Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            None
37  * Geometry:                   Water3-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
65     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
66     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69     int              ewitab;
70     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
71     real             *ewtab;
72     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
73
74     x                = xx[0];
75     f                = ff[0];
76
77     nri              = nlist->nri;
78     iinr             = nlist->iinr;
79     jindex           = nlist->jindex;
80     jjnr             = nlist->jjnr;
81     shiftidx         = nlist->shift;
82     gid              = nlist->gid;
83     shiftvec         = fr->shift_vec[0];
84     fshift           = fr->fshift[0];
85     facel            = fr->epsfac;
86     charge           = mdatoms->chargeA;
87
88     sh_ewald         = fr->ic->sh_ewald;
89     ewtab            = fr->ic->tabq_coul_FDV0;
90     ewtabscale       = fr->ic->tabq_scale;
91     ewtabhalfspace   = 0.5/ewtabscale;
92
93     /* Setup water-specific parameters */
94     inr              = nlist->iinr[0];
95     iq0              = facel*charge[inr+0];
96     iq1              = facel*charge[inr+1];
97     iq2              = facel*charge[inr+2];
98
99     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
100     rcutoff          = fr->rcoulomb;
101     rcutoff2         = rcutoff*rcutoff;
102
103     rswitch          = fr->rcoulomb_switch;
104     /* Setup switch parameters */
105     d                = rcutoff-rswitch;
106     swV3             = -10.0/(d*d*d);
107     swV4             =  15.0/(d*d*d*d);
108     swV5             =  -6.0/(d*d*d*d*d);
109     swF2             = -30.0/(d*d*d);
110     swF3             =  60.0/(d*d*d*d);
111     swF4             = -30.0/(d*d*d*d*d);
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121         shX              = shiftvec[i_shift_offset+XX];
122         shY              = shiftvec[i_shift_offset+YY];
123         shZ              = shiftvec[i_shift_offset+ZZ];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         ix0              = shX + x[i_coord_offset+DIM*0+XX];
135         iy0              = shY + x[i_coord_offset+DIM*0+YY];
136         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
137         ix1              = shX + x[i_coord_offset+DIM*1+XX];
138         iy1              = shY + x[i_coord_offset+DIM*1+YY];
139         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
140         ix2              = shX + x[i_coord_offset+DIM*2+XX];
141         iy2              = shY + x[i_coord_offset+DIM*2+YY];
142         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
143
144         fix0             = 0.0;
145         fiy0             = 0.0;
146         fiz0             = 0.0;
147         fix1             = 0.0;
148         fiy1             = 0.0;
149         fiz1             = 0.0;
150         fix2             = 0.0;
151         fiy2             = 0.0;
152         fiz2             = 0.0;
153
154         /* Reset potential sums */
155         velecsum         = 0.0;
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end; jidx++)
159         {
160             /* Get j neighbor index, and coordinate index */
161             jnr              = jjnr[jidx];
162             j_coord_offset   = DIM*jnr;
163
164             /* load j atom coordinates */
165             jx0              = x[j_coord_offset+DIM*0+XX];
166             jy0              = x[j_coord_offset+DIM*0+YY];
167             jz0              = x[j_coord_offset+DIM*0+ZZ];
168
169             /* Calculate displacement vector */
170             dx00             = ix0 - jx0;
171             dy00             = iy0 - jy0;
172             dz00             = iz0 - jz0;
173             dx10             = ix1 - jx0;
174             dy10             = iy1 - jy0;
175             dz10             = iz1 - jz0;
176             dx20             = ix2 - jx0;
177             dy20             = iy2 - jy0;
178             dz20             = iz2 - jz0;
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
182             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
183             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
184
185             rinv00           = gmx_invsqrt(rsq00);
186             rinv10           = gmx_invsqrt(rsq10);
187             rinv20           = gmx_invsqrt(rsq20);
188
189             rinvsq00         = rinv00*rinv00;
190             rinvsq10         = rinv10*rinv10;
191             rinvsq20         = rinv20*rinv20;
192
193             /* Load parameters for j particles */
194             jq0              = charge[jnr+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (rsq00<rcutoff2)
201             {
202
203             r00              = rsq00*rinv00;
204
