00790581588e45650899249f2cec0030643b015a
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJ_GeomW4W4_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water4-Water4
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     int              vdwjidx1;
67     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
68     int              vdwjidx2;
69     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
70     int              vdwjidx3;
71     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
72     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
73     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
74     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
75     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
76     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
77     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
78     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
79     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
80     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
81     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
82     real             velec,felec,velecsum,facel,crf,krf,krf2;
83     real             *charge;
84     int              nvdwtype;
85     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     int              ewitab;
89     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
90     real             *ewtab;
91
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = fr->epsfac;
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = fr->ic->sh_ewald;
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = fr->ic->tabq_scale;
112     ewtabhalfspace   = 0.5/ewtabscale;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq1              = facel*charge[inr+1];
117     iq2              = facel*charge[inr+2];
118     iq3              = facel*charge[inr+3];
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     jq1              = charge[inr+1];
122     jq2              = charge[inr+2];
123     jq3              = charge[inr+3];
124     vdwjidx0         = 2*vdwtype[inr+0];
125     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
126     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
127     qq11             = iq1*jq1;
128     qq12             = iq1*jq2;
129     qq13             = iq1*jq3;
130     qq21             = iq2*jq1;
131     qq22             = iq2*jq2;
132     qq23             = iq2*jq3;
133     qq31             = iq3*jq1;
134     qq32             = iq3*jq2;
135     qq33             = iq3*jq3;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145         shX              = shiftvec[i_shift_offset+XX];
146         shY              = shiftvec[i_shift_offset+YY];
147         shZ              = shiftvec[i_shift_offset+ZZ];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         ix0              = shX + x[i_coord_offset+DIM*0+XX];
159         iy0              = shY + x[i_coord_offset+DIM*0+YY];
160         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
161         ix1              = shX + x[i_coord_offset+DIM*1+XX];
162         iy1              = shY + x[i_coord_offset+DIM*1+YY];
163         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
164         ix2              = shX + x[i_coord_offset+DIM*2+XX];
165         iy2              = shY + x[i_coord_offset+DIM*2+YY];
166         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
167         ix3              = shX + x[i_coord_offset+DIM*3+XX];
168         iy3              = shY + x[i_coord_offset+DIM*3+YY];
169         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
170
171         fix0             = 0.0;
172         fiy0             = 0.0;
173         fiz0             = 0.0;
174         fix1             = 0.0;
175         fiy1             = 0.0;
176         fiz1             = 0.0;
177         fix2             = 0.0;
178         fiy2             = 0.0;
179         fiz2             = 0.0;
180         fix3             = 0.0;
181         fiy3             = 0.0;
182         fiz3             = 0.0;
183
184         /* Reset potential sums */
185         velecsum         = 0.0;
186         vvdwsum          = 0.0;
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end; jidx++)
190         {
191             /* Get j neighbor index, and coordinate index */
192             jnr              = jjnr[jidx];
193             j_coord_offset   = DIM*jnr;
194
195             /* load j atom coordinates */
196             jx0              = x[j_coord_offset+DIM*0+XX];
197             jy0              = x[j_coord_offset+DIM*0+YY];
198             jz0              = x[j_coord_offset+DIM*0+ZZ];
199             jx1              = x[j_coord_offset+DIM*1+XX];
200             jy1              = x[j_coord_offset+DIM*1+YY];
201             jz1              = x[j_coord_offset+DIM*1+ZZ];
202             jx2              = x[j_coord_offset+DIM*2+XX];
203             jy2              = x[j_coord_offset+DIM*2+YY];
204             jz2              = x[j_coord_offset+DIM*2+ZZ];
205             jx3              = x[j_coord_offset+DIM*3+XX];
206             jy3              = x[j_coord_offset+DIM*3+YY];
207             jz3              = x[j_coord_offset+DIM*3+ZZ];
208
209             /* Calculate displacement vector */
210             dx00             = ix0 - jx0;
211             dy00             = iy0 - jy0;
212             dz00             = iz0 - jz0;
213             dx11             = ix1 - jx1;
214             dy11             = iy1 - jy1;
215             dz11             = iz1 - jz1;
