Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            Buckingham
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
67     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
68     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
69     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
70     real             velec,felec,velecsum,facel,crf,krf,krf2;
71     real             *charge;
72     int              nvdwtype;
73     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
74     int              *vdwtype;
75     real             *vdwparam;
76
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = fr->epsfac;
89     charge           = mdatoms->chargeA;
90     krf              = fr->ic->k_rf;
91     krf2             = krf*2.0;
92     crf              = fr->ic->c_rf;
93     nvdwtype         = fr->ntype;
94     vdwparam         = fr->nbfp;
95     vdwtype          = mdatoms->typeA;
96
97     /* Setup water-specific parameters */
98     inr              = nlist->iinr[0];
99     iq1              = facel*charge[inr+1];
100     iq2              = facel*charge[inr+2];
101     iq3              = facel*charge[inr+3];
102     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
103
104     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105     rcutoff          = fr->rcoulomb;
106     rcutoff2         = rcutoff*rcutoff;
107
108     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
109     rvdw             = fr->rvdw;
110
111     outeriter        = 0;
112     inneriter        = 0;
113
114     /* Start outer loop over neighborlists */
115     for(iidx=0; iidx<nri; iidx++)
116     {
117         /* Load shift vector for this list */
118         i_shift_offset   = DIM*shiftidx[iidx];
119         shX              = shiftvec[i_shift_offset+XX];
120         shY              = shiftvec[i_shift_offset+YY];
121         shZ              = shiftvec[i_shift_offset+ZZ];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         ix0              = shX + x[i_coord_offset+DIM*0+XX];
133         iy0              = shY + x[i_coord_offset+DIM*0+YY];
134         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
135         ix1              = shX + x[i_coord_offset+DIM*1+XX];
136         iy1              = shY + x[i_coord_offset+DIM*1+YY];
137         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
138         ix2              = shX + x[i_coord_offset+DIM*2+XX];
139         iy2              = shY + x[i_coord_offset+DIM*2+YY];
140         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
141         ix3              = shX + x[i_coord_offset+DIM*3+XX];
142         iy3              = shY + x[i_coord_offset+DIM*3+YY];
143         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
144
145         fix0             = 0.0;
146         fiy0             = 0.0;
147         fiz0             = 0.0;
148         fix1             = 0.0;
149         fiy1             = 0.0;
150         fiz1             = 0.0;
151         fix2             = 0.0;
152         fiy2             = 0.0;
153         fiz2             = 0.0;
154         fix3             = 0.0;
155         fiy3             = 0.0;
156         fiz3             = 0.0;
157
158         /* Reset potential sums */
159         velecsum         = 0.0;
160         vvdwsum          = 0.0;
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end; jidx++)
164         {
165             /* Get j neighbor index, and coordinate index */
166             jnr              = jjnr[jidx];
167             j_coord_offset   = DIM*jnr;
168
169             /* load j atom coordinates */
170             jx0              = x[j_coord_offset+DIM*0+XX];
171             jy0              = x[j_coord_offset+DIM*0+YY];
172             jz0              = x[j_coord_offset+DIM*0+ZZ];
173
174             /* Calculate displacement vector */
175             dx00             = ix0 - jx0;
176             dy00             = iy0 - jy0;
177             dz00             = iz0 - jz0;
178             dx10             = ix1 - jx0;
179             dy10             = iy1 - jy0;
180             dz10             = iz1 - jz0;
181             dx20             = ix2 - jx0;
182             dy20             = iy2 - jy0;
183             dz20             = iz2 - jz0;
184             dx30             = ix3 - jx0;
185             dy30             = iy3 - jy0;
186             dz30             = iz3 - jz0;
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
190             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
191             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
192             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
193
194             rinv00           = gmx_invsqrt(rsq00);
195             rinv10           = gmx_invsqrt(rsq10);
196             rinv20           = gmx_invsqrt(rsq20);
197             rinv30           = gmx_invsqrt(rsq30);
