DIM*jnr;
434
435             /* load j atom coordinates */
436             jx0              = x[j_coord_offset+DIM*0+XX];
437             jy0              = x[j_coord_offset+DIM*0+YY];
438             jz0              = x[j_coord_offset+DIM*0+ZZ];
439
440             /* Calculate displacement vector */
441             dx00             = ix0 - jx0;
442             dy00             = iy0 - jy0;
443             dz00             = iz0 - jz0;
444             dx10             = ix1 - jx0;
445             dy10             = iy1 - jy0;
446             dz10             = iz1 - jz0;
447             dx20             = ix2 - jx0;
448             dy20             = iy2 - jy0;
449             dz20             = iz2 - jz0;
450
451             /* Calculate squared distance and things based on it */
452             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
453             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
454             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
455
456             rinv00           = gmx_invsqrt(rsq00);
457             rinv10           = gmx_invsqrt(rsq10);
458             rinv20           = gmx_invsqrt(rsq20);
459
460             rinvsq00         = rinv00*rinv00;
461             rinvsq10         = rinv10*rinv10;
462             rinvsq20         = rinv20*rinv20;
463
464             /* Load parameters for j particles */
465             jq0              = charge[jnr+0];
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             if (rsq00<rcutoff2)
472             {
473
474             qq00             = iq0*jq0;
475
476             /* REACTION-FIELD ELECTROSTATICS */
477             felec            = qq00*(rinv00*rinvsq00-krf2);
478
479             fscal            = felec;
480
481             /* Calculate temporary vectorial force */
482             tx               = fscal*dx00;
483             ty               = fscal*dy00;
484             tz               = fscal*dz00;
485
486             /* Update vectorial force */
487             fix0            += tx;
488             fiy0            += ty;
489             fiz0            += tz;
490             f[j_coord_offset+DIM*0+XX] -= tx;
491             f[j_coord_offset+DIM*0+YY] -= ty;
492             f[j_coord_offset+DIM*0+ZZ] -= tz;
493
494             }
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             if (rsq10<rcutoff2)
501             {
502
503             qq10             = iq1*jq0;
504
505             /* REACTION-FIELD ELECTROSTATICS */
506             felec            = qq10*(rinv10*rinvsq10-krf2);
507
508             fscal            = felec;
509
510             /* Calculate temporary vectorial force */
511             tx               = fscal*dx10;
512             ty               = fscal*dy10;
513             tz               = fscal*dz10;
514
515             /* Update vectorial force */
516             fix1            += tx;
517             fiy1            += ty;
518             fiz1            += tz;
519             f[j_coord_offset+DIM*0+XX] -= tx;
520             f[j_coord_offset+DIM*0+YY] -= ty;
521             f[j_coord_offset+DIM*0+ZZ] -= tz;
522
523             }
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (rsq20<rcutoff2)
530             {
531
532             qq20             = iq2*jq0;
533
534             /* REACTION-FIELD ELECTROSTATICS */
535             felec            = qq20*(rinv20*rinvsq20-krf2);
536
537             fscal            = felec;
538
539             /* Calculate temporary vectorial force */
540             tx               = fscal*dx20;
541             ty               = fscal*dy20;
542             tz               = fscal*dz20;
543
544             /* Update vectorial force */
545             fix2            += tx;
546             fiy2            += ty;
547             fiz2            += tz;
548             f[j_coord_offset+DIM*0+XX] -= tx;
549             f[j_coord_offset+DIM*0+YY] -= ty;
550             f[j_coord_offset+DIM*0+ZZ] -= tz;
551
552             }
553
554             /* Inner loop uses 81 flops */
555         }
556         /* End of innermost loop */
557
558         tx = ty = tz = 0;
559         f[i_coord_offset+DIM*0+XX] += fix0;
560         f[i_coord_offset+DIM*0+YY] += fiy0;
561         f[i_coord_offset+DIM*0+ZZ] += fiz0;
562         tx                         += fix0;
563         ty                         += fiy0;
564         tz                         += fiz0;
565         f[i_coord_offset+DIM*1+XX] += fix1;
566         f[i_coord_offset+DIM*1+YY] += fiy1;
567         f[i_coord_offset+DIM*1+ZZ] += fiz1;
568         tx                         += fix1;
569         ty                         += fiy1;
570         tz                         += fiz1;
571         f[i_coord_offset+DIM*2+XX] += fix2;
572         f[i_coord_offset+DIM*2+YY] += fiy2;
573         f[i_coord_offset+DIM*2+ZZ] += fiz2;
574         tx                         += fix2;
575         ty                         += fiy2;
576         tz                         += fiz2;
577         fshift[i_shift_offset+XX]  += tx;
578         fshift[i_shift_offset+YY]  += ty;
579         fshift[i_shift_offset+ZZ]  += tz;
580
581         /* Increment number of inner iterations */
582         inneriter                  += j_index_end - j_index_start;
583
584         /* Outer loop uses 30 flops */
585     }
586
587     /* Increment number of outer iterations */
588     outeriter        += nri;
589
590     /* Update outer/inner flops */
591
592     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*81);
593 }