216             dx12             = ix1 - jx2;
217             dy12             = iy1 - jy2;
218             dz12             = iz1 - jz2;
219             dx13             = ix1 - jx3;
220             dy13             = iy1 - jy3;
221             dz13             = iz1 - jz3;
222             dx21             = ix2 - jx1;
223             dy21             = iy2 - jy1;
224             dz21             = iz2 - jz1;
225             dx22             = ix2 - jx2;
226             dy22             = iy2 - jy2;
227             dz22             = iz2 - jz2;
228             dx23             = ix2 - jx3;
229             dy23             = iy2 - jy3;
230             dz23             = iz2 - jz3;
231             dx31             = ix3 - jx1;
232             dy31             = iy3 - jy1;
233             dz31             = iz3 - jz1;
234             dx32             = ix3 - jx2;
235             dy32             = iy3 - jy2;
236             dz32             = iz3 - jz2;
237             dx33             = ix3 - jx3;
238             dy33             = iy3 - jy3;
239             dz33             = iz3 - jz3;
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
243             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
244             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
245             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
246             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
247             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
248             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
249             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
250             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
251             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
252
253             rinv11           = gmx_invsqrt(rsq11);
254             rinv12           = gmx_invsqrt(rsq12);
255             rinv13           = gmx_invsqrt(rsq13);
256             rinv21           = gmx_invsqrt(rsq21);
257             rinv22           = gmx_invsqrt(rsq22);
258             rinv23           = gmx_invsqrt(rsq23);
259             rinv31           = gmx_invsqrt(rsq31);
260             rinv32           = gmx_invsqrt(rsq32);
261             rinv33           = gmx_invsqrt(rsq33);
262
263             rinvsq00         = 1.0/rsq00;
264             rinvsq11         = rinv11*rinv11;
265             rinvsq12         = rinv12*rinv12;
266             rinvsq13         = rinv13*rinv13;
267             rinvsq21         = rinv21*rinv21;
268             rinvsq22         = rinv22*rinv22;
269             rinvsq23         = rinv23*rinv23;
270             rinvsq31         = rinv31*rinv31;
271             rinvsq32         = rinv32*rinv32;
272             rinvsq33         = rinv33*rinv33;
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             /* LENNARD-JONES DISPERSION/REPULSION */
279
280             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
281             vvdw6            = c6_00*rinvsix;
282             vvdw12           = c12_00*rinvsix*rinvsix;
283             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
284             fvdw             = (vvdw12-vvdw6)*rinvsq00;
285
286             /* Update potential sums from outer loop */
287             vvdwsum         += vvdw;
288
289             fscal            = fvdw;
290
291             /* Calculate temporary vectorial force */
292             tx               = fscal*dx00;
293             ty               = fscal*dy00;
294             tz               = fscal*dz00;
295
296             /* Update vectorial force */
297             fix0            += tx;
298             fiy0            += ty;
299             fiz0            += tz;
300             f[j_coord_offset+DIM*0+XX] -= tx;
301             f[j_coord_offset+DIM*0+YY] -= ty;
302             f[j_coord_offset+DIM*0+ZZ] -= tz;
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r11              = rsq11*rinv11;
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = r11*ewtabscale;
314             ewitab           = ewrt;
315             eweps            = ewrt-ewitab;
316             ewitab           = 4*ewitab;
317             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
318             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
319             felec            = qq11*rinv11*(rinvsq11-felec);
320
321             /* Update potential sums from outer loop */
322             velecsum        += velec;
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = fscal*dx11;
328             ty               = fscal*dy11;
329             tz               = fscal*dz11;
330
331             /* Update vectorial force */
332             fix1            += tx;
333             fiy1            += ty;
334             fiz1            += tz;
335             f[j_coord_offset+DIM*1+XX] -= tx;
336             f[j_coord_offset+DIM*1+YY] -= ty;
337             f[j_coord_offset+DIM*1+ZZ] -= tz;
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r12              = rsq12*rinv12;
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = r12*ewtabscale;
349             ewitab           = ewrt;
350             eweps            = ewrt-ewitab;
351             ewitab           = 4*ewitab;
352             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
353             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
354             felec            = qq12*rinv12*(rinvsq12-felec);
355
356             /* Update potential sums from outer loop */
357             velecsum        += velec;
