Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
67     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
68     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
69     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
70     real             velec,felec,velecsum,facel,crf,krf,krf2;
71     real             *charge;
72     int              nvdwtype;
73     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
74     int              *vdwtype;
75     real             *vdwparam;
76     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77
78     x                = xx[0];
79     f                = ff[0];
80
81     nri              = nlist->nri;
82     iinr             = nlist->iinr;
83     jindex           = nlist->jindex;
84     jjnr             = nlist->jjnr;
85     shiftidx         = nlist->shift;
86     gid              = nlist->gid;
87     shiftvec         = fr->shift_vec[0];
88     fshift           = fr->fshift[0];
89     facel            = fr->epsfac;
90     charge           = mdatoms->chargeA;
91     krf              = fr->ic->k_rf;
92     krf2             = krf*2.0;
93     crf              = fr->ic->c_rf;
94     nvdwtype         = fr->ntype;
95     vdwparam         = fr->nbfp;
96     vdwtype          = mdatoms->typeA;
97
98     /* Setup water-specific parameters */
99     inr              = nlist->iinr[0];
100     iq1              = facel*charge[inr+1];
101     iq2              = facel*charge[inr+2];
102     iq3              = facel*charge[inr+3];
103     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff          = fr->rcoulomb;
107     rcutoff2         = rcutoff*rcutoff;
108
109     rswitch          = fr->rvdw_switch;
110     /* Setup switch parameters */
111     d                = rcutoff-rswitch;
112     swV3             = -10.0/(d*d*d);
113     swV4             =  15.0/(d*d*d*d);
114     swV5             =  -6.0/(d*d*d*d*d);
115     swF2             = -30.0/(d*d*d);
116     swF3             =  60.0/(d*d*d*d);
117     swF4             = -30.0/(d*d*d*d*d);
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127         shX              = shiftvec[i_shift_offset+XX];
128         shY              = shiftvec[i_shift_offset+YY];
129         shZ              = shiftvec[i_shift_offset+ZZ];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         ix0              = shX + x[i_coord_offset+DIM*0+XX];
141         iy0              = shY + x[i_coord_offset+DIM*0+YY];
142         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
143         ix1              = shX + x[i_coord_offset+DIM*1+XX];
144         iy1              = shY + x[i_coord_offset+DIM*1+YY];
145         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
146         ix2              = shX + x[i_coord_offset+DIM*2+XX];
147         iy2              = shY + x[i_coord_offset+DIM*2+YY];
148         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
149         ix3              = shX + x[i_coord_offset+DIM*3+XX];
150         iy3              = shY + x[i_coord_offset+DIM*3+YY];
151         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
152
153         fix0             = 0.0;
154         fiy0             = 0.0;
155         fiz0             = 0.0;
156         fix1             = 0.0;
157         fiy1             = 0.0;
158         fiz1             = 0.0;
159         fix2             = 0.0;
160         fiy2             = 0.0;
161         fiz2             = 0.0;
162         fix3             = 0.0;
163         fiy3             = 0.0;
164         fiz3             = 0.0;
165
166         /* Reset potential sums */
167         velecsum         = 0.0;
168         vvdwsum          = 0.0;
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end; jidx++)
172         {
173             /* Get j neighbor index, and coordinate index */
174             jnr              = jjnr[jidx];
175             j_coord_offset   = DIM*jnr;
176
177             /* load j atom coordinates */
178             jx0              = x[j_coord_offset+DIM*0+XX];
179             jy0              = x[j_coord_offset+DIM*0+YY];
180             jz0              = x[j_coord_offset+DIM*0+ZZ];
181
182             /* Calculate displacement vector */
183             dx00             = ix0 - jx0;
184             dy00             = iy0 - jy0;
185             dz00             = iz0 - jz0;
186             dx10             = ix1 - jx0;
187             dy10             = iy1 - jy0;
188             dz10             = iz1 - jz0;
189             dx20             = ix2 - jx0;
190             dy20             = iy2 - jy0;
191             dz20             = iz2 - jz0;
192             dx30             = ix3 - jx0;
193             dy30             = iy3 - jy0;
194             dz30             = iz3 - jz0;
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
198             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
199             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
