Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
67     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
68     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
69     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
70     real             velec,felec,velecsum,facel,crf,krf,krf2;
71     real             *charge;
72     int              nvdwtype;
73     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
74     int              *vdwtype;
75     real             *vdwparam;
76
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = fr->epsfac;
89     charge           = mdatoms->chargeA;
90     krf              = fr->ic->k_rf;
91     krf2             = krf*2.0;
92     crf              = fr->ic->c_rf;
93     nvdwtype         = fr->ntype;
94     vdwparam         = fr->nbfp;
95     vdwtype          = mdatoms->typeA;
96
97     /* Setup water-specific parameters */
98     inr              = nlist->iinr[0];
99     iq1              = facel*charge[inr+1];
100     iq2              = facel*charge[inr+2];
101     iq3              = facel*charge[inr+3];
102     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
103
104     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105     rcutoff          = fr->rcoulomb;
106     rcutoff2         = rcutoff*rcutoff;
107
108     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
109     rvdw             = fr->rvdw;
110
111     outeriter        = 0;
112     inneriter        = 0;
113
114     /* Start outer loop over neighborlists */
115     for(iidx=0; iidx<nri; iidx++)
116     {
117         /* Load shift vector for this list */
118         i_shift_offset   = DIM*shiftidx[iidx];
119         shX              = shiftvec[i_shift_offset+XX];
120         shY              = shiftvec[i_shift_offset+YY];
121         shZ              = shiftvec[i_shift_offset+ZZ];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         ix0              = shX + x[i_coord_offset+DIM*0+XX];
133         iy0              = shY + x[i_coord_offset+DIM*0+YY];
134         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
135         ix1              = shX + x[i_coord_offset+DIM*1+XX];
136         iy1              = shY + x[i_coord_offset+DIM*1+YY];
137         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
138         ix2              = shX + x[i_coord_offset+DIM*2+XX];
139         iy2              = shY + x[i_coord_offset+DIM*2+YY];
140         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
141         ix3              = shX + x[i_coord_offset+DIM*3+XX];
142         iy3              = shY + x[i_coord_offset+DIM*3+YY];
143         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
144
145         fix0             = 0.0;
146         fiy0             = 0.0;
147         fiz0             = 0.0;
148         fix1             = 0.0;
149         fiy1             = 0.0;
150         fiz1             = 0.0;
151         fix2             = 0.0;
152         fiy2             = 0.0;
153         fiz2             = 0.0;
154         fix3             = 0.0;
155         fiy3             = 0.0;
156         fiz3             = 0.0;
157
158         /* Reset potential sums */
159         velecsum         = 0.0;
160         vvdwsum          = 0.0;
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end; jidx++)
164         {
165             /* Get j neighbor index, and coordinate index */
166             jnr              = jjnr[jidx];
167             j_coord_offset   = DIM*jnr;
168
169             /* load j atom coordinates */
170             jx0              = x[j_coord_offset+DIM*0+XX];
171             jy0              = x[j_coord_offset+DIM*0+YY];
172             jz0              = x[j_coord_offset+DIM*0+ZZ];
173
174             /* Calculate displacement vector */
175             dx00             = ix0 - jx0;
176             dy00             = iy0 - jy0;
177             dz00             = iz0 - jz0;
178             dx10             = ix1 - jx0;
179             dy10             = iy1 - jy0;
180             dz10             = iz1 - jz0;
181             dx20             = ix2 - jx0;
182             dy20             = iy2 - jy0;
183             dz20             = iz2 - jz0;
184             dx30             = ix3 - jx0;
185             dy30             = iy3 - jy0;
186             dz30             = iz3 - jz0;
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
190             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
191             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
192             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
193
194             rinv10           = gmx_invsqrt(rsq10);
195             rinv20           = gmx_invsqrt(rsq20);
196             rinv30           = gmx_invsqrt(rsq30);
197
198             rinvsq00         = 1.0/rsq00;
