Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water4-Water4
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     int              vdwjidx1;
67     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
68     int              vdwjidx2;
69     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
70     int              vdwjidx3;
71     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
72     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
73     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
74     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
75     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
76     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
77     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
78     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
79     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
80     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
81     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
82     real             velec,felec,velecsum,facel,crf,krf,krf2;
83     real             *charge;
84     int              nvdwtype;
85     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     int              ewitab;
89     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
90     real             *ewtab;
91     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = fr->epsfac;
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     sh_ewald         = fr->ic->sh_ewald;
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = fr->ic->tabq_scale;
113     ewtabhalfspace   = 0.5/ewtabscale;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = facel*charge[inr+1];
118     iq2              = facel*charge[inr+2];
119     iq3              = facel*charge[inr+3];
120     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
121
122     jq1              = charge[inr+1];
123     jq2              = charge[inr+2];
124     jq3              = charge[inr+3];
125     vdwjidx0         = 2*vdwtype[inr+0];
126     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
127     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
128     qq11             = iq1*jq1;
129     qq12             = iq1*jq2;
130     qq13             = iq1*jq3;
131     qq21             = iq2*jq1;
132     qq22             = iq2*jq2;
133     qq23             = iq2*jq3;
134     qq31             = iq3*jq1;
135     qq32             = iq3*jq2;
136     qq33             = iq3*jq3;
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff          = fr->rcoulomb;
140     rcutoff2         = rcutoff*rcutoff;
141
142     rswitch          = fr->rcoulomb_switch;
143     /* Setup switch parameters */
144     d                = rcutoff-rswitch;
145     swV3             = -10.0/(d*d*d);
146     swV4             =  15.0/(d*d*d*d);
147     swV5             =  -6.0/(d*d*d*d*d);
148     swF2             = -30.0/(d*d*d);
149     swF3             =  60.0/(d*d*d*d);
150     swF4             = -30.0/(d*d*d*d*d);
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160         shX              = shiftvec[i_shift_offset+XX];
161         shY              = shiftvec[i_shift_offset+YY];
162         shZ              = shiftvec[i_shift_offset+ZZ];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         ix0              = shX + x[i_coord_offset+DIM*0+XX];
174         iy0              = shY + x[i_coord_offset+DIM*0+YY];
175         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
176         ix1              = shX + x[i_coord_offset+DIM*1+XX];
177         iy1              = shY + x[i_coord_offset+DIM*1+YY];
178         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
179         ix2              = shX + x[i_coord_offset+DIM*2+XX];
180         iy2              = shY + x[i_coord_offset+DIM*2+YY];
181         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
182         ix3              = shX + x[i_coord_offset+DIM*3+XX];
183         iy3              = shY + x[i_coord_offset+DIM*3+YY];
184         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
185
186         fix0             = 0.0;
187         fiy0             = 0.0;
188         fiz0             = 0.0;
189         fix1             = 0.0;
190         fiy1             = 0.0;
191         fiz1             = 0.0;
192         fix2             = 0.0;
193         fiy2             = 0.0;
194         fiz2             = 0.0;
195         fix3             = 0.0;
196         fiy3             = 0.0;
197         fiz3             = 0.0;
198
199         /* Reset potential sums */
200         velecsum         = 0.0;
201         vvdwsum          = 0.0;
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end; jidx++)
205         {
206             /* Get j neighbor index, and coordinate index */
207             jnr              = jjnr[jidx];
208             j_coord_offset   = DIM*jnr;
209
210             /* load j atom coordinates */
211             jx0              = x[j_coord_offset+DIM*0+XX];
212             jy0              = x[j_coord_offset+DIM*0+YY];
213             jz0              = x[j_coord_offset+DIM*0+ZZ];
214             jx1              = x[j_coord_offset+DIM*1+XX];
215             jy1              = x[j_coord_offset+DIM*1+YY];
216             jz1              = x[j_coord_offset+DIM*1+ZZ];
217             jx2              = x[j_coord_offset+DIM*2+XX];
218             jy2              = x[j_coord_offset+DIM*2+YY];
219             jz2              = x[j_coord_offset+DIM*2+ZZ];
220             jx3              = x[j_coord_offset+DIM*3+XX];
221             jy3              = x[j_coord_offset+DIM*3+YY];
222             jz3              = x[j_coord_offset+DIM*3+ZZ];
223
224             /* Calculate displacement vector */
225             dx00             = ix0 - jx0;
226             dy00             = iy0 - jy0;
227             dz00             = iz0 - jz0;
228             dx11             = ix1 - jx1;
229             dy11             = iy1 - jy1;
230             dz11             = iz1 - jz1;
231             dx12             = ix1 - jx2;
232             dy12             = iy1 - jy2;
233             dz12             = iz1 - jz2;
234             dx13             = ix1 - jx3;
235             dy13             = iy1 - jy3;
236             dz13             = iz1 - jz3;
237             dx21             = ix2 - jx1;
238             dy21             = iy2 - jy1;
239             dz21             = iz2 - jz1;
240             dx22             = ix2 - jx2;
241             dy22             = iy2 - jy2;
242             dz22             = iz2 - jz2;
243             dx23             = ix2 - jx3;
244             dy23             = iy2 - jy3;
245             dz23             = iz2 - jz3;
246             dx31             = ix3 - jx1;
247             dy31             = iy3 - jy1;
248             dz31             = iz3 - jz1;
249             dx32             = ix3 - jx2;
250             dy32             = iy3 - jy2;
251             dz32             = iz3 - jz2;
252             dx33             = ix3 - jx3;
253             dy33             = iy3 - jy3;
254             dz33             = iz3 - jz3;
255
256             /* Calculate squared distance and things based on it */
257             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
258             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
259             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
260             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
261             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
262             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