198
199             rinvsq00         = rinv00*rinv00;
200             rinvsq10         = rinv10*rinv10;
201             rinvsq20         = rinv20*rinv20;
202             rinvsq30         = rinv30*rinv30;
203
204             /* Load parameters for j particles */
205             jq0              = charge[jnr+0];
206             vdwjidx0         = 3*vdwtype[jnr+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (rsq00<rcutoff2)
213             {
214
215             r00              = rsq00*rinv00;
216
217             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
218             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
219             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
220
221             /* BUCKINGHAM DISPERSION/REPULSION */
222             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
223             vvdw6            = c6_00*rinvsix;
224             br               = cexp2_00*r00;
225             vvdwexp          = cexp1_00*exp(-br);
226             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
227             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
228
229             /* Update potential sums from outer loop */
230             vvdwsum         += vvdw;
231
232             fscal            = fvdw;
233
234             /* Calculate temporary vectorial force */
235             tx               = fscal*dx00;
236             ty               = fscal*dy00;
237             tz               = fscal*dz00;
238
239             /* Update vectorial force */
240             fix0            += tx;
241             fiy0            += ty;
242             fiz0            += tz;
243             f[j_coord_offset+DIM*0+XX] -= tx;
244             f[j_coord_offset+DIM*0+YY] -= ty;
245             f[j_coord_offset+DIM*0+ZZ] -= tz;
246
247             }
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (rsq10<rcutoff2)
254             {
255
256             qq10             = iq1*jq0;
257
258             /* REACTION-FIELD ELECTROSTATICS */
259             velec            = qq10*(rinv10+krf*rsq10-crf);
260             felec            = qq10*(rinv10*rinvsq10-krf2);
261
262             /* Update potential sums from outer loop */
263             velecsum        += velec;
264
265             fscal            = felec;
266
267             /* Calculate temporary vectorial force */
268             tx               = fscal*dx10;
269             ty               = fscal*dy10;
270             tz               = fscal*dz10;
271
272             /* Update vectorial force */
273             fix1            += tx;
274             fiy1            += ty;
275             fiz1            += tz;
276             f[j_coord_offset+DIM*0+XX] -= tx;
277             f[j_coord_offset+DIM*0+YY] -= ty;
278             f[j_coord_offset+DIM*0+ZZ] -= tz;
279
280             }
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (rsq20<rcutoff2)
287             {
288
289             qq20             = iq2*jq0;
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = qq20*(rinv20+krf*rsq20-crf);
293             felec            = qq20*(rinv20*rinvsq20-krf2);
294
295             /* Update potential sums from outer loop */
296             velecsum        += velec;
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = fscal*dx20;
302             ty               = fscal*dy20;
303             tz               = fscal*dz20;
304
305             /* Update vectorial force */
306             fix2            += tx;
307             fiy2            += ty;
308             fiz2            += tz;
309             f[j_coord_offset+DIM*0+XX] -= tx;
310             f[j_coord_offset+DIM*0+YY] -= ty;
311             f[j_coord_offset+DIM*0+ZZ] -= tz;
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (rsq30<rcutoff2)
320             {
321
322             qq30             = iq3*jq0;
323
324             /* REACTION-FIELD ELECTROSTATICS */
325             velec            = qq30*(rinv30+krf*rsq30-crf);
326             felec            = qq30*(rinv30*rinvsq30-krf2);
327
328             /* Update potential sums from outer loop */
329             velecsum        += velec;
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = fscal*dx30;
335             ty               = fscal*dy30;
336             tz               = fscal*dz30;
337
338             /* Update vectorial force */
339             fix3            += tx;
340             fiy3            += ty;
341             fiz3            += tz;
342             f[j_coord_offset+DIM*0+XX] -= tx;
343             f[j_coord_offset+DIM*0+YY] -= ty;
344             f[j_coord_offset+DIM*0+ZZ] -= tz;
345
346             }
347
348             /* Inner loop uses 188 flops */
349         }
350         /* End of innermost loop */
351
352         tx = ty = tz = 0;
353         f[i_coord_offset+DIM*0+XX] += fix0;
354         f[i_coord_offset+DIM*0+YY] += fiy0;