205             qq00             = iq0*jq0;
206
207             /* EWALD ELECTROSTATICS */
208
209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
210             ewrt             = r00*ewtabscale;
211             ewitab           = ewrt;
212             eweps            = ewrt-ewitab;
213             ewitab           = 4*ewitab;
214             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
215             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
216             felec            = qq00*rinv00*(rinvsq00-felec);
217
218             d                = r00-rswitch;
219             d                = (d>0.0) ? d : 0.0;
220             d2               = d*d;
221             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
222
223             dsw              = d2*(swF2+d*(swF3+d*swF4));
224
225             /* Evaluate switch function */
226             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
227             felec            = felec*sw - rinv00*velec*dsw;
228             velec           *= sw;
229
230             /* Update potential sums from outer loop */
231             velecsum        += velec;
232
233             fscal            = felec;
234
235             /* Calculate temporary vectorial force */
236             tx               = fscal*dx00;
237             ty               = fscal*dy00;
238             tz               = fscal*dz00;
239
240             /* Update vectorial force */
241             fix0            += tx;
242             fiy0            += ty;
243             fiz0            += tz;
244             f[j_coord_offset+DIM*0+XX] -= tx;
245             f[j_coord_offset+DIM*0+YY] -= ty;
246             f[j_coord_offset+DIM*0+ZZ] -= tz;
247
248             }
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (rsq10<rcutoff2)
255             {
256
257             r10              = rsq10*rinv10;
258
259             qq10             = iq1*jq0;
260
261             /* EWALD ELECTROSTATICS */
262
263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
264             ewrt             = r10*ewtabscale;
265             ewitab           = ewrt;
266             eweps            = ewrt-ewitab;
267             ewitab           = 4*ewitab;
268             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
269             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
270             felec            = qq10*rinv10*(rinvsq10-felec);
271
272             d                = r10-rswitch;
273             d                = (d>0.0) ? d : 0.0;
274             d2               = d*d;
275             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
276
277             dsw              = d2*(swF2+d*(swF3+d*swF4));
278
279             /* Evaluate switch function */
280             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
281             felec            = felec*sw - rinv10*velec*dsw;
282             velec           *= sw;
283
284             /* Update potential sums from outer loop */
285             velecsum        += velec;
286
287             fscal            = felec;
288
289             /* Calculate temporary vectorial force */
290             tx               = fscal*dx10;
291             ty               = fscal*dy10;
292             tz               = fscal*dz10;
293
294             /* Update vectorial force */
295             fix1            += tx;
296             fiy1            += ty;
297             fiz1            += tz;
298             f[j_coord_offset+DIM*0+XX] -= tx;
299             f[j_coord_offset+DIM*0+YY] -= ty;
300             f[j_coord_offset+DIM*0+ZZ] -= tz;
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (rsq20<rcutoff2)
309             {
310
311             r20              = rsq20*rinv20;
312
313             qq20             = iq2*jq0;
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = r20*ewtabscale;
319             ewitab           = ewrt;
320             eweps            = ewrt-ewitab;
321             ewitab           = 4*ewitab;
322             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
323             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
324             felec            = qq20*rinv20*(rinvsq20-felec);
325
326             d                = r20-rswitch;
327             d                = (d>0.0) ? d : 0.0;
328             d2               = d*d;
329             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
330
331             dsw              = d2*(swF2+d*(swF3+d*swF4));
332
333             /* Evaluate switch function */
334             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
335             felec            = felec*sw - rinv20*velec*dsw;
336             velec           *= sw;
337
338             /* Update potential sums from outer loop */
339             velecsum        += velec;
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = fscal*dx20;
345             ty               = fscal*dy20;