199             rinvsq10         = rinv10*rinv10;
200             rinvsq20         = rinv20*rinv20;
201             rinvsq30         = rinv30*rinv30;
202
203             /* Load parameters for j particles */
204             jq0              = charge[jnr+0];
205             vdwjidx0         = 2*vdwtype[jnr+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (rsq00<rcutoff2)
212             {
213
214             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
215             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
216
217             /* LENNARD-JONES DISPERSION/REPULSION */
218
219             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
220             vvdw6            = c6_00*rinvsix;
221             vvdw12           = c12_00*rinvsix*rinvsix;
222             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
223             fvdw             = (vvdw12-vvdw6)*rinvsq00;
224
225             /* Update potential sums from outer loop */
226             vvdwsum         += vvdw;
227
228             fscal            = fvdw;
229
230             /* Calculate temporary vectorial force */
231             tx               = fscal*dx00;
232             ty               = fscal*dy00;
233             tz               = fscal*dz00;
234
235             /* Update vectorial force */
236             fix0            += tx;
237             fiy0            += ty;
238             fiz0            += tz;
239             f[j_coord_offset+DIM*0+XX] -= tx;
240             f[j_coord_offset+DIM*0+YY] -= ty;
241             f[j_coord_offset+DIM*0+ZZ] -= tz;
242
243             }
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (rsq10<rcutoff2)
250             {
251
252             qq10             = iq1*jq0;
253
254             /* REACTION-FIELD ELECTROSTATICS */
255             velec            = qq10*(rinv10+krf*rsq10-crf);
256             felec            = qq10*(rinv10*rinvsq10-krf2);
257
258             /* Update potential sums from outer loop */
259             velecsum        += velec;
260
261             fscal            = felec;
262
263             /* Calculate temporary vectorial force */
264             tx               = fscal*dx10;
265             ty               = fscal*dy10;
266             tz               = fscal*dz10;
267
268             /* Update vectorial force */
269             fix1            += tx;
270             fiy1            += ty;
271             fiz1            += tz;
272             f[j_coord_offset+DIM*0+XX] -= tx;
273             f[j_coord_offset+DIM*0+YY] -= ty;
274             f[j_coord_offset+DIM*0+ZZ] -= tz;
275
276             }
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (rsq20<rcutoff2)
283             {
284
285             qq20             = iq2*jq0;
286
287             /* REACTION-FIELD ELECTROSTATICS */
288             velec            = qq20*(rinv20+krf*rsq20-crf);
289             felec            = qq20*(rinv20*rinvsq20-krf2);
290
291             /* Update potential sums from outer loop */
292             velecsum        += velec;
293
294             fscal            = felec;
295
296             /* Calculate temporary vectorial force */
297             tx               = fscal*dx20;
298             ty               = fscal*dy20;
299             tz               = fscal*dz20;
300
301             /* Update vectorial force */
302             fix2            += tx;
303             fiy2            += ty;
304             fiz2            += tz;
305             f[j_coord_offset+DIM*0+XX] -= tx;
306             f[j_coord_offset+DIM*0+YY] -= ty;
307             f[j_coord_offset+DIM*0+ZZ] -= tz;
308
309             }
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             if (rsq30<rcutoff2)
316             {
317
318             qq30             = iq3*jq0;
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = qq30*(rinv30+krf*rsq30-crf);
322             felec            = qq30*(rinv30*rinvsq30-krf2);
323
324             /* Update potential sums from outer loop */
325             velecsum        += velec;
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = fscal*dx30;
331             ty               = fscal*dy30;
332             tz               = fscal*dz30;
333
334             /* Update vectorial force */
335             fix3            += tx;
336             fiy3            += ty;
337             fiz3            += tz;
338             f[j_coord_offset+DIM*0+XX] -= tx;
339             f[j_coord_offset+DIM*0+YY] -= ty;
340             f[j_coord_offset+DIM*0+ZZ] -= tz;
341
342             }
343
344             /* Inner loop uses 133 flops */
345         }
346         /* End of innermost loop */
347
348         tx = ty = tz = 0;
349         f[i_coord_offset+DIM*0+XX] += fix0;
350         f[i_coord_offset+DIM*0+YY] += fiy0;
351         f[i_coord_offset+DIM*0+ZZ] += fiz0;