355         f[i_coord_offset+DIM*0+ZZ] += fiz0;
356         tx                         += fix0;
357         ty                         += fiy0;
358         tz                         += fiz0;
359         f[i_coord_offset+DIM*1+XX] += fix1;
360         f[i_coord_offset+DIM*1+YY] += fiy1;
361         f[i_coord_offset+DIM*1+ZZ] += fiz1;
362         tx                         += fix1;
363         ty                         += fiy1;
364         tz                         += fiz1;
365         f[i_coord_offset+DIM*2+XX] += fix2;
366         f[i_coord_offset+DIM*2+YY] += fiy2;
367         f[i_coord_offset+DIM*2+ZZ] += fiz2;
368         tx                         += fix2;
369         ty                         += fiy2;
370         tz                         += fiz2;
371         f[i_coord_offset+DIM*3+XX] += fix3;
372         f[i_coord_offset+DIM*3+YY] += fiy3;
373         f[i_coord_offset+DIM*3+ZZ] += fiz3;
374         tx                         += fix3;
375         ty                         += fiy3;
376         tz                         += fiz3;
377         fshift[i_shift_offset+XX]  += tx;
378         fshift[i_shift_offset+YY]  += ty;
379         fshift[i_shift_offset+ZZ]  += tz;
380
381         ggid                        = gid[iidx];
382         /* Update potential energies */
383         kernel_data->energygrp_elec[ggid] += velecsum;
384         kernel_data->energygrp_vdw[ggid] += vvdwsum;
385
386         /* Increment number of inner iterations */
387         inneriter                  += j_index_end - j_index_start;
388
389         /* Outer loop uses 41 flops */
390     }
391
392     /* Increment number of outer iterations */
393     outeriter        += nri;
394
395     /* Update outer/inner flops */
396
397     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*188);
398 }
399 /*
400  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_F_c
401  * Electrostatics interaction: ReactionField
402  * VdW interaction:            Buckingham
403  * Geometry:                   Water4-Particle
404  * Calculate force/pot:        Force
405  */
406 void
407 nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_F_c
408                     (t_nblist * gmx_restrict                nlist,
409                      rvec * gmx_restrict                    xx,
410                      rvec * gmx_restrict                    ff,
411                      t_forcerec * gmx_restrict              fr,
412                      t_mdatoms * gmx_restrict               mdatoms,
413                      nb_kernel_data_t * gmx_restrict        kernel_data,
414                      t_nrnb * gmx_restrict                  nrnb)
415 {
416     int              i_shift_offset,i_coord_offset,j_coord_offset;
417     int              j_index_start,j_index_end;
418     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
419     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
420     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
421     real             *shiftvec,*fshift,*x,*f;
422     int              vdwioffset0;
423     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
424     int              vdwioffset1;
425     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
426     int              vdwioffset2;
427     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
428     int              vdwioffset3;
429     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
430     int              vdwjidx0;
431     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
432     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
433     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
434     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
435     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
436     real             velec,felec,velecsum,facel,crf,krf,krf2;
437     real             *charge;
438     int              nvdwtype;
439     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
440     int              *vdwtype;
441     real             *vdwparam;
442
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = fr->epsfac;
455     charge           = mdatoms->chargeA;
456     krf              = fr->ic->k_rf;
457     krf2             = krf*2.0;
458     crf              = fr->ic->c_rf;
459     nvdwtype         = fr->ntype;
460     vdwparam         = fr->nbfp;
461     vdwtype          = mdatoms->typeA;
462
463     /* Setup water-specific parameters */
464     inr              = nlist->iinr[0];
465     iq1              = facel*charge[inr+1];
466     iq2              = facel*charge[inr+2];
467     iq3              = facel*charge[inr+3];
468     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
469
470     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
471     rcutoff          = fr->rcoulomb;
472     rcutoff2         = rcutoff*rcutoff;
473
474     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