263             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
264             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
265             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
266             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
267
268             rinv00           = gmx_invsqrt(rsq00);
269             rinv11           = gmx_invsqrt(rsq11);
270             rinv12           = gmx_invsqrt(rsq12);
271             rinv13           = gmx_invsqrt(rsq13);
272             rinv21           = gmx_invsqrt(rsq21);
273             rinv22           = gmx_invsqrt(rsq22);
274             rinv23           = gmx_invsqrt(rsq23);
275             rinv31           = gmx_invsqrt(rsq31);
276             rinv32           = gmx_invsqrt(rsq32);
277             rinv33           = gmx_invsqrt(rsq33);
278
279             rinvsq00         = rinv00*rinv00;
280             rinvsq11         = rinv11*rinv11;
281             rinvsq12         = rinv12*rinv12;
282             rinvsq13         = rinv13*rinv13;
283             rinvsq21         = rinv21*rinv21;
284             rinvsq22         = rinv22*rinv22;
285             rinvsq23         = rinv23*rinv23;
286             rinvsq31         = rinv31*rinv31;
287             rinvsq32         = rinv32*rinv32;
288             rinvsq33         = rinv33*rinv33;
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (rsq00<rcutoff2)
295             {
296
297             r00              = rsq00*rinv00;
298
299             /* LENNARD-JONES DISPERSION/REPULSION */
300
301             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
302             vvdw6            = c6_00*rinvsix;
303             vvdw12           = c12_00*rinvsix*rinvsix;
304             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
305             fvdw             = (vvdw12-vvdw6)*rinvsq00;
306
307             d                = r00-rswitch;
308             d                = (d>0.0) ? d : 0.0;
309             d2               = d*d;
310             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
311
312             dsw              = d2*(swF2+d*(swF3+d*swF4));
313
314             /* Evaluate switch function */
315             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
316             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
317             vvdw            *= sw;
318
319             /* Update potential sums from outer loop */
320             vvdwsum         += vvdw;
321
322             fscal            = fvdw;
323
324             /* Calculate temporary vectorial force */
325             tx               = fscal*dx00;
326             ty               = fscal*dy00;
327             tz               = fscal*dz00;
328
329             /* Update vectorial force */
330             fix0            += tx;
331             fiy0            += ty;
332             fiz0            += tz;
333             f[j_coord_offset+DIM*0+XX] -= tx;
334             f[j_coord_offset+DIM*0+YY] -= ty;
335             f[j_coord_offset+DIM*0+ZZ] -= tz;
336
337             }
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             if (rsq11<rcutoff2)
344             {
345
346             r11              = rsq11*rinv11;
347
348             /* EWALD ELECTROSTATICS */
349
350             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
351             ewrt             = r11*ewtabscale;
352             ewitab           = ewrt;
353             eweps            = ewrt-ewitab;
354             ewitab           = 4*ewitab;
355             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
356             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
357             felec            = qq11*rinv11*(rinvsq11-felec);
358
359             d                = r11-rswitch;
360             d                = (d>0.0) ? d : 0.0;
361             d2               = d*d;
362             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
363
364             dsw              = d2*(swF2+d*(swF3+d*swF4));
365
366             /* Evaluate switch function */
367             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
368             felec            = felec*sw - rinv11*velec*dsw;
369             velec           *= sw;
370
371             /* Update potential sums from outer loop */
372             velecsum        += velec;
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = fscal*dx11;
378             ty               = fscal*dy11;
379             tz               = fscal*dz11;
380
381             /* Update vectorial force */
382             fix1            += tx;
383             fiy1            += ty;
384             fiz1            += tz;
385             f[j_coord_offset+DIM*1+XX] -= tx;
386             f[j_coord_offset+DIM*1+YY] -= ty;
387             f[j_coord_offset+DIM*1+ZZ] -= tz;
388
389             }
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (rsq12<rcutoff2)
396             {
397
398             r12              = rsq12*rinv12;
399
400             /* EWALD ELECTROSTATICS */
401
402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
403             ewrt             = r12*ewtabscale;
404             ewitab           = ewrt;
405             eweps            = ewrt-ewitab;
406             ewitab           = 4*ewitab;
407             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
408             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
409             felec            = qq12*rinv12*(rinvsq12-felec);
410
411             d                = r12-rswitch;
412             d                = (d>0.0) ? d : 0.0;
413             d2               = d*d;
414             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
415
416             dsw              = d2*(swF2+d*(swF3+d*swF4));
417
418             /* Evaluate switch function */
419             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
420             felec            = felec*sw - rinv12*velec*dsw;
421             velec           *= sw;
422
423             /* Update potential sums from outer loop */
424             velecsum        += velec;
425
426             fscal            = felec;
427
428             /* Calculate temporary vectorial force */
429             tx               = fscal*dx12;
430             ty               = fscal*dy12;
431             tz               = fscal*dz12;
432
433             /* Update vectorial force */
434             fix1            += tx;
435             fiy1            += ty;
436             fiz1            += tz;
437             f[j_coord_offset+DIM*2+XX] -= tx;
438             f[j_coord_offset+DIM*2+YY] -= ty;
439             f[j_coord_offset+DIM*2+ZZ] -= tz;
440
441             }
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             if (rsq13<rcutoff2)
448             {
449
450             r13              = rsq13*rinv13;
451
452             /* EWALD ELECTROSTATICS */
453
454             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
455             ewrt             = r13*ewtabscale;
456             ewitab           = ewrt;
457             eweps            = ewrt-ewitab;
458             ewitab           = 4*ewitab;
459             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
460             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
461             felec            = qq13*rinv13*(rinvsq13-felec);
462
463             d                = r13-rswitch;
464             d                = (d>0.0) ? d : 0.0;
465             d2               = d*d;
466             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
