83d23be9971336a7db4e50316570e5afe74faa40
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            Buckingham
37  * Geometry:                   Water3-Water3
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     int              vdwjidx1;
65     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
66     int              vdwjidx2;
67     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
68     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
69     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
70     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
71     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
72     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
73     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
74     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
75     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
76     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = fr->epsfac;
96     charge           = mdatoms->chargeA;
97     krf              = fr->ic->k_rf;
98     krf2             = krf*2.0;
99     crf              = fr->ic->c_rf;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     /* Setup water-specific parameters */
105     inr              = nlist->iinr[0];
106     iq0              = facel*charge[inr+0];
107     iq1              = facel*charge[inr+1];
108     iq2              = facel*charge[inr+2];
109     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
110
111     jq0              = charge[inr+0];
112     jq1              = charge[inr+1];
113     jq2              = charge[inr+2];
114     vdwjidx0         = 3*vdwtype[inr+0];
115     qq00             = iq0*jq0;
116     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
117     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
118     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
119     qq01             = iq0*jq1;
120     qq02             = iq0*jq2;
121     qq10             = iq1*jq0;
122     qq11             = iq1*jq1;
123     qq12             = iq1*jq2;
124     qq20             = iq2*jq0;
125     qq21             = iq2*jq1;
126     qq22             = iq2*jq2;
127
128     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
129     rcutoff          = fr->rcoulomb;
130     rcutoff2         = rcutoff*rcutoff;
131
132     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
133     rvdw             = fr->rvdw;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143         shX              = shiftvec[i_shift_offset+XX];
144         shY              = shiftvec[i_shift_offset+YY];
145         shZ              = shiftvec[i_shift_offset+ZZ];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         ix0              = shX + x[i_coord_offset+DIM*0+XX];
157         iy0              = shY + x[i_coord_offset+DIM*0+YY];
158         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
159         ix1              = shX + x[i_coord_offset+DIM*1+XX];
160         iy1              = shY + x[i_coord_offset+DIM*1+YY];
161         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
162         ix2              = shX + x[i_coord_offset+DIM*2+XX];
163         iy2              = shY + x[i_coord_offset+DIM*2+YY];
164         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
165
166         fix0             = 0.0;
167         fiy0             = 0.0;
168         fiz0             = 0.0;
169         fix1             = 0.0;
170         fiy1             = 0.0;
171         fiz1             = 0.0;
172         fix2             = 0.0;
173         fiy2             = 0.0;
174         fiz2             = 0.0;
175
176         /* Reset potential sums */
177         velecsum         = 0.0;
178         vvdwsum          = 0.0;
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end; jidx++)
182         {
183             /* Get j neighbor index, and coordinate index */
184             jnr              = jjnr[jidx];
185             j_coord_offset   = DIM*jnr;
186
187             /* load j atom coordinates */
188             jx0              = x[j_coord_offset+DIM*0+XX];
189             jy0              = x[j_coord_offset+DIM*0+YY];
190             jz0              = x[j_coord_offset+DIM*0+ZZ];
191             jx1              = x[j_coord_offset+DIM*1+XX];
192             jy1              = x[j_coord_offset+DIM*1+YY];
193             jz1              = x[j_coord_offset+DIM*1+ZZ];
194             jx2              = x[j_coord_offset+DIM*2+XX];
195             jy2              = x[j_coord_offset+DIM*2+YY];
196             jz2              = x[j_coord_offset+DIM*2+ZZ];
197
198             /* Calculate displacement vector */
199             dx00             = ix0 - jx0;
200             dy00             = iy0 - jy0;