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = fscal*dx12;
363             ty               = fscal*dy12;
364             tz               = fscal*dz12;
365
366             /* Update vectorial force */
367             fix1            += tx;
368             fiy1            += ty;
369             fiz1            += tz;
370             f[j_coord_offset+DIM*2+XX] -= tx;
371             f[j_coord_offset+DIM*2+YY] -= ty;
372             f[j_coord_offset+DIM*2+ZZ] -= tz;
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r13              = rsq13*rinv13;
379
380             /* EWALD ELECTROSTATICS */
381
382             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383             ewrt             = r13*ewtabscale;
384             ewitab           = ewrt;
385             eweps            = ewrt-ewitab;
386             ewitab           = 4*ewitab;
387             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
388             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
389             felec            = qq13*rinv13*(rinvsq13-felec);
390
391             /* Update potential sums from outer loop */
392             velecsum        += velec;
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = fscal*dx13;
398             ty               = fscal*dy13;
399             tz               = fscal*dz13;
400
401             /* Update vectorial force */
402             fix1            += tx;
403             fiy1            += ty;
404             fiz1            += tz;
405             f[j_coord_offset+DIM*3+XX] -= tx;
406             f[j_coord_offset+DIM*3+YY] -= ty;
407             f[j_coord_offset+DIM*3+ZZ] -= tz;
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             r21              = rsq21*rinv21;
414
415             /* EWALD ELECTROSTATICS */
416
417             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
418             ewrt             = r21*ewtabscale;
419             ewitab           = ewrt;
420             eweps            = ewrt-ewitab;
421             ewitab           = 4*ewitab;
422             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
423             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
424             felec            = qq21*rinv21*(rinvsq21-felec);
425
426             /* Update potential sums from outer loop */
427             velecsum        += velec;
428
429             fscal            = felec;
430
431             /* Calculate temporary vectorial force */
432             tx               = fscal*dx21;
433             ty               = fscal*dy21;
434             tz               = fscal*dz21;
435
436             /* Update vectorial force */
437             fix2            += tx;
438             fiy2            += ty;
439             fiz2            += tz;
440             f[j_coord_offset+DIM*1+XX] -= tx;
441             f[j_coord_offset+DIM*1+YY] -= ty;
442             f[j_coord_offset+DIM*1+ZZ] -= tz;
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             r22              = rsq22*rinv22;
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = r22*ewtabscale;
454             ewitab           = ewrt;
455             eweps            = ewrt-ewitab;
456             ewitab           = 4*ewitab;
457             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
458             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
459             felec            = qq22*rinv22*(rinvsq22-felec);
460
461             /* Update potential sums from outer loop */
462             velecsum        += velec;
463
464             fscal            = felec;
465
466             /* Calculate temporary vectorial force */
467             tx               = fscal*dx22;
468             ty               = fscal*dy22;
469             tz               = fscal*dz22;
470
471             /* Update vectorial force */
472             fix2            += tx;
473             fiy2            += ty;
474             fiz2            += tz;
475             f[j_coord_offset+DIM*2+XX] -= tx;
476             f[j_coord_offset+DIM*2+YY] -= ty;
477             f[j_coord_offset+DIM*2+ZZ] -= tz;
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             r23              = rsq23*rinv23;
484
485             /* EWALD ELECTROSTATICS */
486
487             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
488             ewrt             = r23*ewtabscale;
489             ewitab           = ewrt;
490             eweps            = ewrt-ewitab;
491             ewitab           = 4*ewitab;
492             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
493             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
494             felec            = qq23*rinv23*(rinvsq23-felec);
495
496             /* Update potential sums from outer loop */
497             velecsum        += velec;
498
499             fscal            = felec;
500
501             /* Calculate temporary vectorial force */
502             tx               = fscal*dx23;
503             ty               = fscal*dy23;
504             tz               = fscal*dz23;
505
506             /* Update vectorial force */
507             fix2            += tx;
508             fiy2            += ty;
509             fiz2            += tz;
510             f[j_coord_offset+DIM*3+XX] -= tx;
511             f[j_coord_offset+DIM*3+YY] -= ty;
512             f[j_coord_offset+DIM*3+ZZ] -= tz;
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             r31              = rsq31*rinv31;
519
520             /* EWALD ELECTROSTATICS */
521
