6857a6d5988ad910ce5d21fc19663c092c9240e1
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSw_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW4P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            Buckingham
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwBhamSw_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
67     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
68     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
69     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
70     real             velec,felec,velecsum,facel,crf,krf,krf2;
71     real             *charge;
72     int              nvdwtype;
73     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
74     int              *vdwtype;
75     real             *vdwparam;
76     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77
78     x                = xx[0];
79     f                = ff[0];
80
81     nri              = nlist->nri;
82     iinr             = nlist->iinr;
83     jindex           = nlist->jindex;
84     jjnr             = nlist->jjnr;
85     shiftidx         = nlist->shift;
86     gid              = nlist->gid;
87     shiftvec         = fr->shift_vec[0];
88     fshift           = fr->fshift[0];
89     facel            = fr->epsfac;
90     charge           = mdatoms->chargeA;
91     krf              = fr->ic->k_rf;
92     krf2             = krf*2.0;
93     crf              = fr->ic->c_rf;
94     nvdwtype         = fr->ntype;
95     vdwparam         = fr->nbfp;
96     vdwtype          = mdatoms->typeA;
97
98     /* Setup water-specific parameters */
99     inr              = nlist->iinr[0];
100     iq1              = facel*charge[inr+1];
101     iq2              = facel*charge[inr+2];
102     iq3              = facel*charge[inr+3];
103     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff          = fr->rcoulomb;
107     rcutoff2         = rcutoff*rcutoff;
108
109     rswitch          = fr->rvdw_switch;
110     /* Setup switch parameters */
111     d                = rcutoff-rswitch;
112     swV3             = -10.0/(d*d*d);
113     swV4             =  15.0/(d*d*d*d);
114     swV5             =  -6.0/(d*d*d*d*d);
115     swF2             = -30.0/(d*d*d);
116     swF3             =  60.0/(d*d*d*d);
117     swF4             = -30.0/(d*d*d*d*d);
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127         shX              = shiftvec[i_shift_offset+XX];
128         shY              = shiftvec[i_shift_offset+YY];
129         shZ              = shiftvec[i_shift_offset+ZZ];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         ix0              = shX + x[i_coord_offset+DIM*0+XX];
141         iy0              = shY + x[i_coord_offset+DIM*0+YY];
142         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
143         ix1              = shX + x[i_coord_offset+DIM*1+XX];
144         iy1              = shY + x[i_coord_offset+DIM*1+YY];
145         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
146         ix2              = shX + x[i_coord_offset+DIM*2+XX];
147         iy2              = shY + x[i_coord_offset+DIM*2+YY];
148         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
149         ix3              = shX + x[i_coord_offset+DIM*3+XX];
150         iy3              = shY + x[i_coord_offset+DIM*3+YY];
151         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
152
153         fix0             = 0.0;
154         fiy0             = 0.0;
155         fiz0             = 0.0;
156         fix1             = 0.0;
157         fiy1             = 0.0;
158         fiz1             = 0.0;
159         fix2             = 0.0;
160         fiy2             = 0.0;
161         fiz2             = 0.0;
162         fix3             = 0.0;
163         fiy3             = 0.0;
164         fiz3             = 0.0;
165
166         /* Reset potential sums */
167         velecsum         = 0.0;
168         vvdwsum          = 0.0;
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end; jidx++)
172         {
173             /* Get j neighbor index, and coordinate index */
174             jnr              = jjnr[jidx];
175             j_coord_offset   = DIM*jnr;
176
177             /* load j atom coordinates */
178             jx0              = x[j_coord_offset+DIM*0+XX];
179             jy0              = x[j_coord_offset+DIM*0+YY];
180             jz0              = x[j_coord_offset+DIM*0+ZZ];
181
182             /* Calculate displacement vector */
183             dx00             = ix0 - jx0;
184             dy00             = iy0 - jy0;
185             dz00             = iz0 - jz0;
186             dx10             = ix1 - jx0;
187             dy10             = iy1 - jy0;
188             dz10             = iz1 - jz0;
189             dx20             = ix2 - jx0;
190             dy20             = iy2 - jy0;
191             dz20             = iz2 - jz0;
192             dx30             = ix3 - jx0;
193             dy30             = iy3 - jy0;
194             dz30             = iz3 - jz0;
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
198             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