200             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
201
202             rinv00           = gmx_invsqrt(rsq00);
203             rinv10           = gmx_invsqrt(rsq10);
204             rinv20           = gmx_invsqrt(rsq20);
205             rinv30           = gmx_invsqrt(rsq30);
206
207             rinvsq00         = rinv00*rinv00;
208             rinvsq10         = rinv10*rinv10;
209             rinvsq20         = rinv20*rinv20;
210             rinvsq30         = rinv30*rinv30;
211
212             /* Load parameters for j particles */
213             jq0              = charge[jnr+0];
214             vdwjidx0         = 2*vdwtype[jnr+0];
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (rsq00<rcutoff2)
221             {
222
223             r00              = rsq00*rinv00;
224
225             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
226             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
227
228             /* LENNARD-JONES DISPERSION/REPULSION */
229
230             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
231             vvdw6            = c6_00*rinvsix;
232             vvdw12           = c12_00*rinvsix*rinvsix;
233             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
234             fvdw             = (vvdw12-vvdw6)*rinvsq00;
235
236             d                = r00-rswitch;
237             d                = (d>0.0) ? d : 0.0;
238             d2               = d*d;
239             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
240
241             dsw              = d2*(swF2+d*(swF3+d*swF4));
242
243             /* Evaluate switch function */
244             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
245             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
246             vvdw            *= sw;
247
248             /* Update potential sums from outer loop */
249             vvdwsum         += vvdw;
250
251             fscal            = fvdw;
252
253             /* Calculate temporary vectorial force */
254             tx               = fscal*dx00;
255             ty               = fscal*dy00;
256             tz               = fscal*dz00;
257
258             /* Update vectorial force */
259             fix0            += tx;
260             fiy0            += ty;
261             fiz0            += tz;
262             f[j_coord_offset+DIM*0+XX] -= tx;
263             f[j_coord_offset+DIM*0+YY] -= ty;
264             f[j_coord_offset+DIM*0+ZZ] -= tz;
265
266             }
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (rsq10<rcutoff2)
273             {
274
275             qq10             = iq1*jq0;
276
277             /* REACTION-FIELD ELECTROSTATICS */
278             velec            = qq10*(rinv10+krf*rsq10-crf);
279             felec            = qq10*(rinv10*rinvsq10-krf2);
280
281             /* Update potential sums from outer loop */
282             velecsum        += velec;
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = fscal*dx10;
288             ty               = fscal*dy10;
289             tz               = fscal*dz10;
290
291             /* Update vectorial force */
292             fix1            += tx;
293             fiy1            += ty;
294             fiz1            += tz;
295             f[j_coord_offset+DIM*0+XX] -= tx;
296             f[j_coord_offset+DIM*0+YY] -= ty;
297             f[j_coord_offset+DIM*0+ZZ] -= tz;
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (rsq20<rcutoff2)
306             {
307
308             qq20             = iq2*jq0;
309
310             /* REACTION-FIELD ELECTROSTATICS */
311             velec            = qq20*(rinv20+krf*rsq20-crf);
312             felec            = qq20*(rinv20*rinvsq20-krf2);
313
314             /* Update potential sums from outer loop */
315             velecsum        += velec;
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = fscal*dx20;
321             ty               = fscal*dy20;
322             tz               = fscal*dz20;
323
324             /* Update vectorial force */
325             fix2            += tx;
326             fiy2            += ty;
327             fiz2            += tz;
328             f[j_coord_offset+DIM*0+XX] -= tx;
329             f[j_coord_offset+DIM*0+YY] -= ty;
330             f[j_coord_offset+DIM*0+ZZ] -= tz;
331
332             }
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (rsq30<rcutoff2)
339             {
340
341             qq30             = iq3*jq0;
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = qq30*(rinv30+krf*rsq30-crf);
345             felec            = qq30*(rinv30*rinvsq30-krf2);
346
347             /* Update potential sums from outer loop */
348             velecsum        += velec;
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = fscal*dx30;
354             ty               = fscal*dy30;
355             tz               = fscal*dz30;
356