475     rvdw             = fr->rvdw;
476
477     outeriter        = 0;
478     inneriter        = 0;
479
480     /* Start outer loop over neighborlists */
481     for(iidx=0; iidx<nri; iidx++)
482     {
483         /* Load shift vector for this list */
484         i_shift_offset   = DIM*shiftidx[iidx];
485         shX              = shiftvec[i_shift_offset+XX];
486         shY              = shiftvec[i_shift_offset+YY];
487         shZ              = shiftvec[i_shift_offset+ZZ];
488
489         /* Load limits for loop over neighbors */
490         j_index_start    = jindex[iidx];
491         j_index_end      = jindex[iidx+1];
492
493         /* Get outer coordinate index */
494         inr              = iinr[iidx];
495         i_coord_offset   = DIM*inr;
496
497         /* Load i particle coords and add shift vector */
498         ix0              = shX + x[i_coord_offset+DIM*0+XX];
499         iy0              = shY + x[i_coord_offset+DIM*0+YY];
500         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
501         ix1              = shX + x[i_coord_offset+DIM*1+XX];
502         iy1              = shY + x[i_coord_offset+DIM*1+YY];
503         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
504         ix2              = shX + x[i_coord_offset+DIM*2+XX];
505         iy2              = shY + x[i_coord_offset+DIM*2+YY];
506         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
507         ix3              = shX + x[i_coord_offset+DIM*3+XX];
508         iy3              = shY + x[i_coord_offset+DIM*3+YY];
509         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
510
511         fix0             = 0.0;
512         fiy0             = 0.0;
513         fiz0             = 0.0;
514         fix1             = 0.0;
515         fiy1             = 0.0;
516         fiz1             = 0.0;
517         fix2             = 0.0;
518         fiy2             = 0.0;
519         fiz2             = 0.0;
520         fix3             = 0.0;
521         fiy3             = 0.0;
522         fiz3             = 0.0;
523
524         /* Start inner kernel loop */
525         for(jidx=j_index_start; jidx<j_index_end; jidx++)
526         {
527             /* Get j neighbor index, and coordinate index */
528             jnr              = jjnr[jidx];
529             j_coord_offset   = DIM*jnr;
530
531             /* load j atom coordinates */
532             jx0              = x[j_coord_offset+DIM*0+XX];
533             jy0              = x[j_coord_offset+DIM*0+YY];
534             jz0              = x[j_coord_offset+DIM*0+ZZ];
535
536             /* Calculate displacement vector */
537             dx00             = ix0 - jx0;
538             dy00             = iy0 - jy0;
539             dz00             = iz0 - jz0;
540             dx10             = ix1 - jx0;
541             dy10             = iy1 - jy0;
542             dz10             = iz1 - jz0;
543             dx20             = ix2 - jx0;
544             dy20             = iy2 - jy0;
545             dz20             = iz2 - jz0;
546             dx30             = ix3 - jx0;
547             dy30             = iy3 - jy0;
548             dz30             = iz3 - jz0;
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
552             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
553             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
554             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
555
556             rinv00           = gmx_invsqrt(rsq00);
557             rinv10           = gmx_invsqrt(rsq10);
558             rinv20           = gmx_invsqrt(rsq20);
559             rinv30           = gmx_invsqrt(rsq30);
560
561             rinvsq00         = rinv00*rinv00;
562             rinvsq10         = rinv10*rinv10;
563             rinvsq20         = rinv20*rinv20;
564             rinvsq30         = rinv30*rinv30;
565
566             /* Load parameters for j particles */
567             jq0              = charge[jnr+0];
568             vdwjidx0         = 3*vdwtype[jnr+0];
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (rsq00<rcutoff2)
575             {
576
577             r00              = rsq00*rinv00;
578
579             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
580             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
581             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
582
583             /* BUCKINGHAM DISPERSION/REPULSION */
584             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
585             vvdw6            = c6_00*rinvsix;
586             br               = cexp2_00*r00;
587             vvdwexp          = cexp1_00*exp(-br);
588             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
589
590             fscal            = fvdw;
591
592             /* Calculate temporary vectorial force */