199             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
200             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
201
202             rinv00           = gmx_invsqrt(rsq00);
203             rinv10           = gmx_invsqrt(rsq10);
204             rinv20           = gmx_invsqrt(rsq20);
205             rinv30           = gmx_invsqrt(rsq30);
206
207             rinvsq00         = rinv00*rinv00;
208             rinvsq10         = rinv10*rinv10;
209             rinvsq20         = rinv20*rinv20;
210             rinvsq30         = rinv30*rinv30;
211
212             /* Load parameters for j particles */
213             jq0              = charge[jnr+0];
214             vdwjidx0         = 3*vdwtype[jnr+0];
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (rsq00<rcutoff2)
221             {
222
223             r00              = rsq00*rinv00;
224
225             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
226             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
227             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
228
229             /* BUCKINGHAM DISPERSION/REPULSION */
230             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
231             vvdw6            = c6_00*rinvsix;
232             br               = cexp2_00*r00;
233             vvdwexp          = cexp1_00*exp(-br);
234             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
235             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
236
237             d                = r00-rswitch;
238             d                = (d>0.0) ? d : 0.0;
239             d2               = d*d;
240             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
241
242             dsw              = d2*(swF2+d*(swF3+d*swF4));
243
244             /* Evaluate switch function */
245             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
246             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
247             vvdw            *= sw;
248
249             /* Update potential sums from outer loop */
250             vvdwsum         += vvdw;
251
252             fscal            = fvdw;
253
254             /* Calculate temporary vectorial force */
255             tx               = fscal*dx00;
256             ty               = fscal*dy00;
257             tz               = fscal*dz00;
258
259             /* Update vectorial force */
260             fix0            += tx;
261             fiy0            += ty;
262             fiz0            += tz;
263             f[j_coord_offset+DIM*0+XX] -= tx;
264             f[j_coord_offset+DIM*0+YY] -= ty;
265             f[j_coord_offset+DIM*0+ZZ] -= tz;
266
267             }
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (rsq10<rcutoff2)
274             {
275
276             qq10             = iq1*jq0;
277
278             /* REACTION-FIELD ELECTROSTATICS */
279             velec            = qq10*(rinv10+krf*rsq10-crf);
280             felec            = qq10*(rinv10*rinvsq10-krf2);
281
282             /* Update potential sums from outer loop */
283             velecsum        += velec;
284
285             fscal            = felec;
286
287             /* Calculate temporary vectorial force */
288             tx               = fscal*dx10;
289             ty               = fscal*dy10;
290             tz               = fscal*dz10;
291
292             /* Update vectorial force */
293             fix1            += tx;
294             fiy1            += ty;
295             fiz1            += tz;
296             f[j_coord_offset+DIM*0+XX] -= tx;
297             f[j_coord_offset+DIM*0+YY] -= ty;
298             f[j_coord_offset+DIM*0+ZZ] -= tz;
299
300             }
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             if (rsq20<rcutoff2)
307             {
308
309             qq20             = iq2*jq0;
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = qq20*(rinv20+krf*rsq20-crf);
313             felec            = qq20*(rinv20*rinvsq20-krf2);
314
315             /* Update potential sums from outer loop */
316             velecsum        += velec;
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = fscal*dx20;
322             ty               = fscal*dy20;
323             tz               = fscal*dz20;
324
325             /* Update vectorial force */
326             fix2            += tx;
327             fiy2            += ty;
328             fiz2            += tz;
329             f[j_coord_offset+DIM*0+XX] -= tx;
330             f[j_coord_offset+DIM*0+YY] -= ty;
331             f[j_coord_offset+DIM*0+ZZ] -= tz;
332
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (rsq30<rcutoff2)
340             {
341
342             qq30             = iq3*jq0;
343
344             /* REACTION-FIELD ELECTROSTATICS */
345             velec            = qq30*(rinv30+krf*rsq30-crf);
346             felec            = qq30*(rinv30*rinvsq30-krf2);
347
348             /* Update potential sums from outer loop */
349             velecsum        += velec;
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = fscal*dx30;
355             ty               = fscal*dy30;