346             tz               = fscal*dz20;
347
348             /* Update vectorial force */
349             fix2            += tx;
350             fiy2            += ty;
351             fiz2            += tz;
352             f[j_coord_offset+DIM*0+XX] -= tx;
353             f[j_coord_offset+DIM*0+YY] -= ty;
354             f[j_coord_offset+DIM*0+ZZ] -= tz;
355
356             }
357
358             /* Inner loop uses 177 flops */
359         }
360         /* End of innermost loop */
361
362         tx = ty = tz = 0;
363         f[i_coord_offset+DIM*0+XX] += fix0;
364         f[i_coord_offset+DIM*0+YY] += fiy0;
365         f[i_coord_offset+DIM*0+ZZ] += fiz0;
366         tx                         += fix0;
367         ty                         += fiy0;
368         tz                         += fiz0;
369         f[i_coord_offset+DIM*1+XX] += fix1;
370         f[i_coord_offset+DIM*1+YY] += fiy1;
371         f[i_coord_offset+DIM*1+ZZ] += fiz1;
372         tx                         += fix1;
373         ty                         += fiy1;
374         tz                         += fiz1;
375         f[i_coord_offset+DIM*2+XX] += fix2;
376         f[i_coord_offset+DIM*2+YY] += fiy2;
377         f[i_coord_offset+DIM*2+ZZ] += fiz2;
378         tx                         += fix2;
379         ty                         += fiy2;
380         tz                         += fiz2;
381         fshift[i_shift_offset+XX]  += tx;
382         fshift[i_shift_offset+YY]  += ty;
383         fshift[i_shift_offset+ZZ]  += tz;
384
385         ggid                        = gid[iidx];
386         /* Update potential energies */
387         kernel_data->energygrp_elec[ggid] += velecsum;
388
389         /* Increment number of inner iterations */
390         inneriter                  += j_index_end - j_index_start;
391
392         /* Outer loop uses 31 flops */
393     }
394
395     /* Increment number of outer iterations */
396     outeriter        += nri;
397
398     /* Update outer/inner flops */
399
400     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*177);
401 }
402 /*
403  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
404  * Electrostatics interaction: Ewald
405  * VdW interaction:            None
406  * Geometry:                   Water3-Particle
407  * Calculate force/pot:        Force
408  */
409 void
410 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
411                     (t_nblist * gmx_restrict                nlist,
412                      rvec * gmx_restrict                    xx,
413                      rvec * gmx_restrict                    ff,
414                      t_forcerec * gmx_restrict              fr,
415                      t_mdatoms * gmx_restrict               mdatoms,
416                      nb_kernel_data_t * gmx_restrict        kernel_data,
417                      t_nrnb * gmx_restrict                  nrnb)
418 {
419     int              i_shift_offset,i_coord_offset,j_coord_offset;
420     int              j_index_start,j_index_end;
421     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
422     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
423     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
424     real             *shiftvec,*fshift,*x,*f;
425     int              vdwioffset0;
426     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
427     int              vdwioffset1;
428     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
429     int              vdwioffset2;
430     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
431     int              vdwjidx0;
432     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
433     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
434     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
435     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
436     real             velec,felec,velecsum,facel,crf,krf,krf2;
437     real             *charge;
438     int              ewitab;
439     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
440     real             *ewtab;
441     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
442
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = fr->epsfac;
455     charge           = mdatoms->chargeA;
456
457     sh_ewald         = fr->ic->sh_ewald;
458     ewtab            = fr->ic->tabq_coul_FDV0;
459     ewtabscale       = fr->ic->tabq_scale;
460     ewtabhalfspace   = 0.5/ewtabscale;
461
462     /* Setup water-specific parameters */
463     inr              = nlist->iinr[0];
464     iq0              = facel*charge[inr+0];
465     iq1              = facel*charge[inr+1];
466     iq2              = facel*charge[inr+2];
467
468     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
469     rcutoff          = fr->rcoulomb;
470     rcutoff2         = rcutoff*rcutoff;
471
472     rswitch          = fr->rcoulomb_switch;
473     /* Setup switch parameters */