357             /* Update vectorial force */
358             fix3            += tx;
359             fiy3            += ty;
360             fiz3            += tz;
361             f[j_coord_offset+DIM*0+XX] -= tx;
362             f[j_coord_offset+DIM*0+YY] -= ty;
363             f[j_coord_offset+DIM*0+ZZ] -= tz;
364
365             }
366
367             /* Inner loop uses 149 flops */
368         }
369         /* End of innermost loop */
370
371         tx = ty = tz = 0;
372         f[i_coord_offset+DIM*0+XX] += fix0;
373         f[i_coord_offset+DIM*0+YY] += fiy0;
374         f[i_coord_offset+DIM*0+ZZ] += fiz0;
375         tx                         += fix0;
376         ty                         += fiy0;
377         tz                         += fiz0;
378         f[i_coord_offset+DIM*1+XX] += fix1;
379         f[i_coord_offset+DIM*1+YY] += fiy1;
380         f[i_coord_offset+DIM*1+ZZ] += fiz1;
381         tx                         += fix1;
382         ty                         += fiy1;
383         tz                         += fiz1;
384         f[i_coord_offset+DIM*2+XX] += fix2;
385         f[i_coord_offset+DIM*2+YY] += fiy2;
386         f[i_coord_offset+DIM*2+ZZ] += fiz2;
387         tx                         += fix2;
388         ty                         += fiy2;
389         tz                         += fiz2;
390         f[i_coord_offset+DIM*3+XX] += fix3;
391         f[i_coord_offset+DIM*3+YY] += fiy3;
392         f[i_coord_offset+DIM*3+ZZ] += fiz3;
393         tx                         += fix3;
394         ty                         += fiy3;
395         tz                         += fiz3;
396         fshift[i_shift_offset+XX]  += tx;
397         fshift[i_shift_offset+YY]  += ty;
398         fshift[i_shift_offset+ZZ]  += tz;
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         kernel_data->energygrp_elec[ggid] += velecsum;
403         kernel_data->energygrp_vdw[ggid] += vvdwsum;
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 41 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*149);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_c
420  * Electrostatics interaction: ReactionField
421  * VdW interaction:            LennardJones
422  * Geometry:                   Water4-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_c
427                     (t_nblist * gmx_restrict                nlist,
428                      rvec * gmx_restrict                    xx,
429                      rvec * gmx_restrict                    ff,
430                      t_forcerec * gmx_restrict              fr,
431                      t_mdatoms * gmx_restrict               mdatoms,
432                      nb_kernel_data_t * gmx_restrict        kernel_data,
433                      t_nrnb * gmx_restrict                  nrnb)
434 {
435     int              i_shift_offset,i_coord_offset,j_coord_offset;
436     int              j_index_start,j_index_end;
437     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
438     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
439     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
440     real             *shiftvec,*fshift,*x,*f;
441     int              vdwioffset0;
442     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwioffset1;
444     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
445     int              vdwioffset2;
446     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
447     int              vdwioffset3;
448     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
449     int              vdwjidx0;
450     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
452     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
453     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
454     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
455     real             velec,felec,velecsum,facel,crf,krf,krf2;
456     real             *charge;
457     int              nvdwtype;
458     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
459     int              *vdwtype;
460     real             *vdwparam;
461     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
462
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = fr->epsfac;
475     charge           = mdatoms->chargeA;
476     krf              = fr->ic->k_rf;
477     krf2             = krf*2.0;
478     crf              = fr->ic->c_rf;
479     nvdwtype         = fr->ntype;
480     vdwparam         = fr->nbfp;
481     vdwtype          = mdatoms->typeA;
482
483     /* Setup water-specific parameters */
484     inr              = nlist->iinr[0];
485     iq1              = facel*charge[inr+1];
486     iq2              = facel*charge[inr+2];
487     iq3              = facel*charge[inr+3];
488     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
489
490     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
491     rcutoff          = fr->rcoulomb;
492     rcutoff2         = rcutoff*rcutoff;