522             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
523             ewrt             = r31*ewtabscale;
524             ewitab           = ewrt;
525             eweps            = ewrt-ewitab;
526             ewitab           = 4*ewitab;
527             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
528             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
529             felec            = qq31*rinv31*(rinvsq31-felec);
530
531             /* Update potential sums from outer loop */
532             velecsum        += velec;
533
534             fscal            = felec;
535
536             /* Calculate temporary vectorial force */
537             tx               = fscal*dx31;
538             ty               = fscal*dy31;
539             tz               = fscal*dz31;
540
541             /* Update vectorial force */
542             fix3            += tx;
543             fiy3            += ty;
544             fiz3            += tz;
545             f[j_coord_offset+DIM*1+XX] -= tx;
546             f[j_coord_offset+DIM*1+YY] -= ty;
547             f[j_coord_offset+DIM*1+ZZ] -= tz;
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             r32              = rsq32*rinv32;
554
555             /* EWALD ELECTROSTATICS */
556
557             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
558             ewrt             = r32*ewtabscale;
559             ewitab           = ewrt;
560             eweps            = ewrt-ewitab;
561             ewitab           = 4*ewitab;
562             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
563             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
564             felec            = qq32*rinv32*(rinvsq32-felec);
565
566             /* Update potential sums from outer loop */
567             velecsum        += velec;
568
569             fscal            = felec;
570
571             /* Calculate temporary vectorial force */
572             tx               = fscal*dx32;
573             ty               = fscal*dy32;
574             tz               = fscal*dz32;
575
576             /* Update vectorial force */
577             fix3            += tx;
578             fiy3            += ty;
579             fiz3            += tz;
580             f[j_coord_offset+DIM*2+XX] -= tx;
581             f[j_coord_offset+DIM*2+YY] -= ty;
582             f[j_coord_offset+DIM*2+ZZ] -= tz;
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             r33              = rsq33*rinv33;
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
593             ewrt             = r33*ewtabscale;
594             ewitab           = ewrt;
595             eweps            = ewrt-ewitab;
596             ewitab           = 4*ewitab;
597             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
598             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
599             felec            = qq33*rinv33*(rinvsq33-felec);
600
601             /* Update potential sums from outer loop */
602             velecsum        += velec;
603
604             fscal            = felec;
605
606             /* Calculate temporary vectorial force */
607             tx               = fscal*dx33;
608             ty               = fscal*dy33;
609             tz               = fscal*dz33;
610
611             /* Update vectorial force */
612             fix3            += tx;
613             fiy3            += ty;
614             fiz3            += tz;
615             f[j_coord_offset+DIM*3+XX] -= tx;
616             f[j_coord_offset+DIM*3+YY] -= ty;
617             f[j_coord_offset+DIM*3+ZZ] -= tz;
618
619             /* Inner loop uses 392 flops */
620         }
621         /* End of innermost loop */
622
623         tx = ty = tz = 0;
624         f[i_coord_offset+DIM*0+XX] += fix0;
625         f[i_coord_offset+DIM*0+YY] += fiy0;
626         f[i_coord_offset+DIM*0+ZZ] += fiz0;
627         tx                         += fix0;
628         ty                         += fiy0;
629         tz                         += fiz0;
630         f[i_coord_offset+DIM*1+XX] += fix1;
631         f[i_coord_offset+DIM*1+YY] += fiy1;
632         f[i_coord_offset+DIM*1+ZZ] += fiz1;
633         tx                         += fix1;
634         ty                         += fiy1;
635         tz                         += fiz1;
636         f[i_coord_offset+DIM*2+XX] += fix2;
637         f[i_coord_offset+DIM*2+YY] += fiy2;
638         f[i_coord_offset+DIM*2+ZZ] += fiz2;
639         tx                         += fix2;
640         ty                         += fiy2;
641         tz                         += fiz2;
642         f[i_coord_offset+DIM*3+XX] += fix3;
643         f[i_coord_offset+DIM*3+YY] += fiy3;
644         f[i_coord_offset+DIM*3+ZZ] += fiz3;
645         tx                         += fix3;
646         ty                         += fiy3;
647         tz                         += fiz3;
648         fshift[i_shift_offset+XX]  += tx;
649         fshift[i_shift_offset+YY]  += ty;
650         fshift[i_shift_offset+ZZ]  += tz;
651
652         ggid                        = gid[iidx];
653         /* Update potential energies */
654         kernel_data->energygrp_elec[ggid] += velecsum;
655         kernel_data->energygrp_vdw[ggid] += vvdwsum;
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 41 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*392);
669 }
670 /*
671  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_c
672  * Electrostatics interaction: Ewald
673  * VdW interaction:            LennardJones