467
468             dsw              = d2*(swF2+d*(swF3+d*swF4));
469
470             /* Evaluate switch function */
471             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
472             felec            = felec*sw - rinv13*velec*dsw;
473             velec           *= sw;
474
475             /* Update potential sums from outer loop */
476             velecsum        += velec;
477
478             fscal            = felec;
479
480             /* Calculate temporary vectorial force */
481             tx               = fscal*dx13;
482             ty               = fscal*dy13;
483             tz               = fscal*dz13;
484
485             /* Update vectorial force */
486             fix1            += tx;
487             fiy1            += ty;
488             fiz1            += tz;
489             f[j_coord_offset+DIM*3+XX] -= tx;
490             f[j_coord_offset+DIM*3+YY] -= ty;
491             f[j_coord_offset+DIM*3+ZZ] -= tz;
492
493             }
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             if (rsq21<rcutoff2)
500             {
501
502             r21              = rsq21*rinv21;
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = r21*ewtabscale;
508             ewitab           = ewrt;
509             eweps            = ewrt-ewitab;
510             ewitab           = 4*ewitab;
511             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
512             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
513             felec            = qq21*rinv21*(rinvsq21-felec);
514
515             d                = r21-rswitch;
516             d                = (d>0.0) ? d : 0.0;
517             d2               = d*d;
518             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
519
520             dsw              = d2*(swF2+d*(swF3+d*swF4));
521
522             /* Evaluate switch function */
523             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
524             felec            = felec*sw - rinv21*velec*dsw;
525             velec           *= sw;
526
527             /* Update potential sums from outer loop */
528             velecsum        += velec;
529
530             fscal            = felec;
531
532             /* Calculate temporary vectorial force */
533             tx               = fscal*dx21;
534             ty               = fscal*dy21;
535             tz               = fscal*dz21;
536
537             /* Update vectorial force */
538             fix2            += tx;
539             fiy2            += ty;
540             fiz2            += tz;
541             f[j_coord_offset+DIM*1+XX] -= tx;
542             f[j_coord_offset+DIM*1+YY] -= ty;
543             f[j_coord_offset+DIM*1+ZZ] -= tz;
544
545             }
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (rsq22<rcutoff2)
552             {
553
554             r22              = rsq22*rinv22;
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = r22*ewtabscale;
560             ewitab           = ewrt;
561             eweps            = ewrt-ewitab;
562             ewitab           = 4*ewitab;
563             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
564             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
565             felec            = qq22*rinv22*(rinvsq22-felec);
566
567             d                = r22-rswitch;
568             d                = (d>0.0) ? d : 0.0;
569             d2               = d*d;
570             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
571
572             dsw              = d2*(swF2+d*(swF3+d*swF4));
573
574             /* Evaluate switch function */
575             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
576             felec            = felec*sw - rinv22*velec*dsw;
577             velec           *= sw;
578
579             /* Update potential sums from outer loop */
580             velecsum        += velec;
581
582             fscal            = felec;
583
584             /* Calculate temporary vectorial force */
585             tx               = fscal*dx22;
586             ty               = fscal*dy22;
587             tz               = fscal*dz22;
588
589             /* Update vectorial force */
590             fix2            += tx;
591             fiy2            += ty;
592             fiz2            += tz;
593             f[j_coord_offset+DIM*2+XX] -= tx;
594             f[j_coord_offset+DIM*2+YY] -= ty;
595             f[j_coord_offset+DIM*2+ZZ] -= tz;
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (rsq23<rcutoff2)
604             {
605
606             r23              = rsq23*rinv23;
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = r23*ewtabscale;
612             ewitab           = ewrt;
613             eweps            = ewrt-ewitab;
614             ewitab           = 4*ewitab;
615             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
616             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
617             felec            = qq23*rinv23*(rinvsq23-felec);
618
619             d                = r23-rswitch;
620             d                = (d>0.0) ? d : 0.0;
621             d2               = d*d;
622             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
623
624             dsw              = d2*(swF2+d*(swF3+d*swF4));
625
626             /* Evaluate switch function */
627             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
628             felec            = felec*sw - rinv23*velec*dsw;
629             velec           *= sw;
630
631             /* Update potential sums from outer loop */
632             velecsum        += velec;
633
634             fscal            = felec;
635
636             /* Calculate temporary vectorial force */
637             tx               = fscal*dx23;
638             ty               = fscal*dy23;
639             tz               = fscal*dz23;
640
641             /* Update vectorial force */
642             fix2            += tx;
643             fiy2            += ty;
644             fiz2            += tz;
645             f[j_coord_offset+DIM*3+XX] -= tx;
646             f[j_coord_offset+DIM*3+YY] -= ty;
647             f[j_coord_offset+DIM*3+ZZ] -= tz;
648
649             }
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (rsq31<rcutoff2)
656             {
657
658             r31              = rsq31*rinv31;
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663             ewrt             = r31*ewtabscale;
664             ewitab           = ewrt;
665             eweps            = ewrt-ewitab;
666             ewitab           = 4*ewitab;
667             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
668             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
669             felec            = qq31*rinv31*(rinvsq31-felec);
670
671             d                = r31-rswitch;
672             d                = (d>0.0) ? d : 0.0;
673             d2               = d*d;
674             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
675
676             dsw              = d2*(swF2+d*(swF3+d*swF4));
677
678             /* Evaluate switch function */
679             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
680             felec            = felec*sw - rinv31*velec*dsw;
681             velec           *= sw;
682
683             /* Update potential sums from outer loop */
684             velecsum        += velec;
685
686             fscal            = felec;
687
688             /* Calculate temporary vectorial force */