493
494     rswitch          = fr->rvdw_switch;
495     /* Setup switch parameters */
496     d                = rcutoff-rswitch;
497     swV3             = -10.0/(d*d*d);
498     swV4             =  15.0/(d*d*d*d);
499     swV5             =  -6.0/(d*d*d*d*d);
500     swF2             = -30.0/(d*d*d);
501     swF3             =  60.0/(d*d*d*d);
502     swF4             = -30.0/(d*d*d*d*d);
503
504     outeriter        = 0;
505     inneriter        = 0;
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512         shX              = shiftvec[i_shift_offset+XX];
513         shY              = shiftvec[i_shift_offset+YY];
514         shZ              = shiftvec[i_shift_offset+ZZ];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         ix0              = shX + x[i_coord_offset+DIM*0+XX];
526         iy0              = shY + x[i_coord_offset+DIM*0+YY];
527         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
528         ix1              = shX + x[i_coord_offset+DIM*1+XX];
529         iy1              = shY + x[i_coord_offset+DIM*1+YY];
530         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
531         ix2              = shX + x[i_coord_offset+DIM*2+XX];
532         iy2              = shY + x[i_coord_offset+DIM*2+YY];
533         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
534         ix3              = shX + x[i_coord_offset+DIM*3+XX];
535         iy3              = shY + x[i_coord_offset+DIM*3+YY];
536         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
537
538         fix0             = 0.0;
539         fiy0             = 0.0;
540         fiz0             = 0.0;
541         fix1             = 0.0;
542         fiy1             = 0.0;
543         fiz1             = 0.0;
544         fix2             = 0.0;
545         fiy2             = 0.0;
546         fiz2             = 0.0;
547         fix3             = 0.0;
548         fiy3             = 0.0;
549         fiz3             = 0.0;
550
551         /* Start inner kernel loop */
552         for(jidx=j_index_start; jidx<j_index_end; jidx++)
553         {
554             /* Get j neighbor index, and coordinate index */
555             jnr              = jjnr[jidx];
556             j_coord_offset   = DIM*jnr;
557
558             /* load j atom coordinates */
559             jx0              = x[j_coord_offset+DIM*0+XX];
560             jy0              = x[j_coord_offset+DIM*0+YY];
561             jz0              = x[j_coord_offset+DIM*0+ZZ];
562
563             /* Calculate displacement vector */
564             dx00             = ix0 - jx0;
565             dy00             = iy0 - jy0;
566             dz00             = iz0 - jz0;
567             dx10             = ix1 - jx0;
568             dy10             = iy1 - jy0;
569             dz10             = iz1 - jz0;
570             dx20             = ix2 - jx0;
571             dy20             = iy2 - jy0;
572             dz20             = iz2 - jz0;
573             dx30             = ix3 - jx0;
574             dy30             = iy3 - jy0;
575             dz30             = iz3 - jz0;
576
577             /* Calculate squared distance and things based on it */
578             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
579             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
580             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
581             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
582
583             rinv00           = gmx_invsqrt(rsq00);
584             rinv10           = gmx_invsqrt(rsq10);
585             rinv20           = gmx_invsqrt(rsq20);
586             rinv30           = gmx_invsqrt(rsq30);
587
588             rinvsq00         = rinv00*rinv00;
589             rinvsq10         = rinv10*rinv10;
590             rinvsq20         = rinv20*rinv20;
591             rinvsq30         = rinv30*rinv30;
592
593             /* Load parameters for j particles */
594             jq0              = charge[jnr+0];
595             vdwjidx0         = 2*vdwtype[jnr+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (rsq00<rcutoff2)
602             {
603
604             r00              = rsq00*rinv00;
605
606             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
607             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
608
609             /* LENNARD-JONES DISPERSION/REPULSION */
610
611             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
612             vvdw6            = c6_00*rinvsix;
613             vvdw12           = c12_00*rinvsix*rinvsix;
614             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
615             fvdw             = (vvdw12-vvdw6)*rinvsq00;
616
617             d                = r00-rswitch;
618             d                = (d>0.0) ? d : 0.0;
619             d2               = d*d;
620             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
621