201             dz00             = iz0 - jz0;
202             dx01             = ix0 - jx1;
203             dy01             = iy0 - jy1;
204             dz01             = iz0 - jz1;
205             dx02             = ix0 - jx2;
206             dy02             = iy0 - jy2;
207             dz02             = iz0 - jz2;
208             dx10             = ix1 - jx0;
209             dy10             = iy1 - jy0;
210             dz10             = iz1 - jz0;
211             dx11             = ix1 - jx1;
212             dy11             = iy1 - jy1;
213             dz11             = iz1 - jz1;
214             dx12             = ix1 - jx2;
215             dy12             = iy1 - jy2;
216             dz12             = iz1 - jz2;
217             dx20             = ix2 - jx0;
218             dy20             = iy2 - jy0;
219             dz20             = iz2 - jz0;
220             dx21             = ix2 - jx1;
221             dy21             = iy2 - jy1;
222             dz21             = iz2 - jz1;
223             dx22             = ix2 - jx2;
224             dy22             = iy2 - jy2;
225             dz22             = iz2 - jz2;
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
229             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
230             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
231             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
232             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
233             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
234             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
235             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
236             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
237
238             rinv00           = gmx_invsqrt(rsq00);
239             rinv01           = gmx_invsqrt(rsq01);
240             rinv02           = gmx_invsqrt(rsq02);
241             rinv10           = gmx_invsqrt(rsq10);
242             rinv11           = gmx_invsqrt(rsq11);
243             rinv12           = gmx_invsqrt(rsq12);
244             rinv20           = gmx_invsqrt(rsq20);
245             rinv21           = gmx_invsqrt(rsq21);
246             rinv22           = gmx_invsqrt(rsq22);
247
248             rinvsq00         = rinv00*rinv00;
249             rinvsq01         = rinv01*rinv01;
250             rinvsq02         = rinv02*rinv02;
251             rinvsq10         = rinv10*rinv10;
252             rinvsq11         = rinv11*rinv11;
253             rinvsq12         = rinv12*rinv12;
254             rinvsq20         = rinv20*rinv20;
255             rinvsq21         = rinv21*rinv21;
256             rinvsq22         = rinv22*rinv22;
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (rsq00<rcutoff2)
263             {
264
265             r00              = rsq00*rinv00;
266
267             /* REACTION-FIELD ELECTROSTATICS */
268             velec            = qq00*(rinv00+krf*rsq00-crf);
269             felec            = qq00*(rinv00*rinvsq00-krf2);
270
271             /* BUCKINGHAM DISPERSION/REPULSION */
272             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
273             vvdw6            = c6_00*rinvsix;
274             br               = cexp2_00*r00;
275             vvdwexp          = cexp1_00*exp(-br);
276             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
277             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
278
279             /* Update potential sums from outer loop */
280             velecsum        += velec;
281             vvdwsum         += vvdw;
282
283             fscal            = felec+fvdw;
284
285             /* Calculate temporary vectorial force */
286             tx               = fscal*dx00;
287             ty               = fscal*dy00;
288             tz               = fscal*dz00;
289
290             /* Update vectorial force */
291             fix0            += tx;
292             fiy0            += ty;
293             fiz0            += tz;
294             f[j_coord_offset+DIM*0+XX] -= tx;
295             f[j_coord_offset+DIM*0+YY] -= ty;
296             f[j_coord_offset+DIM*0+ZZ] -= tz;
297
298             }
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             if (rsq01<rcutoff2)
305             {
306
307             /* REACTION-FIELD ELECTROSTATICS */
308             velec            = qq01*(rinv01+krf*rsq01-crf);
309             felec            = qq01*(rinv01*rinvsq01-krf2);
310
311             /* Update potential sums from outer loop */
312             velecsum        += velec;
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = fscal*dx01;
318             ty               = fscal*dy01;