593             tx               = fscal*dx00;
594             ty               = fscal*dy00;
595             tz               = fscal*dz00;
596
597             /* Update vectorial force */
598             fix0            += tx;
599             fiy0            += ty;
600             fiz0            += tz;
601             f[j_coord_offset+DIM*0+XX] -= tx;
602             f[j_coord_offset+DIM*0+YY] -= ty;
603             f[j_coord_offset+DIM*0+ZZ] -= tz;
604
605             }
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             if (rsq10<rcutoff2)
612             {
613
614             qq10             = iq1*jq0;
615
616             /* REACTION-FIELD ELECTROSTATICS */
617             felec            = qq10*(rinv10*rinvsq10-krf2);
618
619             fscal            = felec;
620
621             /* Calculate temporary vectorial force */
622             tx               = fscal*dx10;
623             ty               = fscal*dy10;
624             tz               = fscal*dz10;
625
626             /* Update vectorial force */
627             fix1            += tx;
628             fiy1            += ty;
629             fiz1            += tz;
630             f[j_coord_offset+DIM*0+XX] -= tx;
631             f[j_coord_offset+DIM*0+YY] -= ty;
632             f[j_coord_offset+DIM*0+ZZ] -= tz;
633
634             }
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (rsq20<rcutoff2)
641             {
642
643             qq20             = iq2*jq0;
644
645             /* REACTION-FIELD ELECTROSTATICS */
646             felec            = qq20*(rinv20*rinvsq20-krf2);
647
648             fscal            = felec;
649
650             /* Calculate temporary vectorial force */
651             tx               = fscal*dx20;
652             ty               = fscal*dy20;
653             tz               = fscal*dz20;
654
655             /* Update vectorial force */
656             fix2            += tx;
657             fiy2            += ty;
658             fiz2            += tz;
659             f[j_coord_offset+DIM*0+XX] -= tx;
660             f[j_coord_offset+DIM*0+YY] -= ty;
661             f[j_coord_offset+DIM*0+ZZ] -= tz;
662
663             }
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             if (rsq30<rcutoff2)
670             {
671
672             qq30             = iq3*jq0;
673
674             /* REACTION-FIELD ELECTROSTATICS */
675             felec            = qq30*(rinv30*rinvsq30-krf2);
676
677             fscal            = felec;
678
679             /* Calculate temporary vectorial force */
680             tx               = fscal*dx30;
681             ty               = fscal*dy30;
682             tz               = fscal*dz30;
683
684             /* Update vectorial force */
685             fix3            += tx;
686             fiy3            += ty;
687             fiz3            += tz;
688             f[j_coord_offset+DIM*0+XX] -= tx;
689             f[j_coord_offset+DIM*0+YY] -= ty;
690             f[j_coord_offset+DIM*0+ZZ] -= tz;
691
692             }
693
694             /* Inner loop uses 139 flops */
695         }
696         /* End of innermost loop */
697
698         tx = ty = tz = 0;
699         f[i_coord_offset+DIM*0+XX] += fix0;
700         f[i_coord_offset+DIM*0+YY] += fiy0;
701         f[i_coord_offset+DIM*0+ZZ] += fiz0;
702         tx                         += fix0;
703         ty                         += fiy0;
704         tz                         += fiz0;
705         f[i_coord_offset+DIM*1+XX] += fix1;
706         f[i_coord_offset+DIM*1+YY] += fiy1;
707         f[i_coord_offset+DIM*1+ZZ] += fiz1;
708         tx                         += fix1;
709         ty                         += fiy1;
710         tz                         += fiz1;
711         f[i_coord_offset+DIM*2+XX] += fix2;
712         f[i_coord_offset+DIM*2+YY] += fiy2;
713         f[i_coord_offset+DIM*2+ZZ] += fiz2;
714         tx                         += fix2;
715         ty                         += fiy2;
716         tz                         += fiz2;
717         f[i_coord_offset+DIM*3+XX] += fix3;
718         f[i_coord_offset+DIM*3+YY] += fiy3;
719         f[i_coord_offset+DIM*3+ZZ] += fiz3;
720         tx                         += fix3;
721         ty                         += fiy3;
722         tz                         += fiz3;
723         fshift[i_shift_offset+XX]  += tx;
724         fshift[i_shift_offset+YY]  += ty;
725         fshift[i_shift_offset+ZZ]  += tz;
726
727         /* Increment number of inner iterations */
728         inneriter                  += j_index_end - j_index_start;
729
730         /* Outer loop uses 39 flops */
731     }
732
733     /* Increment number of outer iterations */
734     outeriter        += nri;
735
736     /* Update outer/inner flops */
737
738     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*139);
739 }