356             tz               = fscal*dz30;
357
358             /* Update vectorial force */
359             fix3            += tx;
360             fiy3            += ty;
361             fiz3            += tz;
362             f[j_coord_offset+DIM*0+XX] -= tx;
363             f[j_coord_offset+DIM*0+YY] -= ty;
364             f[j_coord_offset+DIM*0+ZZ] -= tz;
365
366             }
367
368             /* Inner loop uses 175 flops */
369         }
370         /* End of innermost loop */
371
372         tx = ty = tz = 0;
373         f[i_coord_offset+DIM*0+XX] += fix0;
374         f[i_coord_offset+DIM*0+YY] += fiy0;
375         f[i_coord_offset+DIM*0+ZZ] += fiz0;
376         tx                         += fix0;
377         ty                         += fiy0;
378         tz                         += fiz0;
379         f[i_coord_offset+DIM*1+XX] += fix1;
380         f[i_coord_offset+DIM*1+YY] += fiy1;
381         f[i_coord_offset+DIM*1+ZZ] += fiz1;
382         tx                         += fix1;
383         ty                         += fiy1;
384         tz                         += fiz1;
385         f[i_coord_offset+DIM*2+XX] += fix2;
386         f[i_coord_offset+DIM*2+YY] += fiy2;
387         f[i_coord_offset+DIM*2+ZZ] += fiz2;
388         tx                         += fix2;
389         ty                         += fiy2;
390         tz                         += fiz2;
391         f[i_coord_offset+DIM*3+XX] += fix3;
392         f[i_coord_offset+DIM*3+YY] += fiy3;
393         f[i_coord_offset+DIM*3+ZZ] += fiz3;
394         tx                         += fix3;
395         ty                         += fiy3;
396         tz                         += fiz3;
397         fshift[i_shift_offset+XX]  += tx;
398         fshift[i_shift_offset+YY]  += ty;
399         fshift[i_shift_offset+ZZ]  += tz;
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         kernel_data->energygrp_elec[ggid] += velecsum;
404         kernel_data->energygrp_vdw[ggid] += vvdwsum;
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 41 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*175);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW4P1_F_c
421  * Electrostatics interaction: ReactionField
422  * VdW interaction:            Buckingham
423  * Geometry:                   Water4-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecRFCut_VdwBhamSw_GeomW4P1_F_c
428                     (t_nblist * gmx_restrict                nlist,
429                      rvec * gmx_restrict                    xx,
430                      rvec * gmx_restrict                    ff,
431                      t_forcerec * gmx_restrict              fr,
432                      t_mdatoms * gmx_restrict               mdatoms,
433                      nb_kernel_data_t * gmx_restrict        kernel_data,
434                      t_nrnb * gmx_restrict                  nrnb)
435 {
436     int              i_shift_offset,i_coord_offset,j_coord_offset;
437     int              j_index_start,j_index_end;
438     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
439     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             *shiftvec,*fshift,*x,*f;
442     int              vdwioffset0;
443     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444     int              vdwioffset1;
445     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
446     int              vdwioffset2;
447     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
448     int              vdwioffset3;
449     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
450     int              vdwjidx0;
451     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
453     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
454     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
455     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
456     real             velec,felec,velecsum,facel,crf,krf,krf2;
457     real             *charge;
458     int              nvdwtype;
459     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
463
464     x                = xx[0];
465     f                = ff[0];
466
467     nri              = nlist->nri;
468     iinr             = nlist->iinr;
469     jindex           = nlist->jindex;
470     jjnr             = nlist->jjnr;
471     shiftidx         = nlist->shift;
472     gid              = nlist->gid;
473     shiftvec         = fr->shift_vec[0];
474     fshift           = fr->fshift[0];
475     facel            = fr->epsfac;
476     charge           = mdatoms->chargeA;
477     krf              = fr->ic->k_rf;
478     krf2             = krf*2.0;
479     crf              = fr->ic->c_rf;
480     nvdwtype         = fr->ntype;
481     vdwparam         = fr->nbfp;
482     vdwtype          = mdatoms->typeA;
483
484     /* Setup water-specific parameters */
485     inr              = nlist->iinr[0];
486     iq1              = facel*charge[inr+1];
487     iq2              = facel*charge[inr+2];
488     iq3              = facel*charge[inr+3];
489     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
490
491     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
