Fixed GB interactions for release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecGB_VdwLJ_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * GROMACS nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
58                     (t_nblist * gmx_restrict                nlist,
59                      rvec * gmx_restrict                    xx,
60                      rvec * gmx_restrict                    ff,
61                      t_forcerec * gmx_restrict              fr,
62                      t_mdatoms * gmx_restrict               mdatoms,
63                      nb_kernel_data_t * gmx_restrict        kernel_data,
64                      t_nrnb * gmx_restrict                  nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              gbitab;
80     real             vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
81     real             *invsqrta,*dvda,*gbtab;
82     int              nvdwtype;
83     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     int              vfitab;
87     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
88     real             *vftab;
89
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = fr->epsfac;
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     invsqrta         = fr->invsqrta;
108     dvda             = fr->dvda;
109     gbtabscale       = fr->gbtab.scale;
110     gbtab            = fr->gbtab.data;
111     gbinvepsdiff     = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121         shX              = shiftvec[i_shift_offset+XX];
122         shY              = shiftvec[i_shift_offset+YY];
123         shZ              = shiftvec[i_shift_offset+ZZ];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         ix0              = shX + x[i_coord_offset+DIM*0+XX];
135         iy0              = shY + x[i_coord_offset+DIM*0+YY];
136         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
137
138         fix0             = 0.0;
139         fiy0             = 0.0;
140         fiz0             = 0.0;
141
142         /* Load parameters for i particles */
143         iq0              = facel*charge[inr+0];
144         isai0            = invsqrta[inr+0];
145         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147         /* Reset potential sums */
148         velecsum         = 0.0;
149         vgbsum           = 0.0;
150         vvdwsum          = 0.0;
151         dvdasum          = 0.0;
152         printf("inr=%d\n",inr);
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end; jidx++)
155         {
156             /* Get j neighbor index, and coordinate index */
157             jnr              = jjnr[jidx];
158             j_coord_offset   = DIM*jnr;
159
160             /* load j atom coordinates */
161             jx0              = x[j_coord_offset+DIM*0+XX];
162             jy0              = x[j_coord_offset+DIM*0+YY];
163             jz0              = x[j_coord_offset+DIM*0+ZZ];
164
165             /* Calculate displacement vector */
166             dx00             = ix0 - jx0;
167             dy00             = iy0 - jy0;
168             dz00             = iz0 - jz0;
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
172
173             rinv00           = gmx_invsqrt(rsq00);
174
175             rinvsq00         = rinv00*rinv00;
176
177             /* Load parameters for j particles */
178             jq0              = charge[jnr+0];
179             isaj0           = invsqrta[jnr+0];
180             vdwjidx0         = 2*vdwtype[jnr+0];
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             r00              = rsq00*rinv00;
187
188             qq00             = iq0*jq0;
189             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
190             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
191
192             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
193             isaprod          = isai0*isaj0;
194             gbqqfactor       = isaprod*(-qq00)*gbinvepsdiff;
195             gbscale          = isaprod*gbtabscale;
196             dvdaj            = dvda[jnr+0];
197
198             /* Calculate generalized born table index - this is a separate table from the normal one,
199              * but we use the same procedure by multiplying r with scale and truncating to integer.
200              */
201             rt               = r00*gbscale;
202             gbitab           = rt;
203             gbeps            = rt-gbitab;
204             gbitab           = 4*gbitab;
205
206             Y                = gbtab[gbitab];
207             F                = gbtab[gbitab+1];
208             Geps             = gbeps*gbtab[gbitab+2];
209             Heps2            = gbeps*gbeps*gbtab[gbitab+3];
210             Fp               = F+Geps+Heps2;
211             VV               = Y+gbeps*Fp;
212             vgb              = gbqqfactor*VV;
213
214             FF               = Fp+Geps+2.0*Heps2;
215             fgb              = gbqqfactor*FF*gbscale;
216             printf("  jnr=%d  fgb=%g\n",jnr,fgb);
217             dvdatmp          = -0.5*(vgb+fgb*r00);
218             dvdasum          = dvdasum + dvdatmp;
219             printf("  dvdatmp=%g\n",dvdatmp);
220             dvda[jnr]        = dvdaj+dvdatmp*isaj0*isaj0;
221             printf("  dvda, jcontrib=%g\n",dvdatmp*isaj0*isaj0);
222             velec            = qq00*rinv00;
223             felec            = (velec*rinv00-fgb)*rinv00;
224
225             /* LENNARD-JONES DISPERSION/REPULSION */
226
227             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
228             vvdw6            = c6_00*rinvsix;