689             tx               = fscal*dx31;
690             ty               = fscal*dy31;
691             tz               = fscal*dz31;
692
693             /* Update vectorial force */
694             fix3            += tx;
695             fiy3            += ty;
696             fiz3            += tz;
697             f[j_coord_offset+DIM*1+XX] -= tx;
698             f[j_coord_offset+DIM*1+YY] -= ty;
699             f[j_coord_offset+DIM*1+ZZ] -= tz;
700
701             }
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (rsq32<rcutoff2)
708             {
709
710             r32              = rsq32*rinv32;
711
712             /* EWALD ELECTROSTATICS */
713
714             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
715             ewrt             = r32*ewtabscale;
716             ewitab           = ewrt;
717             eweps            = ewrt-ewitab;
718             ewitab           = 4*ewitab;
719             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
720             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
721             felec            = qq32*rinv32*(rinvsq32-felec);
722
723             d                = r32-rswitch;
724             d                = (d>0.0) ? d : 0.0;
725             d2               = d*d;
726             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
727
728             dsw              = d2*(swF2+d*(swF3+d*swF4));
729
730             /* Evaluate switch function */
731             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
732             felec            = felec*sw - rinv32*velec*dsw;
733             velec           *= sw;
734
735             /* Update potential sums from outer loop */
736             velecsum        += velec;
737
738             fscal            = felec;
739
740             /* Calculate temporary vectorial force */
741             tx               = fscal*dx32;
742             ty               = fscal*dy32;
743             tz               = fscal*dz32;
744
745             /* Update vectorial force */
746             fix3            += tx;
747             fiy3            += ty;
748             fiz3            += tz;
749             f[j_coord_offset+DIM*2+XX] -= tx;
750             f[j_coord_offset+DIM*2+YY] -= ty;
751             f[j_coord_offset+DIM*2+ZZ] -= tz;
752
753             }
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             if (rsq33<rcutoff2)
760             {
761
762             r33              = rsq33*rinv33;
763
764             /* EWALD ELECTROSTATICS */
765
766             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
767             ewrt             = r33*ewtabscale;
768             ewitab           = ewrt;
769             eweps            = ewrt-ewitab;
770             ewitab           = 4*ewitab;
771             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
772             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
773             felec            = qq33*rinv33*(rinvsq33-felec);
774
775             d                = r33-rswitch;
776             d                = (d>0.0) ? d : 0.0;
777             d2               = d*d;
778             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
779
780             dsw              = d2*(swF2+d*(swF3+d*swF4));
781
782             /* Evaluate switch function */
783             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
784             felec            = felec*sw - rinv33*velec*dsw;
785             velec           *= sw;
786
787             /* Update potential sums from outer loop */
788             velecsum        += velec;
789
790             fscal            = felec;
791
792             /* Calculate temporary vectorial force */
793             tx               = fscal*dx33;
794             ty               = fscal*dy33;
795             tz               = fscal*dz33;
796
797             /* Update vectorial force */
798             fix3            += tx;
799             fiy3            += ty;
800             fiz3            += tz;
801             f[j_coord_offset+DIM*3+XX] -= tx;
802             f[j_coord_offset+DIM*3+YY] -= ty;
803             f[j_coord_offset+DIM*3+ZZ] -= tz;
804
805             }
806
807             /* Inner loop uses 575 flops */
808         }
809         /* End of innermost loop */
810
811         tx = ty = tz = 0;
812         f[i_coord_offset+DIM*0+XX] += fix0;
813         f[i_coord_offset+DIM*0+YY] += fiy0;
814         f[i_coord_offset+DIM*0+ZZ] += fiz0;
815         tx                         += fix0;
816         ty                         += fiy0;
817         tz                         += fiz0;
818         f[i_coord_offset+DIM*1+XX] += fix1;
819         f[i_coord_offset+DIM*1+YY] += fiy1;
820         f[i_coord_offset+DIM*1+ZZ] += fiz1;
821         tx                         += fix1;
822         ty                         += fiy1;
823         tz                         += fiz1;
824         f[i_coord_offset+DIM*2+XX] += fix2;
825         f[i_coord_offset+DIM*2+YY] += fiy2;
826         f[i_coord_offset+DIM*2+ZZ] += fiz2;
827         tx                         += fix2;
828         ty                         += fiy2;
829         tz                         += fiz2;
830         f[i_coord_offset+DIM*3+XX] += fix3;
831         f[i_coord_offset+DIM*3+YY] += fiy3;
832         f[i_coord_offset+DIM*3+ZZ] += fiz3;
833         tx                         += fix3;
834         ty                         += fiy3;
835         tz                         += fiz3;
836         fshift[i_shift_offset+XX]  += tx;
837         fshift[i_shift_offset+YY]  += ty;
838         fshift[i_shift_offset+ZZ]  += tz;
839
840         ggid                        = gid[iidx];
841         /* Update potential energies */
842         kernel_data->energygrp_elec[ggid] += velecsum;
843         kernel_data->energygrp_vdw[ggid] += vvdwsum;
844
845         /* Increment number of inner iterations */
846         inneriter                  += j_index_end - j_index_start;
847
848         /* Outer loop uses 41 flops */
849     }
850
851     /* Increment number of outer iterations */
852     outeriter        += nri;
853
854     /* Update outer/inner flops */
855
856     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*575);
857 }
858 /*
859  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_F_c
860  * Electrostatics interaction: Ewald
861  * VdW interaction:            LennardJones
862  * Geometry:                   Water4-Water4
863  * Calculate force/pot:        Force
864  */
865 void
866 nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_F_c
867                     (t_nblist * gmx_restrict                nlist,
868                      rvec * gmx_restrict                    xx,
869                      rvec * gmx_restrict                    ff,
870                      t_forcerec * gmx_restrict              fr,
871                      t_mdatoms * gmx_restrict               mdatoms,
872                      nb_kernel_data_t * gmx_restrict        kernel_data,
873                      t_nrnb * gmx_restrict                  nrnb)
874 {
875     int              i_shift_offset,i_coord_offset,j_coord_offset;
876     int              j_index_start,j_index_end;
877     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
878     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
879     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
880     real             *shiftvec,*fshift,*x,*f;
881     int              vdwioffset0;
882     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
883     int              vdwioffset1;