674  * Geometry:                   Water4-Water4
675  * Calculate force/pot:        Force
676  */
677 void
678 nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_c
679                     (t_nblist * gmx_restrict                nlist,
680                      rvec * gmx_restrict                    xx,
681                      rvec * gmx_restrict                    ff,
682                      t_forcerec * gmx_restrict              fr,
683                      t_mdatoms * gmx_restrict               mdatoms,
684                      nb_kernel_data_t * gmx_restrict        kernel_data,
685                      t_nrnb * gmx_restrict                  nrnb)
686 {
687     int              i_shift_offset,i_coord_offset,j_coord_offset;
688     int              j_index_start,j_index_end;
689     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
690     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
691     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
692     real             *shiftvec,*fshift,*x,*f;
693     int              vdwioffset0;
694     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
695     int              vdwioffset1;
696     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
697     int              vdwioffset2;
698     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
699     int              vdwioffset3;
700     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
701     int              vdwjidx0;
702     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
703     int              vdwjidx1;
704     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
705     int              vdwjidx2;
706     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
707     int              vdwjidx3;
708     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
709     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
710     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
711     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
712     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
713     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
714     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
715     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
716     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
717     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
718     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
719     real             velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     int              ewitab;
726     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
727     real             *ewtab;
728
729     x                = xx[0];
730     f                = ff[0];
731
732     nri              = nlist->nri;
733     iinr             = nlist->iinr;
734     jindex           = nlist->jindex;
735     jjnr             = nlist->jjnr;
736     shiftidx         = nlist->shift;
737     gid              = nlist->gid;
738     shiftvec         = fr->shift_vec[0];
739     fshift           = fr->fshift[0];
740     facel            = fr->epsfac;
741     charge           = mdatoms->chargeA;
742     nvdwtype         = fr->ntype;
743     vdwparam         = fr->nbfp;
744     vdwtype          = mdatoms->typeA;
745
746     sh_ewald         = fr->ic->sh_ewald;
747     ewtab            = fr->ic->tabq_coul_F;
748     ewtabscale       = fr->ic->tabq_scale;
749     ewtabhalfspace   = 0.5/ewtabscale;
750
751     /* Setup water-specific parameters */
752     inr              = nlist->iinr[0];
753     iq1              = facel*charge[inr+1];
754     iq2              = facel*charge[inr+2];
755     iq3              = facel*charge[inr+3];
756     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
757
758     jq1              = charge[inr+1];
759     jq2              = charge[inr+2];
760     jq3              = charge[inr+3];
761     vdwjidx0         = 2*vdwtype[inr+0];
762     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
763     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
764     qq11             = iq1*jq1;
765     qq12             = iq1*jq2;
766     qq13             = iq1*jq3;
767     qq21             = iq2*jq1;
768     qq22             = iq2*jq2;
769     qq23             = iq2*jq3;
770     qq31             = iq3*jq1;
771     qq32             = iq3*jq2;
772     qq33             = iq3*jq3;
773
774     outeriter        = 0;
775     inneriter        = 0;
776
777     /* Start outer loop over neighborlists */
778     for(iidx=0; iidx<nri; iidx++)
779     {
780         /* Load shift vector for this list */
781         i_shift_offset   = DIM*shiftidx[iidx];
782         shX              = shiftvec[i_shift_offset+XX];
783         shY              = shiftvec[i_shift_offset+YY];
784         shZ              = shiftvec[i_shift_offset+ZZ];
785
786         /* Load limits for loop over neighbors */
787         j_index_start    = jindex[iidx];
788         j_index_end      = jindex[iidx+1];
789
790         /* Get outer coordinate index */
791         inr              = iinr[iidx];
792         i_coord_offset   = DIM*inr;
793
794         /* Load i particle coords and add shift vector */
795         ix0              = shX + x[i_coord_offset+DIM*0+XX];
796         iy0              = shY + x[i_coord_offset+DIM*0+YY];
797         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
798         ix1              = shX + x[i_coord_offset+DIM*1+XX];
799         iy1              = shY + x[i_coord_offset+DIM*1+YY];
800         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