229             vvdw12           = c12_00*rinvsix*rinvsix;
230             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
231             fvdw             = (vvdw12-vvdw6)*rinvsq00;
232
233             /* Update potential sums from outer loop */
234             velecsum        += velec;
235             vgbsum          += vgb;
236             vvdwsum         += vvdw;
237
238             fscal            = felec+fvdw;
239
240             /* Calculate temporary vectorial force */
241             tx               = fscal*dx00;
242             ty               = fscal*dy00;
243             tz               = fscal*dz00;
244
245             /* Update vectorial force */
246             fix0            += tx;
247             fiy0            += ty;
248             fiz0            += tz;
249             f[j_coord_offset+DIM*0+XX] -= tx;
250             f[j_coord_offset+DIM*0+YY] -= ty;
251             f[j_coord_offset+DIM*0+ZZ] -= tz;
252
253             /* Inner loop uses 71 flops */
254         }
255         /* End of innermost loop */
256
257         tx = ty = tz = 0;
258         f[i_coord_offset+DIM*0+XX] += fix0;
259         f[i_coord_offset+DIM*0+YY] += fiy0;
260         f[i_coord_offset+DIM*0+ZZ] += fiz0;
261         tx                         += fix0;
262         ty                         += fiy0;
263         tz                         += fiz0;
264         fshift[i_shift_offset+XX]  += tx;
265         fshift[i_shift_offset+YY]  += ty;
266         fshift[i_shift_offset+ZZ]  += tz;
267
268         ggid                        = gid[iidx];
269         /* Update potential energies */
270         kernel_data->energygrp_elec[ggid] += velecsum;
271         kernel_data->energygrp_polarization[ggid] += vgbsum;
272         kernel_data->energygrp_vdw[ggid] += vvdwsum;
273         dvda[inr]                   = dvda[inr] + dvdasum*isai0*isai0;
274
275         /* Increment number of inner iterations */
276         inneriter                  += j_index_end - j_index_start;
277
278         /* Outer loop uses 16 flops */
279     }
280
281     /* Increment number of outer iterations */
282     outeriter        += nri;
283
284     /* Update outer/inner flops */
285
286     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*16 + inneriter*71);
287 }
288 /*
289  * GROMACS nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
290  * Electrostatics interaction: GeneralizedBorn
291  * VdW interaction:            LennardJones
292  * Geometry:                   Particle-Particle
293  * Calculate force/pot:        Force
294  */
295 void
296 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
297                     (t_nblist * gmx_restrict                nlist,
298                      rvec * gmx_restrict                    xx,
299                      rvec * gmx_restrict                    ff,
300                      t_forcerec * gmx_restrict              fr,
301                      t_mdatoms * gmx_restrict               mdatoms,
302                      nb_kernel_data_t * gmx_restrict        kernel_data,
303                      t_nrnb * gmx_restrict                  nrnb)
304 {
305     int              i_shift_offset,i_coord_offset,j_coord_offset;
306     int              j_index_start,j_index_end;
307     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
308     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
309     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
310     real             *shiftvec,*fshift,*x,*f;
311     int              vdwioffset0;
312     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
313     int              vdwjidx0;
314     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
315     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
316     real             velec,felec,velecsum,facel,crf,krf,krf2;
317     real             *charge;
318     int              gbitab;
319     real             vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
320     real             *invsqrta,*dvda,*gbtab;
321     int              nvdwtype;
322     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
323     int              *vdwtype;
324     real             *vdwparam;
325     int              vfitab;
326     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
327     real             *vftab;
328
329     x                = xx[0];
330     f                = ff[0];
331
332     nri              = nlist->nri;
333     iinr             = nlist->iinr;
334     jindex           = nlist->jindex;
335     jjnr             = nlist->jjnr;
336     shiftidx         = nlist->shift;
337     gid              = nlist->gid;
338     shiftvec         = fr->shift_vec[0];
339     fshift           = fr->fshift[0];
340     facel            = fr->epsfac;
341     charge           = mdatoms->chargeA;
342     nvdwtype         = fr->ntype;
343     vdwparam         = fr->nbfp;
344     vdwtype          = mdatoms->typeA;
345
346     invsqrta         = fr->invsqrta;
347     dvda             = fr->dvda;
348     gbtabscale       = fr->gbtab.scale;
349     gbtab            = fr->gbtab.data;
350     gbinvepsdiff     = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
351
352     outeriter        = 0;
353     inneriter        = 0;
354
355     /* Start outer loop over neighborlists */
356     for(iidx=0; iidx<nri; iidx++)
357     {
358         /* Load shift vector for this list */
359         i_shift_offset   = DIM*shiftidx[iidx];
360         shX              = shiftvec[i_shift_offset+XX];
361         shY              = shiftvec[i_shift_offset+YY];
362         shZ              = shiftvec[i_shift_offset+ZZ];