884     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
885     int              vdwioffset2;
886     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
887     int              vdwioffset3;
888     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
889     int              vdwjidx0;
890     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
891     int              vdwjidx1;
892     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
893     int              vdwjidx2;
894     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
895     int              vdwjidx3;
896     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
897     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
898     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
899     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
900     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
901     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
902     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
903     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
904     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
905     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
906     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
907     real             velec,felec,velecsum,facel,crf,krf,krf2;
908     real             *charge;
909     int              nvdwtype;
910     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
911     int              *vdwtype;
912     real             *vdwparam;
913     int              ewitab;
914     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
915     real             *ewtab;
916     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
917
918     x                = xx[0];
919     f                = ff[0];
920
921     nri              = nlist->nri;
922     iinr             = nlist->iinr;
923     jindex           = nlist->jindex;
924     jjnr             = nlist->jjnr;
925     shiftidx         = nlist->shift;
926     gid              = nlist->gid;
927     shiftvec         = fr->shift_vec[0];
928     fshift           = fr->fshift[0];
929     facel            = fr->epsfac;
930     charge           = mdatoms->chargeA;
931     nvdwtype         = fr->ntype;
932     vdwparam         = fr->nbfp;
933     vdwtype          = mdatoms->typeA;
934
935     sh_ewald         = fr->ic->sh_ewald;
936     ewtab            = fr->ic->tabq_coul_FDV0;
937     ewtabscale       = fr->ic->tabq_scale;
938     ewtabhalfspace   = 0.5/ewtabscale;
939
940     /* Setup water-specific parameters */
941     inr              = nlist->iinr[0];
942     iq1              = facel*charge[inr+1];
943     iq2              = facel*charge[inr+2];
944     iq3              = facel*charge[inr+3];
945     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
946
947     jq1              = charge[inr+1];
948     jq2              = charge[inr+2];
949     jq3              = charge[inr+3];
950     vdwjidx0         = 2*vdwtype[inr+0];
951     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
952     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
953     qq11             = iq1*jq1;
954     qq12             = iq1*jq2;
955     qq13             = iq1*jq3;
956     qq21             = iq2*jq1;
957     qq22             = iq2*jq2;
958     qq23             = iq2*jq3;
959     qq31             = iq3*jq1;
960     qq32             = iq3*jq2;
961     qq33             = iq3*jq3;
962
963     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
964     rcutoff          = fr->rcoulomb;
965     rcutoff2         = rcutoff*rcutoff;
966
967     rswitch          = fr->rcoulomb_switch;
968     /* Setup switch parameters */
969     d                = rcutoff-rswitch;
970     swV3             = -10.0/(d*d*d);
971     swV4             =  15.0/(d*d*d*d);
972     swV5             =  -6.0/(d*d*d*d*d);
973     swF2             = -30.0/(d*d*d);
974     swF3             =  60.0/(d*d*d*d);
975     swF4             = -30.0/(d*d*d*d*d);
976
977     outeriter        = 0;
978     inneriter        = 0;
979
980     /* Start outer loop over neighborlists */
981     for(iidx=0; iidx<nri; iidx++)
982     {
983         /* Load shift vector for this list */
984         i_shift_offset   = DIM*shiftidx[iidx];
985         shX              = shiftvec[i_shift_offset+XX];
986         shY              = shiftvec[i_shift_offset+YY];
987         shZ              = shiftvec[i_shift_offset+ZZ];
988
989         /* Load limits for loop over neighbors */
990         j_index_start    = jindex[iidx];
991         j_index_end      = jindex[iidx+1];
992
993         /* Get outer coordinate index */
994         inr              = iinr[iidx];
995         i_coord_offset   = DIM*inr;
996
997         /* Load i particle coords and add shift vector */
998         ix0              = shX + x[i_coord_offset+DIM*0+XX];
999         iy0              = shY + x[i_coord_offset+DIM*0+YY];
1000         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
1001         ix1              = shX + x[i_coord_offset+DIM*1+XX];
1002         iy1              = shY + x[i_coord_offset+DIM*1+YY];
1003         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
1004         ix2              = shX + x[i_coord_offset+DIM*2+XX];
1005         iy2              = shY + x[i_coord_offset+DIM*2+YY];
1006         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
1007         ix3              = shX + x[i_coord_offset+DIM*3+XX];
1008         iy3              = shY + x[i_coord_offset+DIM*3+YY];
1009         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
1010
1011         fix0             = 0.0;
1012         fiy0             = 0.0;
1013         fiz0             = 0.0;
1014         fix1             = 0.0;
1015         fiy1             = 0.0;
1016         fiz1             = 0.0;
1017         fix2             = 0.0;
1018         fiy2             = 0.0;
1019         fiz2             = 0.0;
1020         fix3             = 0.0;
1021         fiy3             = 0.0;
1022         fiz3             = 0.0;
1023
1024         /* Start inner kernel loop */
1025         for(jidx=j_index_start; jidx<j_index_end; jidx++)
1026         {
1027             /* Get j neighbor index, and coordinate index */
1028             jnr              = jjnr[jidx];
1029             j_coord_offset   = DIM*jnr;
1030
1031             /* load j atom coordinates */
1032             jx0              = x[j_coord_offset+DIM*0+XX];
1033             jy0              = x[j_coord_offset+DIM*0+YY];
1034             jz0              = x[j_coord_offset+DIM*0+ZZ];
1035             jx1              = x[j_coord_offset+DIM*1+XX];
1036             jy1              = x[j_coord_offset+DIM*1+YY];
1037             jz1              = x[j_coord_offset+DIM*1+ZZ];
1038             jx2              = x[j_coord_offset+DIM*2+XX];
1039             jy2              = x[j_coord_offset+DIM*2+YY];
1040             jz2              = x[j_coord_offset+DIM*2+ZZ];
1041             jx3              = x[j_coord_offset+DIM*3+XX];
1042             jy3              = x[j_coord_offset+DIM*3+YY];
1043             jz3              = x[j_coord_offset+DIM*3+ZZ];
1044
1045             /* Calculate displacement vector */
1046             dx00             = ix0 - jx0;
1047             dy00             = iy0 - jy0;
1048             dz00             = iz0 - jz0;
1049             dx11             = ix1 - jx1;
1050             dy11             = iy1 - jy1;
1051             dz11             = iz1 - jz1;
1052             dx12             = ix1 - jx2;
1053             dy12             = iy1 - jy2;