352         tx                         += fix0;
353         ty                         += fiy0;
354         tz                         += fiz0;
355         f[i_coord_offset+DIM*1+XX] += fix1;
356         f[i_coord_offset+DIM*1+YY] += fiy1;
357         f[i_coord_offset+DIM*1+ZZ] += fiz1;
358         tx                         += fix1;
359         ty                         += fiy1;
360         tz                         += fiz1;
361         f[i_coord_offset+DIM*2+XX] += fix2;
362         f[i_coord_offset+DIM*2+YY] += fiy2;
363         f[i_coord_offset+DIM*2+ZZ] += fiz2;
364         tx                         += fix2;
365         ty                         += fiy2;
366         tz                         += fiz2;
367         f[i_coord_offset+DIM*3+XX] += fix3;
368         f[i_coord_offset+DIM*3+YY] += fiy3;
369         f[i_coord_offset+DIM*3+ZZ] += fiz3;
370         tx                         += fix3;
371         ty                         += fiy3;
372         tz                         += fiz3;
373         fshift[i_shift_offset+XX]  += tx;
374         fshift[i_shift_offset+YY]  += ty;
375         fshift[i_shift_offset+ZZ]  += tz;
376
377         ggid                        = gid[iidx];
378         /* Update potential energies */
379         kernel_data->energygrp_elec[ggid] += velecsum;
380         kernel_data->energygrp_vdw[ggid] += vvdwsum;
381
382         /* Increment number of inner iterations */
383         inneriter                  += j_index_end - j_index_start;
384
385         /* Outer loop uses 41 flops */
386     }
387
388     /* Increment number of outer iterations */
389     outeriter        += nri;
390
391     /* Update outer/inner flops */
392
393     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*133);
394 }
395 /*
396  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_c
397  * Electrostatics interaction: ReactionField
398  * VdW interaction:            LennardJones
399  * Geometry:                   Water4-Particle
400  * Calculate force/pot:        Force
401  */
402 void
403 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_c
404                     (t_nblist * gmx_restrict                nlist,
405                      rvec * gmx_restrict                    xx,
406                      rvec * gmx_restrict                    ff,
407                      t_forcerec * gmx_restrict              fr,
408                      t_mdatoms * gmx_restrict               mdatoms,
409                      nb_kernel_data_t * gmx_restrict        kernel_data,
410                      t_nrnb * gmx_restrict                  nrnb)
411 {
412     int              i_shift_offset,i_coord_offset,j_coord_offset;
413     int              j_index_start,j_index_end;
414     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
415     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             *shiftvec,*fshift,*x,*f;
418     int              vdwioffset0;
419     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
420     int              vdwioffset1;
421     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
422     int              vdwioffset2;
423     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
424     int              vdwioffset3;
425     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
426     int              vdwjidx0;
427     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
428     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
429     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
430     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
431     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
432     real             velec,felec,velecsum,facel,crf,krf,krf2;
433     real             *charge;
434     int              nvdwtype;
435     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
436     int              *vdwtype;
437     real             *vdwparam;
438
439     x                = xx[0];
440     f                = ff[0];
441
442     nri              = nlist->nri;
443     iinr             = nlist->iinr;
444     jindex           = nlist->jindex;
445     jjnr             = nlist->jjnr;
446     shiftidx         = nlist->shift;
447     gid              = nlist->gid;
448     shiftvec         = fr->shift_vec[0];
449     fshift           = fr->fshift[0];
450     facel            = fr->epsfac;
451     charge           = mdatoms->chargeA;
452     krf              = fr->ic->k_rf;
453     krf2             = krf*2.0;
454     crf              = fr->ic->c_rf;
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458
459     /* Setup water-specific parameters */
460     inr              = nlist->iinr[0];
461     iq1              = facel*charge[inr+1];
462     iq2              = facel*charge[inr+2];
463     iq3              = facel*charge[inr+3];