801         ix2              = shX + x[i_coord_offset+DIM*2+XX];
802         iy2              = shY + x[i_coord_offset+DIM*2+YY];
803         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
804         ix3              = shX + x[i_coord_offset+DIM*3+XX];
805         iy3              = shY + x[i_coord_offset+DIM*3+YY];
806         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
807
808         fix0             = 0.0;
809         fiy0             = 0.0;
810         fiz0             = 0.0;
811         fix1             = 0.0;
812         fiy1             = 0.0;
813         fiz1             = 0.0;
814         fix2             = 0.0;
815         fiy2             = 0.0;
816         fiz2             = 0.0;
817         fix3             = 0.0;
818         fiy3             = 0.0;
819         fiz3             = 0.0;
820
821         /* Start inner kernel loop */
822         for(jidx=j_index_start; jidx<j_index_end; jidx++)
823         {
824             /* Get j neighbor index, and coordinate index */
825             jnr              = jjnr[jidx];
826             j_coord_offset   = DIM*jnr;
827
828             /* load j atom coordinates */
829             jx0              = x[j_coord_offset+DIM*0+XX];
830             jy0              = x[j_coord_offset+DIM*0+YY];
831             jz0              = x[j_coord_offset+DIM*0+ZZ];
832             jx1              = x[j_coord_offset+DIM*1+XX];
833             jy1              = x[j_coord_offset+DIM*1+YY];
834             jz1              = x[j_coord_offset+DIM*1+ZZ];
835             jx2              = x[j_coord_offset+DIM*2+XX];
836             jy2              = x[j_coord_offset+DIM*2+YY];
837             jz2              = x[j_coord_offset+DIM*2+ZZ];
838             jx3              = x[j_coord_offset+DIM*3+XX];
839             jy3              = x[j_coord_offset+DIM*3+YY];
840             jz3              = x[j_coord_offset+DIM*3+ZZ];
841
842             /* Calculate displacement vector */
843             dx00             = ix0 - jx0;
844             dy00             = iy0 - jy0;
845             dz00             = iz0 - jz0;
846             dx11             = ix1 - jx1;
847             dy11             = iy1 - jy1;
848             dz11             = iz1 - jz1;
849             dx12             = ix1 - jx2;
850             dy12             = iy1 - jy2;
851             dz12             = iz1 - jz2;
852             dx13             = ix1 - jx3;
853             dy13             = iy1 - jy3;
854             dz13             = iz1 - jz3;
855             dx21             = ix2 - jx1;
856             dy21             = iy2 - jy1;
857             dz21             = iz2 - jz1;
858             dx22             = ix2 - jx2;
859             dy22             = iy2 - jy2;
860             dz22             = iz2 - jz2;
861             dx23             = ix2 - jx3;
862             dy23             = iy2 - jy3;
863             dz23             = iz2 - jz3;
864             dx31             = ix3 - jx1;
865             dy31             = iy3 - jy1;
866             dz31             = iz3 - jz1;
867             dx32             = ix3 - jx2;
868             dy32             = iy3 - jy2;
869             dz32             = iz3 - jz2;
870             dx33             = ix3 - jx3;
871             dy33             = iy3 - jy3;
872             dz33             = iz3 - jz3;
873
874             /* Calculate squared distance and things based on it */
875             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
876             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
877             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
878             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
879             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
880             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
881             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
882             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
883             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
884             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
885
886             rinv11           = gmx_invsqrt(rsq11);
887             rinv12           = gmx_invsqrt(rsq12);
888             rinv13           = gmx_invsqrt(rsq13);
889             rinv21           = gmx_invsqrt(rsq21);
890             rinv22           = gmx_invsqrt(rsq22);
891             rinv23           = gmx_invsqrt(rsq23);
892             rinv31           = gmx_invsqrt(rsq31);
893             rinv32           = gmx_invsqrt(rsq32);
894             rinv33           = gmx_invsqrt(rsq33);
895
896             rinvsq00         = 1.0/rsq00;
897             rinvsq11         = rinv11*rinv11;
898             rinvsq12         = rinv12*rinv12;
899             rinvsq13         = rinv13*rinv13;
900             rinvsq21         = rinv21*rinv21;
901             rinvsq22         = rinv22*rinv22;
902             rinvsq23         = rinv23*rinv23;
903             rinvsq31         = rinv31*rinv31;
904             rinvsq32         = rinv32*rinv32;
905             rinvsq33         = rinv33*rinv33;
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             /* LENNARD-JONES DISPERSION/REPULSION */
912
913             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
914             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
915
916             fscal            = fvdw;
917
918             /* Calculate temporary vectorial force */
919             tx               = fscal*dx00;
920             ty               = fscal*dy00;