492     rcutoff          = fr->rcoulomb;
493     rcutoff2         = rcutoff*rcutoff;
494
495     rswitch          = fr->rvdw_switch;
496     /* Setup switch parameters */
497     d                = rcutoff-rswitch;
498     swV3             = -10.0/(d*d*d);
499     swV4             =  15.0/(d*d*d*d);
500     swV5             =  -6.0/(d*d*d*d*d);
501     swF2             = -30.0/(d*d*d);
502     swF3             =  60.0/(d*d*d*d);
503     swF4             = -30.0/(d*d*d*d*d);
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     /* Start outer loop over neighborlists */
509     for(iidx=0; iidx<nri; iidx++)
510     {
511         /* Load shift vector for this list */
512         i_shift_offset   = DIM*shiftidx[iidx];
513         shX              = shiftvec[i_shift_offset+XX];
514         shY              = shiftvec[i_shift_offset+YY];
515         shZ              = shiftvec[i_shift_offset+ZZ];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         ix0              = shX + x[i_coord_offset+DIM*0+XX];
527         iy0              = shY + x[i_coord_offset+DIM*0+YY];
528         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
529         ix1              = shX + x[i_coord_offset+DIM*1+XX];
530         iy1              = shY + x[i_coord_offset+DIM*1+YY];
531         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
532         ix2              = shX + x[i_coord_offset+DIM*2+XX];
533         iy2              = shY + x[i_coord_offset+DIM*2+YY];
534         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
535         ix3              = shX + x[i_coord_offset+DIM*3+XX];
536         iy3              = shY + x[i_coord_offset+DIM*3+YY];
537         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
538
539         fix0             = 0.0;
540         fiy0             = 0.0;
541         fiz0             = 0.0;
542         fix1             = 0.0;
543         fiy1             = 0.0;
544         fiz1             = 0.0;
545         fix2             = 0.0;
546         fiy2             = 0.0;
547         fiz2             = 0.0;
548         fix3             = 0.0;
549         fiy3             = 0.0;
550         fiz3             = 0.0;
551
552         /* Start inner kernel loop */
553         for(jidx=j_index_start; jidx<j_index_end; jidx++)
554         {
555             /* Get j neighbor index, and coordinate index */
556             jnr              = jjnr[jidx];
557             j_coord_offset   = DIM*jnr;
558
559             /* load j atom coordinates */
560             jx0              = x[j_coord_offset+DIM*0+XX];
561             jy0              = x[j_coord_offset+DIM*0+YY];
562             jz0              = x[j_coord_offset+DIM*0+ZZ];
563
564             /* Calculate displacement vector */
565             dx00             = ix0 - jx0;
566             dy00             = iy0 - jy0;
567             dz00             = iz0 - jz0;
568             dx10             = ix1 - jx0;
569             dy10             = iy1 - jy0;
570             dz10             = iz1 - jz0;
571             dx20             = ix2 - jx0;
572             dy20             = iy2 - jy0;
573             dz20             = iz2 - jz0;
574             dx30             = ix3 - jx0;
575             dy30             = iy3 - jy0;
576             dz30             = iz3 - jz0;
577
578             /* Calculate squared distance and things based on it */
579             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
580             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
581             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
582             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
583
584             rinv00           = gmx_invsqrt(rsq00);
585             rinv10           = gmx_invsqrt(rsq10);
586             rinv20           = gmx_invsqrt(rsq20);
587             rinv30           = gmx_invsqrt(rsq30);
588
589             rinvsq00         = rinv00*rinv00;
590             rinvsq10         = rinv10*rinv10;
591             rinvsq20         = rinv20*rinv20;
592             rinvsq30         = rinv30*rinv30;
593
594             /* Load parameters for j particles */
595             jq0              = charge[jnr+0];
596             vdwjidx0         = 3*vdwtype[jnr+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (rsq00<rcutoff2)
603             {
604
605             r00              = rsq00*rinv00;
606
607             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
608             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
609             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
610
611             /* BUCKINGHAM DISPERSION/REPULSION */
612             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
613             vvdw6            = c6_00*rinvsix;
614             br               = cexp2_00*r00;
615             vvdwexp          = cexp1_00*exp(-br);
616             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
617             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
618
619             d                = r00-rswitch;
620             d                = (d>0.0) ? d : 0.0;