319             tz               = fscal*dz01;
320
321             /* Update vectorial force */
322             fix0            += tx;
323             fiy0            += ty;
324             fiz0            += tz;
325             f[j_coord_offset+DIM*1+XX] -= tx;
326             f[j_coord_offset+DIM*1+YY] -= ty;
327             f[j_coord_offset+DIM*1+ZZ] -= tz;
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (rsq02<rcutoff2)
336             {
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = qq02*(rinv02+krf*rsq02-crf);
340             felec            = qq02*(rinv02*rinvsq02-krf2);
341
342             /* Update potential sums from outer loop */
343             velecsum        += velec;
344
345             fscal            = felec;
346
347             /* Calculate temporary vectorial force */
348             tx               = fscal*dx02;
349             ty               = fscal*dy02;
350             tz               = fscal*dz02;
351
352             /* Update vectorial force */
353             fix0            += tx;
354             fiy0            += ty;
355             fiz0            += tz;
356             f[j_coord_offset+DIM*2+XX] -= tx;
357             f[j_coord_offset+DIM*2+YY] -= ty;
358             f[j_coord_offset+DIM*2+ZZ] -= tz;
359
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (rsq10<rcutoff2)
367             {
368
369             /* REACTION-FIELD ELECTROSTATICS */
370             velec            = qq10*(rinv10+krf*rsq10-crf);
371             felec            = qq10*(rinv10*rinvsq10-krf2);
372
373             /* Update potential sums from outer loop */
374             velecsum        += velec;
375
376             fscal            = felec;
377
378             /* Calculate temporary vectorial force */
379             tx               = fscal*dx10;
380             ty               = fscal*dy10;
381             tz               = fscal*dz10;
382
383             /* Update vectorial force */
384             fix1            += tx;
385             fiy1            += ty;
386             fiz1            += tz;
387             f[j_coord_offset+DIM*0+XX] -= tx;
388             f[j_coord_offset+DIM*0+YY] -= ty;
389             f[j_coord_offset+DIM*0+ZZ] -= tz;
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (rsq11<rcutoff2)
398             {
399
400             /* REACTION-FIELD ELECTROSTATICS */
401             velec            = qq11*(rinv11+krf*rsq11-crf);
402             felec            = qq11*(rinv11*rinvsq11-krf2);
403
404             /* Update potential sums from outer loop */
405             velecsum        += velec;
406
407             fscal            = felec;
408
409             /* Calculate temporary vectorial force */
410             tx               = fscal*dx11;
411             ty               = fscal*dy11;
412             tz               = fscal*dz11;
413
414             /* Update vectorial force */
415             fix1            += tx;
416             fiy1            += ty;
417             fiz1            += tz;
418             f[j_coord_offset+DIM*1+XX] -= tx;
419             f[j_coord_offset+DIM*1+YY] -= ty;
420             f[j_coord_offset+DIM*1+ZZ] -= tz;
421
422             }
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             if (rsq12<rcutoff2)
429             {
430
431             /* REACTION-FIELD ELECTROSTATICS */
432             velec            = qq12*(rinv12+krf*rsq12-crf);
433             felec            = qq12*(rinv12*rinvsq12-krf2);
434
435             /* Update potential sums from outer loop */
436             velecsum        += velec;
437
438             fscal            = felec;
439
440             /* Calculate temporary vectorial force */
441             tx               = fscal*dx12;
442             ty               = fscal*dy12;
443             tz               = fscal*dz12;
444
445             /* Update vectorial force */
446             fix1            += tx;
447             fiy1            += ty;
448             fiz1            += tz;
449             f[j_coord_offset+DIM*2+XX] -= tx;
450             f[j_coord_offset+DIM*2+YY] -= ty;
451             f[j_coord_offset+DIM*2+ZZ] -= tz;
452
453             }
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             if (rsq20<rcutoff2)
460             {
461
462             /* REACTION-FIELD ELECTROSTATICS */
463             velec            = qq20*(rinv20+krf*rsq20-crf);
464             felec            = qq20*(rinv20*rinvsq20-krf2);
465
466             /* Update potential sums from outer loop */
467             velecsum        += velec;
468
469             fscal            = felec;
470
471             /* Calculate temporary vectorial force */
472             tx               = fscal*dx20;