474     d                = rcutoff-rswitch;
475     swV3             = -10.0/(d*d*d);
476     swV4             =  15.0/(d*d*d*d);
477     swV5             =  -6.0/(d*d*d*d*d);
478     swF2             = -30.0/(d*d*d);
479     swF3             =  60.0/(d*d*d*d);
480     swF4             = -30.0/(d*d*d*d*d);
481
482     outeriter        = 0;
483     inneriter        = 0;
484
485     /* Start outer loop over neighborlists */
486     for(iidx=0; iidx<nri; iidx++)
487     {
488         /* Load shift vector for this list */
489         i_shift_offset   = DIM*shiftidx[iidx];
490         shX              = shiftvec[i_shift_offset+XX];
491         shY              = shiftvec[i_shift_offset+YY];
492         shZ              = shiftvec[i_shift_offset+ZZ];
493
494         /* Load limits for loop over neighbors */
495         j_index_start    = jindex[iidx];
496         j_index_end      = jindex[iidx+1];
497
498         /* Get outer coordinate index */
499         inr              = iinr[iidx];
500         i_coord_offset   = DIM*inr;
501
502         /* Load i particle coords and add shift vector */
503         ix0              = shX + x[i_coord_offset+DIM*0+XX];
504         iy0              = shY + x[i_coord_offset+DIM*0+YY];
505         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
506         ix1              = shX + x[i_coord_offset+DIM*1+XX];
507         iy1              = shY + x[i_coord_offset+DIM*1+YY];
508         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
509         ix2              = shX + x[i_coord_offset+DIM*2+XX];
510         iy2              = shY + x[i_coord_offset+DIM*2+YY];
511         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
512
513         fix0             = 0.0;
514         fiy0             = 0.0;
515         fiz0             = 0.0;
516         fix1             = 0.0;
517         fiy1             = 0.0;
518         fiz1             = 0.0;
519         fix2             = 0.0;
520         fiy2             = 0.0;
521         fiz2             = 0.0;
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end; jidx++)
525         {
526             /* Get j neighbor index, and coordinate index */
527             jnr              = jjnr[jidx];
528             j_coord_offset   = DIM*jnr;
529
530             /* load j atom coordinates */
531             jx0              = x[j_coord_offset+DIM*0+XX];
532             jy0              = x[j_coord_offset+DIM*0+YY];
533             jz0              = x[j_coord_offset+DIM*0+ZZ];
534
535             /* Calculate displacement vector */
536             dx00             = ix0 - jx0;
537             dy00             = iy0 - jy0;
538             dz00             = iz0 - jz0;
539             dx10             = ix1 - jx0;
540             dy10             = iy1 - jy0;
541             dz10             = iz1 - jz0;
542             dx20             = ix2 - jx0;
543             dy20             = iy2 - jy0;
544             dz20             = iz2 - jz0;
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
548             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
549             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
550
551             rinv00           = gmx_invsqrt(rsq00);
552             rinv10           = gmx_invsqrt(rsq10);
553             rinv20           = gmx_invsqrt(rsq20);
554
555             rinvsq00         = rinv00*rinv00;
556             rinvsq10         = rinv10*rinv10;
557             rinvsq20         = rinv20*rinv20;
558
559             /* Load parameters for j particles */
560             jq0              = charge[jnr+0];
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (rsq00<rcutoff2)
567             {
568
569             r00              = rsq00*rinv00;
570
571             qq00             = iq0*jq0;
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = r00*ewtabscale;
577             ewitab           = ewrt;
578             eweps            = ewrt-ewitab;
579             ewitab           = 4*ewitab;
580             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
581             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
582             felec            = qq00*rinv00*(rinvsq00-felec);
583
584             d                = r00-rswitch;
585             d                = (d>0.0) ? d : 0.0;
586             d2               = d*d;
587             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
588
589             dsw              = d2*(swF2+d*(swF3+d*swF4));
590
591             /* Evaluate switch function */
592             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
593             felec            = felec*sw - rinv00*velec*dsw;
594
595             fscal            = felec;
596
597             /* Calculate temporary vectorial force */
598             tx               = fscal*dx00;
599             ty               = fscal*dy00;
600             tz               = fscal*dz00;