1054             dz12             = iz1 - jz2;
1055             dx13             = ix1 - jx3;
1056             dy13             = iy1 - jy3;
1057             dz13             = iz1 - jz3;
1058             dx21             = ix2 - jx1;
1059             dy21             = iy2 - jy1;
1060             dz21             = iz2 - jz1;
1061             dx22             = ix2 - jx2;
1062             dy22             = iy2 - jy2;
1063             dz22             = iz2 - jz2;
1064             dx23             = ix2 - jx3;
1065             dy23             = iy2 - jy3;
1066             dz23             = iz2 - jz3;
1067             dx31             = ix3 - jx1;
1068             dy31             = iy3 - jy1;
1069             dz31             = iz3 - jz1;
1070             dx32             = ix3 - jx2;
1071             dy32             = iy3 - jy2;
1072             dz32             = iz3 - jz2;
1073             dx33             = ix3 - jx3;
1074             dy33             = iy3 - jy3;
1075             dz33             = iz3 - jz3;
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
1079             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
1080             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
1081             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
1082             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
1083             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
1084             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
1085             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
1086             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
1087             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
1088
1089             rinv00           = gmx_invsqrt(rsq00);
1090             rinv11           = gmx_invsqrt(rsq11);
1091             rinv12           = gmx_invsqrt(rsq12);
1092             rinv13           = gmx_invsqrt(rsq13);
1093             rinv21           = gmx_invsqrt(rsq21);
1094             rinv22           = gmx_invsqrt(rsq22);
1095             rinv23           = gmx_invsqrt(rsq23);
1096             rinv31           = gmx_invsqrt(rsq31);
1097             rinv32           = gmx_invsqrt(rsq32);
1098             rinv33           = gmx_invsqrt(rsq33);
1099
1100             rinvsq00         = rinv00*rinv00;
1101             rinvsq11         = rinv11*rinv11;
1102             rinvsq12         = rinv12*rinv12;
1103             rinvsq13         = rinv13*rinv13;
1104             rinvsq21         = rinv21*rinv21;
1105             rinvsq22         = rinv22*rinv22;
1106             rinvsq23         = rinv23*rinv23;
1107             rinvsq31         = rinv31*rinv31;
1108             rinvsq32         = rinv32*rinv32;
1109             rinvsq33         = rinv33*rinv33;
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             if (rsq00<rcutoff2)
1116             {
1117
1118             r00              = rsq00*rinv00;
1119
1120             /* LENNARD-JONES DISPERSION/REPULSION */
1121
1122             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
1123             vvdw6            = c6_00*rinvsix;
1124             vvdw12           = c12_00*rinvsix*rinvsix;
1125             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
1126             fvdw             = (vvdw12-vvdw6)*rinvsq00;
1127
1128             d                = r00-rswitch;
1129             d                = (d>0.0) ? d : 0.0;
1130             d2               = d*d;
1131             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1132
1133             dsw              = d2*(swF2+d*(swF3+d*swF4));
1134
1135             /* Evaluate switch function */
1136             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1137             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
1138
1139             fscal            = fvdw;
1140
1141             /* Calculate temporary vectorial force */
1142             tx               = fscal*dx00;
1143             ty               = fscal*dy00;
1144             tz               = fscal*dz00;
1145
1146             /* Update vectorial force */
1147             fix0            += tx;
1148             fiy0            += ty;
1149             fiz0            += tz;
1150             f[j_coord_offset+DIM*0+XX] -= tx;
1151             f[j_coord_offset+DIM*0+YY] -= ty;
1152             f[j_coord_offset+DIM*0+ZZ] -= tz;
1153
1154             }
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             if (rsq11<rcutoff2)
1161             {
1162
1163             r11              = rsq11*rinv11;
1164
1165             /* EWALD ELECTROSTATICS */
1166
1167             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168             ewrt             = r11*ewtabscale;
1169             ewitab           = ewrt;
1170             eweps            = ewrt-ewitab;
1171             ewitab           = 4*ewitab;
1172             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1173             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1174             felec            = qq11*rinv11*(rinvsq11-felec);
1175
1176             d                = r11-rswitch;
1177             d                = (d>0.0) ? d : 0.0;
1178             d2               = d*d;
1179             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1180
1181             dsw              = d2*(swF2+d*(swF3+d*swF4));
1182
1183             /* Evaluate switch function */
1184             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1185             felec            = felec*sw - rinv11*velec*dsw;
1186
1187             fscal            = felec;
1188
1189             /* Calculate temporary vectorial force */
1190             tx               = fscal*dx11;
1191             ty               = fscal*dy11;
1192             tz               = fscal*dz11;
1193
1194             /* Update vectorial force */
1195             fix1            += tx;
1196             fiy1            += ty;
1197             fiz1            += tz;
1198             f[j_coord_offset+DIM*1+XX] -= tx;
1199             f[j_coord_offset+DIM*1+YY] -= ty;
1200             f[j_coord_offset+DIM*1+ZZ] -= tz;
1201
1202             }
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             if (rsq12<rcutoff2)
1209             {
1210
1211             r12              = rsq12*rinv12;
1212
1213             /* EWALD ELECTROSTATICS */
1214
1215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1216             ewrt             = r12*ewtabscale;
1217             ewitab           = ewrt;
1218             eweps            = ewrt-ewitab;
1219             ewitab           = 4*ewitab;
1220             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1221             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1222             felec            = qq12*rinv12*(rinvsq12-felec);
1223
1224             d                = r12-rswitch;
1225             d                = (d>0.0) ? d : 0.0;
1226             d2               = d*d;
1227             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1228
1229             dsw              = d2*(swF2+d*(swF3+d*swF4));
1230
1231             /* Evaluate switch function */
1232             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1233             felec            = felec*sw - rinv12*velec*dsw;
1234
1235             fscal            = felec;
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = fscal*dx12;
1239             ty               = fscal*dy12;
1240             tz               = fscal*dz12;
1241