473             ty               = fscal*dy20;
474             tz               = fscal*dz20;
475
476             /* Update vectorial force */
477             fix2            += tx;
478             fiy2            += ty;
479             fiz2            += tz;
480             f[j_coord_offset+DIM*0+XX] -= tx;
481             f[j_coord_offset+DIM*0+YY] -= ty;
482             f[j_coord_offset+DIM*0+ZZ] -= tz;
483
484             }
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (rsq21<rcutoff2)
491             {
492
493             /* REACTION-FIELD ELECTROSTATICS */
494             velec            = qq21*(rinv21+krf*rsq21-crf);
495             felec            = qq21*(rinv21*rinvsq21-krf2);
496
497             /* Update potential sums from outer loop */
498             velecsum        += velec;
499
500             fscal            = felec;
501
502             /* Calculate temporary vectorial force */
503             tx               = fscal*dx21;
504             ty               = fscal*dy21;
505             tz               = fscal*dz21;
506
507             /* Update vectorial force */
508             fix2            += tx;
509             fiy2            += ty;
510             fiz2            += tz;
511             f[j_coord_offset+DIM*1+XX] -= tx;
512             f[j_coord_offset+DIM*1+YY] -= ty;
513             f[j_coord_offset+DIM*1+ZZ] -= tz;
514
515             }
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (rsq22<rcutoff2)
522             {
523
524             /* REACTION-FIELD ELECTROSTATICS */
525             velec            = qq22*(rinv22+krf*rsq22-crf);
526             felec            = qq22*(rinv22*rinvsq22-krf2);
527
528             /* Update potential sums from outer loop */
529             velecsum        += velec;
530
531             fscal            = felec;
532
533             /* Calculate temporary vectorial force */
534             tx               = fscal*dx22;
535             ty               = fscal*dy22;
536             tz               = fscal*dz22;
537
538             /* Update vectorial force */
539             fix2            += tx;
540             fiy2            += ty;
541             fiz2            += tz;
542             f[j_coord_offset+DIM*2+XX] -= tx;
543             f[j_coord_offset+DIM*2+YY] -= ty;
544             f[j_coord_offset+DIM*2+ZZ] -= tz;
545
546             }
547
548             /* Inner loop uses 349 flops */
549         }
550         /* End of innermost loop */
551
552         tx = ty = tz = 0;
553         f[i_coord_offset+DIM*0+XX] += fix0;
554         f[i_coord_offset+DIM*0+YY] += fiy0;
555         f[i_coord_offset+DIM*0+ZZ] += fiz0;
556         tx                         += fix0;
557         ty                         += fiy0;
558         tz                         += fiz0;
559         f[i_coord_offset+DIM*1+XX] += fix1;
560         f[i_coord_offset+DIM*1+YY] += fiy1;
561         f[i_coord_offset+DIM*1+ZZ] += fiz1;
562         tx                         += fix1;
563         ty                         += fiy1;
564         tz                         += fiz1;
565         f[i_coord_offset+DIM*2+XX] += fix2;
566         f[i_coord_offset+DIM*2+YY] += fiy2;
567         f[i_coord_offset+DIM*2+ZZ] += fiz2;
568         tx                         += fix2;
569         ty                         += fiy2;
570         tz                         += fiz2;
571         fshift[i_shift_offset+XX]  += tx;
572         fshift[i_shift_offset+YY]  += ty;
573         fshift[i_shift_offset+ZZ]  += tz;
574
575         ggid                        = gid[iidx];
576         /* Update potential energies */
577         kernel_data->energygrp_elec[ggid] += velecsum;
578         kernel_data->energygrp_vdw[ggid] += vvdwsum;
579
580         /* Increment number of inner iterations */
581         inneriter                  += j_index_end - j_index_start;
582
583         /* Outer loop uses 32 flops */
584     }
585
586     /* Increment number of outer iterations */
587     outeriter        += nri;
588
589     /* Update outer/inner flops */
590
591     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*349);
592 }
593 /*
594  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_F_c
595  * Electrostatics interaction: ReactionField
596  * VdW interaction:            Buckingham
597  * Geometry:                   Water3-Water3
598  * Calculate force/pot:        Force
599  */
600 void
601 nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_F_c
602                     (t_nblist * gmx_restrict                nlist,
603                      rvec * gmx_restrict                    xx,
604                      rvec * gmx_restrict                    ff,