622             dsw              = d2*(swF2+d*(swF3+d*swF4));
623
624             /* Evaluate switch function */
625             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
626             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
627
628             fscal            = fvdw;
629
630             /* Calculate temporary vectorial force */
631             tx               = fscal*dx00;
632             ty               = fscal*dy00;
633             tz               = fscal*dz00;
634
635             /* Update vectorial force */
636             fix0            += tx;
637             fiy0            += ty;
638             fiz0            += tz;
639             f[j_coord_offset+DIM*0+XX] -= tx;
640             f[j_coord_offset+DIM*0+YY] -= ty;
641             f[j_coord_offset+DIM*0+ZZ] -= tz;
642
643             }
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (rsq10<rcutoff2)
650             {
651
652             qq10             = iq1*jq0;
653
654             /* REACTION-FIELD ELECTROSTATICS */
655             felec            = qq10*(rinv10*rinvsq10-krf2);
656
657             fscal            = felec;
658
659             /* Calculate temporary vectorial force */
660             tx               = fscal*dx10;
661             ty               = fscal*dy10;
662             tz               = fscal*dz10;
663
664             /* Update vectorial force */
665             fix1            += tx;
666             fiy1            += ty;
667             fiz1            += tz;
668             f[j_coord_offset+DIM*0+XX] -= tx;
669             f[j_coord_offset+DIM*0+YY] -= ty;
670             f[j_coord_offset+DIM*0+ZZ] -= tz;
671
672             }
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             if (rsq20<rcutoff2)
679             {
680
681             qq20             = iq2*jq0;
682
683             /* REACTION-FIELD ELECTROSTATICS */
684             felec            = qq20*(rinv20*rinvsq20-krf2);
685
686             fscal            = felec;
687
688             /* Calculate temporary vectorial force */
689             tx               = fscal*dx20;
690             ty               = fscal*dy20;
691             tz               = fscal*dz20;
692
693             /* Update vectorial force */
694             fix2            += tx;
695             fiy2            += ty;
696             fiz2            += tz;
697             f[j_coord_offset+DIM*0+XX] -= tx;
698             f[j_coord_offset+DIM*0+YY] -= ty;
699             f[j_coord_offset+DIM*0+ZZ] -= tz;
700
701             }
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (rsq30<rcutoff2)
708             {
709
710             qq30             = iq3*jq0;
711
712             /* REACTION-FIELD ELECTROSTATICS */
713             felec            = qq30*(rinv30*rinvsq30-krf2);
714
715             fscal            = felec;
716
717             /* Calculate temporary vectorial force */
718             tx               = fscal*dx30;
719             ty               = fscal*dy30;
720             tz               = fscal*dz30;
721
722             /* Update vectorial force */
723             fix3            += tx;
724             fiy3            += ty;
725             fiz3            += tz;
726             f[j_coord_offset+DIM*0+XX] -= tx;
727             f[j_coord_offset+DIM*0+YY] -= ty;
728             f[j_coord_offset+DIM*0+ZZ] -= tz;
729
730             }
731
732             /* Inner loop uses 132 flops */
733         }
734         /* End of innermost loop */
735
736         tx = ty = tz = 0;
737         f[i_coord_offset+DIM*0+XX] += fix0;
738         f[i_coord_offset+DIM*0+YY] += fiy0;
739         f[i_coord_offset+DIM*0+ZZ] += fiz0;
740         tx                         += fix0;
741         ty                         += fiy0;
742         tz                         += fiz0;
743         f[i_coord_offset+DIM*1+XX] += fix1;
744         f[i_coord_offset+DIM*1+YY] += fiy1;
745         f[i_coord_offset+DIM*1+ZZ] += fiz1;
746         tx                         += fix1;
747         ty                         += fiy1;
748         tz                         += fiz1;
749         f[i_coord_offset+DIM*2+XX] += fix2;
750         f[i_coord_offset+DIM*2+YY] += fiy2;
751         f[i_coord_offset+DIM*2+ZZ] += fiz2;
752         tx                         += fix2;
753         ty                         += fiy2;
754         tz                         += fiz2;
755         f[i_coord_offset+DIM*3+XX] += fix3;
756         f[i_coord_offset+DIM*3+YY] += fiy3;
757         f[i_coord_offset+DIM*3+ZZ] += fiz3;
758         tx                         += fix3;
759         ty                         += fiy3;
760         tz                         += fiz3;
761         fshift[i_shift_offset+XX]  += tx;
762         fshift[i_shift_offset+YY]  += ty;
763         fshift[i_shift_offset+ZZ]  += tz;
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 39 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*132);
777 }