1242             /* Update vectorial force */
1243             fix1            += tx;
1244             fiy1            += ty;
1245             fiz1            += tz;
1246             f[j_coord_offset+DIM*2+XX] -= tx;
1247             f[j_coord_offset+DIM*2+YY] -= ty;
1248             f[j_coord_offset+DIM*2+ZZ] -= tz;
1249
1250             }
1251
1252             /**************************
1253              * CALCULATE INTERACTIONS *
1254              **************************/
1255
1256             if (rsq13<rcutoff2)
1257             {
1258
1259             r13              = rsq13*rinv13;
1260
1261             /* EWALD ELECTROSTATICS */
1262
1263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1264             ewrt             = r13*ewtabscale;
1265             ewitab           = ewrt;
1266             eweps            = ewrt-ewitab;
1267             ewitab           = 4*ewitab;
1268             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1269             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1270             felec            = qq13*rinv13*(rinvsq13-felec);
1271
1272             d                = r13-rswitch;
1273             d                = (d>0.0) ? d : 0.0;
1274             d2               = d*d;
1275             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1276
1277             dsw              = d2*(swF2+d*(swF3+d*swF4));
1278
1279             /* Evaluate switch function */
1280             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1281             felec            = felec*sw - rinv13*velec*dsw;
1282
1283             fscal            = felec;
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = fscal*dx13;
1287             ty               = fscal*dy13;
1288             tz               = fscal*dz13;
1289
1290             /* Update vectorial force */
1291             fix1            += tx;
1292             fiy1            += ty;
1293             fiz1            += tz;
1294             f[j_coord_offset+DIM*3+XX] -= tx;
1295             f[j_coord_offset+DIM*3+YY] -= ty;
1296             f[j_coord_offset+DIM*3+ZZ] -= tz;
1297
1298             }
1299
1300             /**************************
1301              * CALCULATE INTERACTIONS *
1302              **************************/
1303
1304             if (rsq21<rcutoff2)
1305             {
1306
1307             r21              = rsq21*rinv21;
1308
1309             /* EWALD ELECTROSTATICS */
1310
1311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1312             ewrt             = r21*ewtabscale;
1313             ewitab           = ewrt;
1314             eweps            = ewrt-ewitab;
1315             ewitab           = 4*ewitab;
1316             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1317             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1318             felec            = qq21*rinv21*(rinvsq21-felec);
1319
1320             d                = r21-rswitch;
1321             d                = (d>0.0) ? d : 0.0;
1322             d2               = d*d;
1323             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1324
1325             dsw              = d2*(swF2+d*(swF3+d*swF4));
1326
1327             /* Evaluate switch function */
1328             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1329             felec            = felec*sw - rinv21*velec*dsw;
1330
1331             fscal            = felec;
1332
1333             /* Calculate temporary vectorial force */
1334             tx               = fscal*dx21;
1335             ty               = fscal*dy21;
1336             tz               = fscal*dz21;
1337
1338             /* Update vectorial force */
1339             fix2            += tx;
1340             fiy2            += ty;
1341             fiz2            += tz;
1342             f[j_coord_offset+DIM*1+XX] -= tx;
1343             f[j_coord_offset+DIM*1+YY] -= ty;
1344             f[j_coord_offset+DIM*1+ZZ] -= tz;
1345
1346             }
1347
1348             /**************************
1349              * CALCULATE INTERACTIONS *
1350              **************************/
1351
1352             if (rsq22<rcutoff2)
1353             {
1354
1355             r22              = rsq22*rinv22;
1356
1357             /* EWALD ELECTROSTATICS */
1358
1359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1360             ewrt             = r22*ewtabscale;
1361             ewitab           = ewrt;
1362             eweps            = ewrt-ewitab;
1363             ewitab           = 4*ewitab;
1364             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1365             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1366             felec            = qq22*rinv22*(rinvsq22-felec);
1367
1368             d                = r22-rswitch;
1369             d                = (d>0.0) ? d : 0.0;
1370             d2               = d*d;
1371             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1372
1373             dsw              = d2*(swF2+d*(swF3+d*swF4));
1374
1375             /* Evaluate switch function */
1376             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1377             felec            = felec*sw - rinv22*velec*dsw;
1378
1379             fscal            = felec;
1380
1381             /* Calculate temporary vectorial force */
1382             tx               = fscal*dx22;
1383             ty               = fscal*dy22;
1384             tz               = fscal*dz22;
1385
1386             /* Update vectorial force */
1387             fix2            += tx;
1388             fiy2            += ty;
1389             fiz2            += tz;
1390             f[j_coord_offset+DIM*2+XX] -= tx;
1391             f[j_coord_offset+DIM*2+YY] -= ty;
1392             f[j_coord_offset+DIM*2+ZZ] -= tz;
1393
1394             }
1395
1396             /**************************
1397              * CALCULATE INTERACTIONS *
1398              **************************/
1399
1400             if (rsq23<rcutoff2)
1401             {
1402
1403             r23              = rsq23*rinv23;
1404
1405             /* EWALD ELECTROSTATICS */
1406
1407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1408             ewrt             = r23*ewtabscale;
1409             ewitab           = ewrt;
1410             eweps            = ewrt-ewitab;
1411             ewitab           = 4*ewitab;
1412             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1413             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1414             felec            = qq23*rinv23*(rinvsq23-felec);
1415
1416             d                = r23-rswitch;
1417             d                = (d>0.0) ? d : 0.0;
1418             d2               = d*d;
1419             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1420
1421             dsw              = d2*(swF2+d*(swF3+d*swF4));
1422
1423             /* Evaluate switch function */
1424             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1425             felec            = felec*sw - rinv23*velec*dsw;
1426
1427             fscal            = felec;
1428
1429             /* Calculate temporary vectorial force */
1430             tx               = fscal*dx23;
1431             ty               = fscal*dy23;
1432             tz               = fscal*dz23;
1433
1434             /* Update vectorial force */
1435             fix2            += tx;
1436             fiy2            += ty;
1437             fiz2            += tz;
1438             f[j_coord_offset+DIM*3+XX] -= tx;
1439             f[j_coord_offset+DIM*3+YY] -= ty;