605                      t_forcerec * gmx_restrict              fr,
606                      t_mdatoms * gmx_restrict               mdatoms,
607                      nb_kernel_data_t * gmx_restrict        kernel_data,
608                      t_nrnb * gmx_restrict                  nrnb)
609 {
610     int              i_shift_offset,i_coord_offset,j_coord_offset;
611     int              j_index_start,j_index_end;
612     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
613     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
614     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
615     real             *shiftvec,*fshift,*x,*f;
616     int              vdwioffset0;
617     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
618     int              vdwioffset1;
619     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
620     int              vdwioffset2;
621     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
622     int              vdwjidx0;
623     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
624     int              vdwjidx1;
625     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
626     int              vdwjidx2;
627     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
628     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
629     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
630     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
631     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
632     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
633     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
634     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
635     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
636     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
637     real             velec,felec,velecsum,facel,crf,krf,krf2;
638     real             *charge;
639     int              nvdwtype;
640     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
641     int              *vdwtype;
642     real             *vdwparam;
643
644     x                = xx[0];
645     f                = ff[0];
646
647     nri              = nlist->nri;
648     iinr             = nlist->iinr;
649     jindex           = nlist->jindex;
650     jjnr             = nlist->jjnr;
651     shiftidx         = nlist->shift;
652     gid              = nlist->gid;
653     shiftvec         = fr->shift_vec[0];
654     fshift           = fr->fshift[0];
655     facel            = fr->epsfac;
656     charge           = mdatoms->chargeA;
657     krf              = fr->ic->k_rf;
658     krf2             = krf*2.0;
659     crf              = fr->ic->c_rf;
660     nvdwtype         = fr->ntype;
661     vdwparam         = fr->nbfp;
662     vdwtype          = mdatoms->typeA;
663
664     /* Setup water-specific parameters */
665     inr              = nlist->iinr[0];
666     iq0              = facel*charge[inr+0];
667     iq1              = facel*charge[inr+1];
668     iq2              = facel*charge[inr+2];
669     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
670
671     jq0              = charge[inr+0];
672     jq1              = charge[inr+1];
673     jq2              = charge[inr+2];
674     vdwjidx0         = 3*vdwtype[inr+0];
675     qq00             = iq0*jq0;
676     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
677     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
678     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
679     qq01             = iq0*jq1;
680     qq02             = iq0*jq2;
681     qq10             = iq1*jq0;
682     qq11             = iq1*jq1;
683     qq12             = iq1*jq2;
684     qq20             = iq2*jq0;
685     qq21             = iq2*jq1;
686     qq22             = iq2*jq2;
687
688     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
689     rcutoff          = fr->rcoulomb;
690     rcutoff2         = rcutoff*rcutoff;
691
692     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
693     rvdw             = fr->rvdw;
694
695     outeriter        = 0;
696     inneriter        = 0;
697
698     /* Start outer loop over neighborlists */
699     for(iidx=0; iidx<nri; iidx++)
700     {
701         /* Load shift vector for this list */
702         i_shift_offset   = DIM*shiftidx[iidx];
703         shX              = shiftvec[i_shift_offset+XX];
704         shY              = shiftvec[i_shift_offset+YY];
705         shZ              = shiftvec[i_shift_offset+ZZ];
706
707         /* Load limits for loop over neighbors */
708         j_index_start    = jindex[iidx];
709         j_index_end      = jindex[iidx+1];
710
711         /* Get outer coordinate index */
712         inr              = iinr[iidx];