921             tz               = fscal*dz00;
922
923             /* Update vectorial force */
924             fix0            += tx;
925             fiy0            += ty;
926             fiz0            += tz;
927             f[j_coord_offset+DIM*0+XX] -= tx;
928             f[j_coord_offset+DIM*0+YY] -= ty;
929             f[j_coord_offset+DIM*0+ZZ] -= tz;
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             r11              = rsq11*rinv11;
936
937             /* EWALD ELECTROSTATICS */
938
939             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
940             ewrt             = r11*ewtabscale;
941             ewitab           = ewrt;
942             eweps            = ewrt-ewitab;
943             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
944             felec            = qq11*rinv11*(rinvsq11-felec);
945
946             fscal            = felec;
947
948             /* Calculate temporary vectorial force */
949             tx               = fscal*dx11;
950             ty               = fscal*dy11;
951             tz               = fscal*dz11;
952
953             /* Update vectorial force */
954             fix1            += tx;
955             fiy1            += ty;
956             fiz1            += tz;
957             f[j_coord_offset+DIM*1+XX] -= tx;
958             f[j_coord_offset+DIM*1+YY] -= ty;
959             f[j_coord_offset+DIM*1+ZZ] -= tz;
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             r12              = rsq12*rinv12;
966
967             /* EWALD ELECTROSTATICS */
968
969             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
970             ewrt             = r12*ewtabscale;
971             ewitab           = ewrt;
972             eweps            = ewrt-ewitab;
973             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
974             felec            = qq12*rinv12*(rinvsq12-felec);
975
976             fscal            = felec;
977
978             /* Calculate temporary vectorial force */
979             tx               = fscal*dx12;
980             ty               = fscal*dy12;
981             tz               = fscal*dz12;
982
983             /* Update vectorial force */
984             fix1            += tx;
985             fiy1            += ty;
986             fiz1            += tz;
987             f[j_coord_offset+DIM*2+XX] -= tx;
988             f[j_coord_offset+DIM*2+YY] -= ty;
989             f[j_coord_offset+DIM*2+ZZ] -= tz;
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             r13              = rsq13*rinv13;
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = r13*ewtabscale;
1001             ewitab           = ewrt;
1002             eweps            = ewrt-ewitab;
1003             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1004             felec            = qq13*rinv13*(rinvsq13-felec);
1005
1006             fscal            = felec;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = fscal*dx13;
1010             ty               = fscal*dy13;
1011             tz               = fscal*dz13;
1012
1013             /* Update vectorial force */
1014             fix1            += tx;
1015             fiy1            += ty;
1016             fiz1            += tz;
1017             f[j_coord_offset+DIM*3+XX] -= tx;
1018             f[j_coord_offset+DIM*3+YY] -= ty;
1019             f[j_coord_offset+DIM*3+ZZ] -= tz;
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r21              = rsq21*rinv21;
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = r21*ewtabscale;
1031             ewitab           = ewrt;
1032             eweps            = ewrt-ewitab;
1033             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1034             felec            = qq21*rinv21*(rinvsq21-felec);
1035
1036             fscal            = felec;
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = fscal*dx21;
1040             ty               = fscal*dy21;
1041             tz               = fscal*dz21;
1042
1043             /* Update vectorial force */
1044             fix2            += tx;
1045             fiy2            += ty;
1046             fiz2            += tz;
1047             f[j_coord_offset+DIM*1+XX] -= tx;
1048             f[j_coord_offset+DIM*1+YY] -= ty;
1049             f[j_coord_offset+DIM*1+ZZ] -= tz;
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r22              = rsq22*rinv22;
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = r22*ewtabscale;
1061             ewitab           = ewrt;
1062             eweps            = ewrt-ewitab;
1063             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1064             felec            = qq22*rinv22*(rinvsq22-felec);
1065
1066             fscal            = felec;
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = fscal*dx22;
1070             ty               = fscal*dy22;
1071             tz               = fscal*dz22;
1072
1073             /* Update vectorial force */
1074             fix2            += tx;
1075             fiy2            += ty;
1076             fiz2            += tz;
1077             f[j_coord_offset+DIM*2+XX] -= tx;
1078             f[j_coord_offset+DIM*2+YY] -= ty;
1079             f[j_coord_offset+DIM*2+ZZ] -= tz;
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             r23              = rsq23*rinv23;
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1090             ewrt             = r23*ewtabscale;
1091             ewitab           = ewrt;
1092             eweps            = ewrt-ewitab;