464     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
465
466     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
467     rcutoff          = fr->rcoulomb;
468     rcutoff2         = rcutoff*rcutoff;
469
470     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
471     rvdw             = fr->rvdw;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     /* Start outer loop over neighborlists */
477     for(iidx=0; iidx<nri; iidx++)
478     {
479         /* Load shift vector for this list */
480         i_shift_offset   = DIM*shiftidx[iidx];
481         shX              = shiftvec[i_shift_offset+XX];
482         shY              = shiftvec[i_shift_offset+YY];
483         shZ              = shiftvec[i_shift_offset+ZZ];
484
485         /* Load limits for loop over neighbors */
486         j_index_start    = jindex[iidx];
487         j_index_end      = jindex[iidx+1];
488
489         /* Get outer coordinate index */
490         inr              = iinr[iidx];
491         i_coord_offset   = DIM*inr;
492
493         /* Load i particle coords and add shift vector */
494         ix0              = shX + x[i_coord_offset+DIM*0+XX];
495         iy0              = shY + x[i_coord_offset+DIM*0+YY];
496         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
497         ix1              = shX + x[i_coord_offset+DIM*1+XX];
498         iy1              = shY + x[i_coord_offset+DIM*1+YY];
499         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
500         ix2              = shX + x[i_coord_offset+DIM*2+XX];
501         iy2              = shY + x[i_coord_offset+DIM*2+YY];
502         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
503         ix3              = shX + x[i_coord_offset+DIM*3+XX];
504         iy3              = shY + x[i_coord_offset+DIM*3+YY];
505         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
506
507         fix0             = 0.0;
508         fiy0             = 0.0;
509         fiz0             = 0.0;
510         fix1             = 0.0;
511         fiy1             = 0.0;
512         fiz1             = 0.0;
513         fix2             = 0.0;
514         fiy2             = 0.0;
515         fiz2             = 0.0;
516         fix3             = 0.0;
517         fiy3             = 0.0;
518         fiz3             = 0.0;
519
520         /* Start inner kernel loop */
521         for(jidx=j_index_start; jidx<j_index_end; jidx++)
522         {
523             /* Get j neighbor index, and coordinate index */
524             jnr              = jjnr[jidx];
525             j_coord_offset   = DIM*jnr;
526
527             /* load j atom coordinates */
528             jx0              = x[j_coord_offset+DIM*0+XX];
529             jy0              = x[j_coord_offset+DIM*0+YY];
530             jz0              = x[j_coord_offset+DIM*0+ZZ];
531
532             /* Calculate displacement vector */
533             dx00             = ix0 - jx0;
534             dy00             = iy0 - jy0;
535             dz00             = iz0 - jz0;
536             dx10             = ix1 - jx0;
537             dy10             = iy1 - jy0;
538             dz10             = iz1 - jz0;
539             dx20             = ix2 - jx0;
540             dy20             = iy2 - jy0;
541             dz20             = iz2 - jz0;
542             dx30             = ix3 - jx0;
543             dy30             = iy3 - jy0;
544             dz30             = iz3 - jz0;
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
548             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
549             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
550             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
551
552             rinv10           = gmx_invsqrt(rsq10);
553             rinv20           = gmx_invsqrt(rsq20);
554             rinv30           = gmx_invsqrt(rsq30);
555
556             rinvsq00         = 1.0/rsq00;
557             rinvsq10         = rinv10*rinv10;
558             rinvsq20         = rinv20*rinv20;
559             rinvsq30         = rinv30*rinv30;
560
561             /* Load parameters for j particles */
562             jq0              = charge[jnr+0];
563             vdwjidx0         = 2*vdwtype[jnr+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (rsq00<rcutoff2)
570             {
571
572             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
573             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
574
575             /* LENNARD-JONES DISPERSION/REPULSION */
576
577             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
578             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
579
580             fscal            = fvdw;
581
582             /* Calculate temporary vectorial force */
583             tx               = fscal*dx00;