713         i_coord_offset   = DIM*inr;
714
715         /* Load i particle coords and add shift vector */
716         ix0              = shX + x[i_coord_offset+DIM*0+XX];
717         iy0              = shY + x[i_coord_offset+DIM*0+YY];
718         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
719         ix1              = shX + x[i_coord_offset+DIM*1+XX];
720         iy1              = shY + x[i_coord_offset+DIM*1+YY];
721         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
722         ix2              = shX + x[i_coord_offset+DIM*2+XX];
723         iy2              = shY + x[i_coord_offset+DIM*2+YY];
724         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
725
726         fix0             = 0.0;
727         fiy0             = 0.0;
728         fiz0             = 0.0;
729         fix1             = 0.0;
730         fiy1             = 0.0;
731         fiz1             = 0.0;
732         fix2             = 0.0;
733         fiy2             = 0.0;
734         fiz2             = 0.0;
735
736         /* Start inner kernel loop */
737         for(jidx=j_index_start; jidx<j_index_end; jidx++)
738         {
739             /* Get j neighbor index, and coordinate index */
740             jnr              = jjnr[jidx];
741             j_coord_offset   = DIM*jnr;
742
743             /* load j atom coordinates */
744             jx0              = x[j_coord_offset+DIM*0+XX];
745             jy0              = x[j_coord_offset+DIM*0+YY];
746             jz0              = x[j_coord_offset+DIM*0+ZZ];
747             jx1              = x[j_coord_offset+DIM*1+XX];
748             jy1              = x[j_coord_offset+DIM*1+YY];
749             jz1              = x[j_coord_offset+DIM*1+ZZ];
750             jx2              = x[j_coord_offset+DIM*2+XX];
751             jy2              = x[j_coord_offset+DIM*2+YY];
752             jz2              = x[j_coord_offset+DIM*2+ZZ];
753
754             /* Calculate displacement vector */
755             dx00             = ix0 - jx0;
756             dy00             = iy0 - jy0;
757             dz00             = iz0 - jz0;
758             dx01             = ix0 - jx1;
759             dy01             = iy0 - jy1;
760             dz01             = iz0 - jz1;
761             dx02             = ix0 - jx2;
762             dy02             = iy0 - jy2;
763             dz02             = iz0 - jz2;
764             dx10             = ix1 - jx0;
765             dy10             = iy1 - jy0;
766             dz10             = iz1 - jz0;
767             dx11             = ix1 - jx1;
768             dy11             = iy1 - jy1;
769             dz11             = iz1 - jz1;
770             dx12             = ix1 - jx2;
771             dy12             = iy1 - jy2;
772             dz12             = iz1 - jz2;
773             dx20             = ix2 - jx0;
774             dy20             = iy2 - jy0;
775             dz20             = iz2 - jz0;
776             dx21             = ix2 - jx1;
777             dy21             = iy2 - jy1;
778             dz21             = iz2 - jz1;
779             dx22             = ix2 - jx2;
780             dy22             = iy2 - jy2;
781             dz22             = iz2 - jz2;
782
783             /* Calculate squared distance and things based on it */
784             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
785             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
786             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
787             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
788             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
789             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
790             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
791             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
792             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
793
794             rinv00           = gmx_invsqrt(rsq00);
795             rinv01           = gmx_invsqrt(rsq01);
796             rinv02           = gmx_invsqrt(rsq02);
797             rinv10           = gmx_invsqrt(rsq10);
798             rinv11           = gmx_invsqrt(rsq11);
799             rinv12           = gmx_invsqrt(rsq12);
800             rinv20           = gmx_invsqrt(rsq20);
801             rinv21           = gmx_invsqrt(rsq21);
802             rinv22           = gmx_invsqrt(rsq22);
803
804             rinvsq00         = rinv00*rinv00;
805             rinvsq01         = rinv01*rinv01;
806             rinvsq02         = rinv02*rinv02;
807             rinvsq10         = rinv10*rinv10;
808             rinvsq11         = rinv11*rinv11;
809             rinvsq12         = rinv12*rinv12;