1440             f[j_coord_offset+DIM*3+ZZ] -= tz;
1441
1442             }
1443
1444             /**************************
1445              * CALCULATE INTERACTIONS *
1446              **************************/
1447
1448             if (rsq31<rcutoff2)
1449             {
1450
1451             r31              = rsq31*rinv31;
1452
1453             /* EWALD ELECTROSTATICS */
1454
1455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1456             ewrt             = r31*ewtabscale;
1457             ewitab           = ewrt;
1458             eweps            = ewrt-ewitab;
1459             ewitab           = 4*ewitab;
1460             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1461             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1462             felec            = qq31*rinv31*(rinvsq31-felec);
1463
1464             d                = r31-rswitch;
1465             d                = (d>0.0) ? d : 0.0;
1466             d2               = d*d;
1467             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1468
1469             dsw              = d2*(swF2+d*(swF3+d*swF4));
1470
1471             /* Evaluate switch function */
1472             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1473             felec            = felec*sw - rinv31*velec*dsw;
1474
1475             fscal            = felec;
1476
1477             /* Calculate temporary vectorial force */
1478             tx               = fscal*dx31;
1479             ty               = fscal*dy31;
1480             tz               = fscal*dz31;
1481
1482             /* Update vectorial force */
1483             fix3            += tx;
1484             fiy3            += ty;
1485             fiz3            += tz;
1486             f[j_coord_offset+DIM*1+XX] -= tx;
1487             f[j_coord_offset+DIM*1+YY] -= ty;
1488             f[j_coord_offset+DIM*1+ZZ] -= tz;
1489
1490             }
1491
1492             /**************************
1493              * CALCULATE INTERACTIONS *
1494              **************************/
1495
1496             if (rsq32<rcutoff2)
1497             {
1498
1499             r32              = rsq32*rinv32;
1500
1501             /* EWALD ELECTROSTATICS */
1502
1503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1504             ewrt             = r32*ewtabscale;
1505             ewitab           = ewrt;
1506             eweps            = ewrt-ewitab;
1507             ewitab           = 4*ewitab;
1508             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1509             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1510             felec            = qq32*rinv32*(rinvsq32-felec);
1511
1512             d                = r32-rswitch;
1513             d                = (d>0.0) ? d : 0.0;
1514             d2               = d*d;
1515             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1516
1517             dsw              = d2*(swF2+d*(swF3+d*swF4));
1518
1519             /* Evaluate switch function */
1520             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1521             felec            = felec*sw - rinv32*velec*dsw;
1522
1523             fscal            = felec;
1524
1525             /* Calculate temporary vectorial force */
1526             tx               = fscal*dx32;
1527             ty               = fscal*dy32;
1528             tz               = fscal*dz32;
1529
1530             /* Update vectorial force */
1531             fix3            += tx;
1532             fiy3            += ty;
1533             fiz3            += tz;
1534             f[j_coord_offset+DIM*2+XX] -= tx;
1535             f[j_coord_offset+DIM*2+YY] -= ty;
1536             f[j_coord_offset+DIM*2+ZZ] -= tz;
1537
1538             }
1539
1540             /**************************
1541              * CALCULATE INTERACTIONS *
1542              **************************/
1543
1544             if (rsq33<rcutoff2)
1545             {
1546
1547             r33              = rsq33*rinv33;
1548
1549             /* EWALD ELECTROSTATICS */
1550
1551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1552             ewrt             = r33*ewtabscale;
1553             ewitab           = ewrt;
1554             eweps            = ewrt-ewitab;
1555             ewitab           = 4*ewitab;
1556             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1557             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1558             felec            = qq33*rinv33*(rinvsq33-felec);
1559
1560             d                = r33-rswitch;
1561             d                = (d>0.0) ? d : 0.0;
1562             d2               = d*d;
1563             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1564
1565             dsw              = d2*(swF2+d*(swF3+d*swF4));
1566
1567             /* Evaluate switch function */
1568             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1569             felec            = felec*sw - rinv33*velec*dsw;
1570
1571             fscal            = felec;
1572
1573             /* Calculate temporary vectorial force */
1574             tx               = fscal*dx33;
1575             ty               = fscal*dy33;
1576             tz               = fscal*dz33;
1577
1578             /* Update vectorial force */
1579             fix3            += tx;
1580             fiy3            += ty;
1581             fiz3            += tz;
1582             f[j_coord_offset+DIM*3+XX] -= tx;
1583             f[j_coord_offset+DIM*3+YY] -= ty;
1584             f[j_coord_offset+DIM*3+ZZ] -= tz;
1585
1586             }
1587
1588             /* Inner loop uses 555 flops */
1589         }
1590         /* End of innermost loop */
1591
1592         tx = ty = tz = 0;
1593         f[i_coord_offset+DIM*0+XX] += fix0;
1594         f[i_coord_offset+DIM*0+YY] += fiy0;
1595         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1596         tx                         += fix0;
1597         ty                         += fiy0;
1598         tz                         += fiz0;
1599         f[i_coord_offset+DIM*1+XX] += fix1;
1600         f[i_coord_offset+DIM*1+YY] += fiy1;
1601         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1602         tx                         += fix1;
1603         ty                         += fiy1;
1604         tz                         += fiz1;
1605         f[i_coord_offset+DIM*2+XX] += fix2;
1606         f[i_coord_offset+DIM*2+YY] += fiy2;
1607         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1608         tx                         += fix2;
1609         ty                         += fiy2;
1610         tz                         += fiz2;
1611         f[i_coord_offset+DIM*3+XX] += fix3;
1612         f[i_coord_offset+DIM*3+YY] += fiy3;
1613         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1614         tx                         += fix3;
1615         ty                         += fiy3;
1616         tz                         += fiz3;
1617         fshift[i_shift_offset+XX]  += tx;
1618         fshift[i_shift_offset+YY]  += ty;
1619         fshift[i_shift_offset+ZZ]  += tz;
1620
1621         /* Increment number of inner iterations */
1622         inneriter                  += j_index_end - j_index_start;
1623
1624         /* Outer loop uses 39 flops */
1625     }
1626
1627     /* Increment number of outer iterations */
1628     outeriter        += nri;
1629
1630     /* Update outer/inner flops */
1631
1632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*555);
1633 }