363
364         /* Load limits for loop over neighbors */
365         j_index_start    = jindex[iidx];
366         j_index_end      = jindex[iidx+1];
367
368         /* Get outer coordinate index */
369         inr              = iinr[iidx];
370         i_coord_offset   = DIM*inr;
371
372         /* Load i particle coords and add shift vector */
373         ix0              = shX + x[i_coord_offset+DIM*0+XX];
374         iy0              = shY + x[i_coord_offset+DIM*0+YY];
375         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
376
377         fix0             = 0.0;
378         fiy0             = 0.0;
379         fiz0             = 0.0;
380
381         /* Load parameters for i particles */
382         iq0              = facel*charge[inr+0];
383         isai0            = invsqrta[inr+0];
384         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
385
386         dvdasum          = 0.0;
387
388         /* Start inner kernel loop */
389         for(jidx=j_index_start; jidx<j_index_end; jidx++)
390         {
391             /* Get j neighbor index, and coordinate index */
392             jnr              = jjnr[jidx];
393             j_coord_offset   = DIM*jnr;
394
395             /* load j atom coordinates */
396             jx0              = x[j_coord_offset+DIM*0+XX];
397             jy0              = x[j_coord_offset+DIM*0+YY];
398             jz0              = x[j_coord_offset+DIM*0+ZZ];
399
400             /* Calculate displacement vector */
401             dx00             = ix0 - jx0;
402             dy00             = iy0 - jy0;
403             dz00             = iz0 - jz0;
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
407
408             rinv00           = gmx_invsqrt(rsq00);
409
410             rinvsq00         = rinv00*rinv00;
411
412             /* Load parameters for j particles */
413             jq0              = charge[jnr+0];
414             isaj0           = invsqrta[jnr+0];
415             vdwjidx0         = 2*vdwtype[jnr+0];
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             r00              = rsq00*rinv00;
422
423             qq00             = iq0*jq0;
424             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
425             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
426
427             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
428             isaprod          = isai0*isaj0;
429             gbqqfactor       = isaprod*(-qq00)*gbinvepsdiff;
430             gbscale          = isaprod*gbtabscale;
431             dvdaj            = dvda[jnr+0];
432
433             /* Calculate generalized born table index - this is a separate table from the normal one,
434              * but we use the same procedure by multiplying r with scale and truncating to integer.
435              */
436             rt               = r00*gbscale;
437             gbitab           = rt;
438             gbeps            = rt-gbitab;
439             gbitab           = 4*gbitab;
440
441             Y                = gbtab[gbitab];
442             F                = gbtab[gbitab+1];
443             Geps             = gbeps*gbtab[gbitab+2];
444             Heps2            = gbeps*gbeps*gbtab[gbitab+3];
445             Fp               = F+Geps+Heps2;
446             VV               = Y+gbeps*Fp;
447             vgb              = gbqqfactor*VV;
448
449             FF               = Fp+Geps+2.0*Heps2;
450             fgb              = gbqqfactor*FF*gbscale;
451             dvdatmp          = -0.5*(vgb+fgb*r00);
452             dvdasum          = dvdasum + dvdatmp;
453             dvda[jnr]        = dvdaj+dvdatmp*isaj0*isaj0;
454             velec            = qq00*rinv00;
455             felec            = (velec*rinv00-fgb)*rinv00;
456
457             /* LENNARD-JONES DISPERSION/REPULSION */
458
459             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
460             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
461
462             fscal            = felec+fvdw;
463
464             /* Calculate temporary vectorial force */
465             tx               = fscal*dx00;
466             ty               = fscal*dy00;
467             tz               = fscal*dz00;
468
469             /* Update vectorial force */
470             fix0            += tx;
471             fiy0            += ty;
472             fiz0            += tz;
473             f[j_coord_offset+DIM*0+XX] -= tx;
474             f[j_coord_offset+DIM*0+YY] -= ty;
475             f[j_coord_offset+DIM*0+ZZ] -= tz;
476
477             /* Inner loop uses 64 flops */
478         }
479         /* End of innermost loop */
480
481         tx = ty = tz = 0;
482         f[i_coord_offset+DIM*0+XX] += fix0;
483         f[i_coord_offset+DIM*0+YY] += fiy0;
484         f[i_coord_offset+DIM*0+ZZ] += fiz0;
485         tx                         += fix0;
486         ty                         += fiy0;
487         tz                         += fiz0;
488         fshift[i_shift_offset+XX]  += tx;
489         fshift[i_shift_offset+YY]  += ty;
490         fshift[i_shift_offset+ZZ]  += tz;
491
492         dvda[inr]                   = dvda[inr] + dvdasum*isai0*isai0;
493
494         /* Increment number of inner iterations */
495         inneriter                  += j_index_end - j_index_start;
496
497         /* Outer loop uses 13 flops */
498     }
499
500     /* Increment number of outer iterations */
501     outeriter        += nri;
502
503     /* Update outer/inner flops */
504
505     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*64);
506 }