810             rinvsq20         = rinv20*rinv20;
811             rinvsq21         = rinv21*rinv21;
812             rinvsq22         = rinv22*rinv22;
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (rsq00<rcutoff2)
819             {
820
821             r00              = rsq00*rinv00;
822
823             /* REACTION-FIELD ELECTROSTATICS */
824             felec            = qq00*(rinv00*rinvsq00-krf2);
825
826             /* BUCKINGHAM DISPERSION/REPULSION */
827             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
828             vvdw6            = c6_00*rinvsix;
829             br               = cexp2_00*r00;
830             vvdwexp          = cexp1_00*exp(-br);
831             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
832
833             fscal            = felec+fvdw;
834
835             /* Calculate temporary vectorial force */
836             tx               = fscal*dx00;
837             ty               = fscal*dy00;
838             tz               = fscal*dz00;
839
840             /* Update vectorial force */
841             fix0            += tx;
842             fiy0            += ty;
843             fiz0            += tz;
844             f[j_coord_offset+DIM*0+XX] -= tx;
845             f[j_coord_offset+DIM*0+YY] -= ty;
846             f[j_coord_offset+DIM*0+ZZ] -= tz;
847
848             }
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             if (rsq01<rcutoff2)
855             {
856
857             /* REACTION-FIELD ELECTROSTATICS */
858             felec            = qq01*(rinv01*rinvsq01-krf2);
859
860             fscal            = felec;
861
862             /* Calculate temporary vectorial force */
863             tx               = fscal*dx01;
864             ty               = fscal*dy01;
865             tz               = fscal*dz01;
866
867             /* Update vectorial force */
868             fix0            += tx;
869             fiy0            += ty;
870             fiz0            += tz;
871             f[j_coord_offset+DIM*1+XX] -= tx;
872             f[j_coord_offset+DIM*1+YY] -= ty;
873             f[j_coord_offset+DIM*1+ZZ] -= tz;
874
875             }
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             if (rsq02<rcutoff2)
882             {
883
884             /* REACTION-FIELD ELECTROSTATICS */
885             felec            = qq02*(rinv02*rinvsq02-krf2);
886
887             fscal            = felec;
888
889             /* Calculate temporary vectorial force */
890             tx               = fscal*dx02;
891             ty               = fscal*dy02;
892             tz               = fscal*dz02;
893
894             /* Update vectorial force */
895             fix0            += tx;
896             fiy0            += ty;
897             fiz0            += tz;
898             f[j_coord_offset+DIM*2+XX] -= tx;
899             f[j_coord_offset+DIM*2+YY] -= ty;
900             f[j_coord_offset+DIM*2+ZZ] -= tz;
901
902             }
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             if (rsq10<rcutoff2)
909             {
910
911             /* REACTION-FIELD ELECTROSTATICS */
912             felec            = qq10*(rinv10*rinvsq10-krf2);
913
914             fscal            = felec;
915
916             /* Calculate temporary vectorial force */
917             tx               = fscal*dx10;
918             ty               = fscal*dy10;
919             tz               = fscal*dz10;
920
921             /* Update vectorial force */
922             fix1            += tx;
923             fiy1            += ty;
924             fiz1            += tz;
925             f[j_coord_offset+DIM*0+XX] -= tx;
926             f[j_coord_offset+DIM*0+YY] -= ty;
927             f[j_coord_offset+DIM*0+ZZ] -= tz;
928
929             }
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             if (rsq11<rcutoff2)
936             {
937
938             /* REACTION-FIELD ELECTROSTATICS */
939             felec            = qq11*(rinv11*rinvsq11-krf2);
940
941             fscal            = felec;
942
943             /* Calculate temporary vectorial force */
944             tx               = fscal*dx11;
945             ty               = fscal*dy11;
946             tz               = fscal*dz11;
947
948             /* Update vectorial force */
949             fix1            += tx;
950             fiy1            += ty;
951             fiz1            += tz;
952             f[j_coord_offset+DIM*1+XX] -= tx;
953             f[j_coord_offset+DIM*1+YY] -= ty;
954             f[j_coord_offset+DIM*1+ZZ] -= tz;
955
956             }
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             if (rsq12<rcutoff2)
963             {
964