601
602             /* Update vectorial force */
603             fix0            += tx;
604             fiy0            += ty;
605             fiz0            += tz;
606             f[j_coord_offset+DIM*0+XX] -= tx;
607             f[j_coord_offset+DIM*0+YY] -= ty;
608             f[j_coord_offset+DIM*0+ZZ] -= tz;
609
610             }
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (rsq10<rcutoff2)
617             {
618
619             r10              = rsq10*rinv10;
620
621             qq10             = iq1*jq0;
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = r10*ewtabscale;
627             ewitab           = ewrt;
628             eweps            = ewrt-ewitab;
629             ewitab           = 4*ewitab;
630             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
631             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
632             felec            = qq10*rinv10*(rinvsq10-felec);
633
634             d                = r10-rswitch;
635             d                = (d>0.0) ? d : 0.0;
636             d2               = d*d;
637             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
638
639             dsw              = d2*(swF2+d*(swF3+d*swF4));
640
641             /* Evaluate switch function */
642             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
643             felec            = felec*sw - rinv10*velec*dsw;
644
645             fscal            = felec;
646
647             /* Calculate temporary vectorial force */
648             tx               = fscal*dx10;
649             ty               = fscal*dy10;
650             tz               = fscal*dz10;
651
652             /* Update vectorial force */
653             fix1            += tx;
654             fiy1            += ty;
655             fiz1            += tz;
656             f[j_coord_offset+DIM*0+XX] -= tx;
657             f[j_coord_offset+DIM*0+YY] -= ty;
658             f[j_coord_offset+DIM*0+ZZ] -= tz;
659
660             }
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (rsq20<rcutoff2)
667             {
668
669             r20              = rsq20*rinv20;
670
671             qq20             = iq2*jq0;
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = r20*ewtabscale;
677             ewitab           = ewrt;
678             eweps            = ewrt-ewitab;
679             ewitab           = 4*ewitab;
680             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
681             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
682             felec            = qq20*rinv20*(rinvsq20-felec);
683
684             d                = r20-rswitch;
685             d                = (d>0.0) ? d : 0.0;
686             d2               = d*d;
687             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
688
689             dsw              = d2*(swF2+d*(swF3+d*swF4));
690
691             /* Evaluate switch function */
692             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
693             felec            = felec*sw - rinv20*velec*dsw;
694
695             fscal            = felec;
696
697             /* Calculate temporary vectorial force */
698             tx               = fscal*dx20;
699             ty               = fscal*dy20;
700             tz               = fscal*dz20;
701
702             /* Update vectorial force */
703             fix2            += tx;
704             fiy2            += ty;
705             fiz2            += tz;
706             f[j_coord_offset+DIM*0+XX] -= tx;
707             f[j_coord_offset+DIM*0+YY] -= ty;
708             f[j_coord_offset+DIM*0+ZZ] -= tz;
709
710             }
711
712             /* Inner loop uses 171 flops */
713         }
714         /* End of innermost loop */
715
716         tx = ty = tz = 0;
717         f[i_coord_offset+DIM*0+XX] += fix0;
718         f[i_coord_offset+DIM*0+YY] += fiy0;
719         f[i_coord_offset+DIM*0+ZZ] += fiz0;
720         tx                         += fix0;
721         ty                         += fiy0;
722         tz                         += fiz0;
723         f[i_coord_offset+DIM*1+XX] += fix1;
724         f[i_coord_offset+DIM*1+YY] += fiy1;
725         f[i_coord_offset+DIM*1+ZZ] += fiz1;
726         tx                         += fix1;
727         ty                         += fiy1;
728         tz                         += fiz1;
729         f[i_coord_offset+DIM*2+XX] += fix2;
730         f[i_coord_offset+DIM*2+YY] += fiy2;
731         f[i_coord_offset+DIM*2+ZZ] += fiz2;
732         tx                         += fix2;
733         ty                         += fiy2;
734         tz                         += fiz2;
735         fshift[i_shift_offset+XX]  += tx;
736         fshift[i_shift_offset+YY]  += ty;
737         fshift[i_shift_offset+ZZ]  += tz;
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 30 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*171);
751 }