621             d2               = d*d;
622             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
623
624             dsw              = d2*(swF2+d*(swF3+d*swF4));
625
626             /* Evaluate switch function */
627             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
628             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
629
630             fscal            = fvdw;
631
632             /* Calculate temporary vectorial force */
633             tx               = fscal*dx00;
634             ty               = fscal*dy00;
635             tz               = fscal*dz00;
636
637             /* Update vectorial force */
638             fix0            += tx;
639             fiy0            += ty;
640             fiz0            += tz;
641             f[j_coord_offset+DIM*0+XX] -= tx;
642             f[j_coord_offset+DIM*0+YY] -= ty;
643             f[j_coord_offset+DIM*0+ZZ] -= tz;
644
645             }
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (rsq10<rcutoff2)
652             {
653
654             qq10             = iq1*jq0;
655
656             /* REACTION-FIELD ELECTROSTATICS */
657             felec            = qq10*(rinv10*rinvsq10-krf2);
658
659             fscal            = felec;
660
661             /* Calculate temporary vectorial force */
662             tx               = fscal*dx10;
663             ty               = fscal*dy10;
664             tz               = fscal*dz10;
665
666             /* Update vectorial force */
667             fix1            += tx;
668             fiy1            += ty;
669             fiz1            += tz;
670             f[j_coord_offset+DIM*0+XX] -= tx;
671             f[j_coord_offset+DIM*0+YY] -= ty;
672             f[j_coord_offset+DIM*0+ZZ] -= tz;
673
674             }
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             if (rsq20<rcutoff2)
681             {
682
683             qq20             = iq2*jq0;
684
685             /* REACTION-FIELD ELECTROSTATICS */
686             felec            = qq20*(rinv20*rinvsq20-krf2);
687
688             fscal            = felec;
689
690             /* Calculate temporary vectorial force */
691             tx               = fscal*dx20;
692             ty               = fscal*dy20;
693             tz               = fscal*dz20;
694
695             /* Update vectorial force */
696             fix2            += tx;
697             fiy2            += ty;
698             fiz2            += tz;
699             f[j_coord_offset+DIM*0+XX] -= tx;
700             f[j_coord_offset+DIM*0+YY] -= ty;
701             f[j_coord_offset+DIM*0+ZZ] -= tz;
702
703             }
704
705             /**************************
706              * CALCULATE INTERACTIONS *
707              **************************/
708
709             if (rsq30<rcutoff2)
710             {
711
712             qq30             = iq3*jq0;
713
714             /* REACTION-FIELD ELECTROSTATICS */
715             felec            = qq30*(rinv30*rinvsq30-krf2);
716
717             fscal            = felec;
718
719             /* Calculate temporary vectorial force */
720             tx               = fscal*dx30;
721             ty               = fscal*dy30;
722             tz               = fscal*dz30;
723
724             /* Update vectorial force */
725             fix3            += tx;
726             fiy3            += ty;
727             fiz3            += tz;
728             f[j_coord_offset+DIM*0+XX] -= tx;
729             f[j_coord_offset+DIM*0+YY] -= ty;
730             f[j_coord_offset+DIM*0+ZZ] -= tz;
731
732             }
733
734             /* Inner loop uses 158 flops */
735         }
736         /* End of innermost loop */
737
738         tx = ty = tz = 0;
739         f[i_coord_offset+DIM*0+XX] += fix0;
740         f[i_coord_offset+DIM*0+YY] += fiy0;
741         f[i_coord_offset+DIM*0+ZZ] += fiz0;
742         tx                         += fix0;
743         ty                         += fiy0;
744         tz                         += fiz0;
745         f[i_coord_offset+DIM*1+XX] += fix1;
746         f[i_coord_offset+DIM*1+YY] += fiy1;
747         f[i_coord_offset+DIM*1+ZZ] += fiz1;
748         tx                         += fix1;
749         ty                         += fiy1;
750         tz                         += fiz1;
751         f[i_coord_offset+DIM*2+XX] += fix2;
752         f[i_coord_offset+DIM*2+YY] += fiy2;
753         f[i_coord_offset+DIM*2+ZZ] += fiz2;
754         tx                         += fix2;
755         ty                         += fiy2;
756         tz                         += fiz2;
757         f[i_coord_offset+DIM*3+XX] += fix3;
758         f[i_coord_offset+DIM*3+YY] += fiy3;
759         f[i_coord_offset+DIM*3+ZZ] += fiz3;
760         tx                         += fix3;
761         ty                         += fiy3;
762         tz                         += fiz3;
763         fshift[i_shift_offset+XX]  += tx;
764         fshift[i_shift_offset+YY]  += ty;
765         fshift[i_shift_offset+ZZ]  += tz;
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 39 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*158);
779 }