965             /* REACTION-FIELD ELECTROSTATICS */
966             felec            = qq12*(rinv12*rinvsq12-krf2);
967
968             fscal            = felec;
969
970             /* Calculate temporary vectorial force */
971             tx               = fscal*dx12;
972             ty               = fscal*dy12;
973             tz               = fscal*dz12;
974
975             /* Update vectorial force */
976             fix1            += tx;
977             fiy1            += ty;
978             fiz1            += tz;
979             f[j_coord_offset+DIM*2+XX] -= tx;
980             f[j_coord_offset+DIM*2+YY] -= ty;
981             f[j_coord_offset+DIM*2+ZZ] -= tz;
982
983             }
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (rsq20<rcutoff2)
990             {
991
992             /* REACTION-FIELD ELECTROSTATICS */
993             felec            = qq20*(rinv20*rinvsq20-krf2);
994
995             fscal            = felec;
996
997             /* Calculate temporary vectorial force */
998             tx               = fscal*dx20;
999             ty               = fscal*dy20;
1000             tz               = fscal*dz20;
1001
1002             /* Update vectorial force */
1003             fix2            += tx;
1004             fiy2            += ty;
1005             fiz2            += tz;
1006             f[j_coord_offset+DIM*0+XX] -= tx;
1007             f[j_coord_offset+DIM*0+YY] -= ty;
1008             f[j_coord_offset+DIM*0+ZZ] -= tz;
1009
1010             }
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             if (rsq21<rcutoff2)
1017             {
1018
1019             /* REACTION-FIELD ELECTROSTATICS */
1020             felec            = qq21*(rinv21*rinvsq21-krf2);
1021
1022             fscal            = felec;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = fscal*dx21;
1026             ty               = fscal*dy21;
1027             tz               = fscal*dz21;
1028
1029             /* Update vectorial force */
1030             fix2            += tx;
1031             fiy2            += ty;
1032             fiz2            += tz;
1033             f[j_coord_offset+DIM*1+XX] -= tx;
1034             f[j_coord_offset+DIM*1+YY] -= ty;
1035             f[j_coord_offset+DIM*1+ZZ] -= tz;
1036
1037             }
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             if (rsq22<rcutoff2)
1044             {
1045
1046             /* REACTION-FIELD ELECTROSTATICS */
1047             felec            = qq22*(rinv22*rinvsq22-krf2);
1048
1049             fscal            = felec;
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = fscal*dx22;
1053             ty               = fscal*dy22;
1054             tz               = fscal*dz22;
1055
1056             /* Update vectorial force */
1057             fix2            += tx;
1058             fiy2            += ty;
1059             fiz2            += tz;
1060             f[j_coord_offset+DIM*2+XX] -= tx;
1061             f[j_coord_offset+DIM*2+YY] -= ty;
1062             f[j_coord_offset+DIM*2+ZZ] -= tz;
1063
1064             }
1065
1066             /* Inner loop uses 270 flops */
1067         }
1068         /* End of innermost loop */
1069
1070         tx = ty = tz = 0;
1071         f[i_coord_offset+DIM*0+XX] += fix0;
1072         f[i_coord_offset+DIM*0+YY] += fiy0;
1073         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1074         tx                         += fix0;
1075         ty                         += fiy0;
1076         tz                         += fiz0;
1077         f[i_coord_offset+DIM*1+XX] += fix1;
1078         f[i_coord_offset+DIM*1+YY] += fiy1;
1079         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1080         tx                         += fix1;
1081         ty                         += fiy1;
1082         tz                         += fiz1;
1083         f[i_coord_offset+DIM*2+XX] += fix2;
1084         f[i_coord_offset+DIM*2+YY] += fiy2;
1085         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1086         tx                         += fix2;
1087         ty                         += fiy2;
1088         tz                         += fiz2;
1089         fshift[i_shift_offset+XX]  += tx;
1090         fshift[i_shift_offset+YY]  += ty;
1091         fshift[i_shift_offset+ZZ]  += tz;
1092
1093         /* Increment number of inner iterations */
1094         inneriter                  += j_index_end - j_index_start;
1095
1096         /* Outer loop uses 30 flops */
1097     }
1098
1099     /* Increment number of outer iterations */
1100     outeriter        += nri;
1101
1102     /* Update outer/inner flops */
1103
1104     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*270);
1105 }