1093             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1094             felec            = qq23*rinv23*(rinvsq23-felec);
1095
1096             fscal            = felec;
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = fscal*dx23;
1100             ty               = fscal*dy23;
1101             tz               = fscal*dz23;
1102
1103             /* Update vectorial force */
1104             fix2            += tx;
1105             fiy2            += ty;
1106             fiz2            += tz;
1107             f[j_coord_offset+DIM*3+XX] -= tx;
1108             f[j_coord_offset+DIM*3+YY] -= ty;
1109             f[j_coord_offset+DIM*3+ZZ] -= tz;
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r31              = rsq31*rinv31;
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = r31*ewtabscale;
1121             ewitab           = ewrt;
1122             eweps            = ewrt-ewitab;
1123             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1124             felec            = qq31*rinv31*(rinvsq31-felec);
1125
1126             fscal            = felec;
1127
1128             /* Calculate temporary vectorial force */
1129             tx               = fscal*dx31;
1130             ty               = fscal*dy31;
1131             tz               = fscal*dz31;
1132
1133             /* Update vectorial force */
1134             fix3            += tx;
1135             fiy3            += ty;
1136             fiz3            += tz;
1137             f[j_coord_offset+DIM*1+XX] -= tx;
1138             f[j_coord_offset+DIM*1+YY] -= ty;
1139             f[j_coord_offset+DIM*1+ZZ] -= tz;
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             r32              = rsq32*rinv32;
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = r32*ewtabscale;
1151             ewitab           = ewrt;
1152             eweps            = ewrt-ewitab;
1153             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1154             felec            = qq32*rinv32*(rinvsq32-felec);
1155
1156             fscal            = felec;
1157
1158             /* Calculate temporary vectorial force */
1159             tx               = fscal*dx32;
1160             ty               = fscal*dy32;
1161             tz               = fscal*dz32;
1162
1163             /* Update vectorial force */
1164             fix3            += tx;
1165             fiy3            += ty;
1166             fiz3            += tz;
1167             f[j_coord_offset+DIM*2+XX] -= tx;
1168             f[j_coord_offset+DIM*2+YY] -= ty;
1169             f[j_coord_offset+DIM*2+ZZ] -= tz;
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             r33              = rsq33*rinv33;
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1180             ewrt             = r33*ewtabscale;
1181             ewitab           = ewrt;
1182             eweps            = ewrt-ewitab;
1183             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1184             felec            = qq33*rinv33*(rinvsq33-felec);
1185
1186             fscal            = felec;
1187
1188             /* Calculate temporary vectorial force */
1189             tx               = fscal*dx33;
1190             ty               = fscal*dy33;
1191             tz               = fscal*dz33;
1192
1193             /* Update vectorial force */
1194             fix3            += tx;
1195             fiy3            += ty;
1196             fiz3            += tz;
1197             f[j_coord_offset+DIM*3+XX] -= tx;
1198             f[j_coord_offset+DIM*3+YY] -= ty;
1199             f[j_coord_offset+DIM*3+ZZ] -= tz;
1200
1201             /* Inner loop uses 324 flops */
1202         }
1203         /* End of innermost loop */
1204
1205         tx = ty = tz = 0;
1206         f[i_coord_offset+DIM*0+XX] += fix0;
1207         f[i_coord_offset+DIM*0+YY] += fiy0;
1208         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1209         tx                         += fix0;
1210         ty                         += fiy0;
1211         tz                         += fiz0;
1212         f[i_coord_offset+DIM*1+XX] += fix1;
1213         f[i_coord_offset+DIM*1+YY] += fiy1;
1214         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1215         tx                         += fix1;
1216         ty                         += fiy1;
1217         tz                         += fiz1;
1218         f[i_coord_offset+DIM*2+XX] += fix2;
1219         f[i_coord_offset+DIM*2+YY] += fiy2;
1220         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1221         tx                         += fix2;
1222         ty                         += fiy2;
1223         tz                         += fiz2;
1224         f[i_coord_offset+DIM*3+XX] += fix3;
1225         f[i_coord_offset+DIM*3+YY] += fiy3;
1226         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1227         tx                         += fix3;
1228         ty                         += fiy3;
1229         tz                         += fiz3;
1230         fshift[i_shift_offset+XX]  += tx;
1231         fshift[i_shift_offset+YY]  += ty;
1232         fshift[i_shift_offset+ZZ]  += tz;
1233
1234         /* Increment number of inner iterations */
1235         inneriter                  += j_index_end - j_index_start;
1236
1237         /* Outer loop uses 39 flops */
1238     }
1239
1240     /* Increment number of outer iterations */
1241     outeriter        += nri;
1242
1243     /* Update outer/inner flops */
1244
1245     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*324);
1246 }