584             ty               = fscal*dy00;
585             tz               = fscal*dz00;
586
587             /* Update vectorial force */
588             fix0            += tx;
589             fiy0            += ty;
590             fiz0            += tz;
591             f[j_coord_offset+DIM*0+XX] -= tx;
592             f[j_coord_offset+DIM*0+YY] -= ty;
593             f[j_coord_offset+DIM*0+ZZ] -= tz;
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (rsq10<rcutoff2)
602             {
603
604             qq10             = iq1*jq0;
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             felec            = qq10*(rinv10*rinvsq10-krf2);
608
609             fscal            = felec;
610
611             /* Calculate temporary vectorial force */
612             tx               = fscal*dx10;
613             ty               = fscal*dy10;
614             tz               = fscal*dz10;
615
616             /* Update vectorial force */
617             fix1            += tx;
618             fiy1            += ty;
619             fiz1            += tz;
620             f[j_coord_offset+DIM*0+XX] -= tx;
621             f[j_coord_offset+DIM*0+YY] -= ty;
622             f[j_coord_offset+DIM*0+ZZ] -= tz;
623
624             }
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             if (rsq20<rcutoff2)
631             {
632
633             qq20             = iq2*jq0;
634
635             /* REACTION-FIELD ELECTROSTATICS */
636             felec            = qq20*(rinv20*rinvsq20-krf2);
637
638             fscal            = felec;
639
640             /* Calculate temporary vectorial force */
641             tx               = fscal*dx20;
642             ty               = fscal*dy20;
643             tz               = fscal*dz20;
644
645             /* Update vectorial force */
646             fix2            += tx;
647             fiy2            += ty;
648             fiz2            += tz;
649             f[j_coord_offset+DIM*0+XX] -= tx;
650             f[j_coord_offset+DIM*0+YY] -= ty;
651             f[j_coord_offset+DIM*0+ZZ] -= tz;
652
653             }
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             if (rsq30<rcutoff2)
660             {
661
662             qq30             = iq3*jq0;
663
664             /* REACTION-FIELD ELECTROSTATICS */
665             felec            = qq30*(rinv30*rinvsq30-krf2);
666
667             fscal            = felec;
668
669             /* Calculate temporary vectorial force */
670             tx               = fscal*dx30;
671             ty               = fscal*dy30;
672             tz               = fscal*dz30;
673
674             /* Update vectorial force */
675             fix3            += tx;
676             fiy3            += ty;
677             fiz3            += tz;
678             f[j_coord_offset+DIM*0+XX] -= tx;
679             f[j_coord_offset+DIM*0+YY] -= ty;
680             f[j_coord_offset+DIM*0+ZZ] -= tz;
681
682             }
683
684             /* Inner loop uses 108 flops */
685         }
686         /* End of innermost loop */
687
688         tx = ty = tz = 0;
689         f[i_coord_offset+DIM*0+XX] += fix0;
690         f[i_coord_offset+DIM*0+YY] += fiy0;
691         f[i_coord_offset+DIM*0+ZZ] += fiz0;
692         tx                         += fix0;
693         ty                         += fiy0;
694         tz                         += fiz0;
695         f[i_coord_offset+DIM*1+XX] += fix1;
696         f[i_coord_offset+DIM*1+YY] += fiy1;
697         f[i_coord_offset+DIM*1+ZZ] += fiz1;
698         tx                         += fix1;
699         ty                         += fiy1;
700         tz                         += fiz1;
701         f[i_coord_offset+DIM*2+XX] += fix2;
702         f[i_coord_offset+DIM*2+YY] += fiy2;
703         f[i_coord_offset+DIM*2+ZZ] += fiz2;
704         tx                         += fix2;
705         ty                         += fiy2;
706         tz                         += fiz2;
707         f[i_coord_offset+DIM*3+XX] += fix3;
708         f[i_coord_offset+DIM*3+YY] += fiy3;
709         f[i_coord_offset+DIM*3+ZZ] += fiz3;
710         tx                         += fix3;
711         ty                         += fiy3;
712         tz                         += fiz3;
713         fshift[i_shift_offset+XX]  += tx;
714         fshift[i_shift_offset+YY]  += ty;
715         fshift[i_shift_offset+ZZ]  += tz;
716
717         /* Increment number of inner iterations */
718         inneriter                  += j_index_end - j_index_start;
719
720         /* Outer loop uses 39 flops */
721     }
722
723     /* Increment number of outer iterations */
724     outeriter        += nri;
725
726     /* Update outer/inner flops */
727
728     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*108);
729 }