Fix component for libcudart
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            None
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset1;
57     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
58     int              vdwioffset2;
59     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
60     int              vdwioffset3;
61     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
65     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
66     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69     int              ewitab;
70     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
71     real             *ewtab;
72
73     x                = xx[0];
74     f                = ff[0];
75
76     nri              = nlist->nri;
77     iinr             = nlist->iinr;
78     jindex           = nlist->jindex;
79     jjnr             = nlist->jjnr;
80     shiftidx         = nlist->shift;
81     gid              = nlist->gid;
82     shiftvec         = fr->shift_vec[0];
83     fshift           = fr->fshift[0];
84     facel            = fr->epsfac;
85     charge           = mdatoms->chargeA;
86
87     sh_ewald         = fr->ic->sh_ewald;
88     ewtab            = fr->ic->tabq_coul_FDV0;
89     ewtabscale       = fr->ic->tabq_scale;
90     ewtabhalfspace   = 0.5/ewtabscale;
91
92     /* Setup water-specific parameters */
93     inr              = nlist->iinr[0];
94     iq1              = facel*charge[inr+1];
95     iq2              = facel*charge[inr+2];
96     iq3              = facel*charge[inr+3];
97
98     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
99     rcutoff          = fr->rcoulomb;
100     rcutoff2         = rcutoff*rcutoff;
101
102     outeriter        = 0;
103     inneriter        = 0;
104
105     /* Start outer loop over neighborlists */
106     for(iidx=0; iidx<nri; iidx++)
107     {
108         /* Load shift vector for this list */
109         i_shift_offset   = DIM*shiftidx[iidx];
110         shX              = shiftvec[i_shift_offset+XX];
111         shY              = shiftvec[i_shift_offset+YY];
112         shZ              = shiftvec[i_shift_offset+ZZ];
113
114         /* Load limits for loop over neighbors */
115         j_index_start    = jindex[iidx];
116         j_index_end      = jindex[iidx+1];
117
118         /* Get outer coordinate index */
119         inr              = iinr[iidx];
120         i_coord_offset   = DIM*inr;
121
122         /* Load i particle coords and add shift vector */
123         ix1              = shX + x[i_coord_offset+DIM*1+XX];
124         iy1              = shY + x[i_coord_offset+DIM*1+YY];
125         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
126         ix2              = shX + x[i_coord_offset+DIM*2+XX];
127         iy2              = shY + x[i_coord_offset+DIM*2+YY];
128         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
129         ix3              = shX + x[i_coord_offset+DIM*3+XX];
130         iy3              = shY + x[i_coord_offset+DIM*3+YY];
131         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
132
133         fix1             = 0.0;
134         fiy1             = 0.0;
135         fiz1             = 0.0;
136         fix2             = 0.0;
137         fiy2             = 0.0;
138         fiz2             = 0.0;
139         fix3             = 0.0;
140         fiy3             = 0.0;
141         fiz3             = 0.0;
142
143         /* Reset potential sums */
144         velecsum         = 0.0;
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end; jidx++)
148         {
149             /* Get j neighbor index, and coordinate index */
150             jnr              = jjnr[jidx];
151             j_coord_offset   = DIM*jnr;
152
153             /* load j atom coordinates */
154             jx0              = x[j_coord_offset+DIM*0+XX];
155             jy0              = x[j_coord_offset+DIM*0+YY];
156             jz0              = x[j_coord_offset+DIM*0+ZZ];
157
158             /* Calculate displacement vector */
159             dx10             = ix1 - jx0;
160             dy10             = iy1 - jy0;
161             dz10             = iz1 - jz0;
162             dx20             = ix2 - jx0;
163             dy20             = iy2 - jy0;
164             dz20             = iz2 - jz0;
165             dx30             = ix3 - jx0;
166             dy30             = iy3 - jy0;
167             dz30             = iz3 - jz0;
168
169             /* Calculate squared distance and things based on it */
170             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
171             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
172             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
173
174             rinv10           = gmx_invsqrt(rsq10);
175             rinv20           = gmx_invsqrt(rsq20);
176             rinv30           = gmx_invsqrt(rsq30);
177
178             rinvsq10         = rinv10*rinv10;
179             rinvsq20         = rinv20*rinv20;
180             rinvsq30         = rinv30*rinv30;
181
182             /* Load parameters for j particles */
183             jq0              = charge[jnr+0];
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             if (rsq10<rcutoff2)
190             {
191
192             r10              = rsq10*rinv10;
193
194             qq10             = iq1*jq0;
195
196             /* EWALD ELECTROSTATICS */
197
198             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
199             ewrt             = r10*ewtabscale;
200             ewitab           = ewrt;
201             eweps            = ewrt-ewitab;
202             ewitab           = 4*ewitab;
203             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
204             velec            = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
205             felec            = qq10*rinv10*(rinvsq10-felec);
206
207             /* Update potential sums from outer loop */
208             velecsum        += velec;
209
210             fscal            = felec;
211
212             /* Calculate temporary vectorial force */
213             tx               = fscal*dx10;
214             ty               = fscal*dy10;
215             tz               = fscal*dz10;
216
217             /* Update vectorial force */
218             fix1            += tx;
219             fiy1            += ty;
220             fiz1            += tz;
221             f[j_coord_offset+DIM*0+XX] -= tx;
222             f[j_coord_offset+DIM*0+YY] -= ty;
223             f[j_coord_offset+DIM*0+ZZ] -= tz;
224
225             }
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (rsq20<rcutoff2)
232             {
233
234             r20              = rsq20*rinv20;
235
236             qq20             = iq2*jq0;
237
238             /* EWALD ELECTROSTATICS */
239
240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
241             ewrt             = r20*ewtabscale;
242             ewitab           = ewrt;
243             eweps            = ewrt-ewitab;
244             ewitab           = 4*ewitab;
245             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
246             velec            = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
247             felec            = qq20*rinv20*(rinvsq20-felec);
248
249             /* Update potential sums from outer loop */
250             velecsum        += velec;
251
252             fscal            = felec;
253
254             /* Calculate temporary vectorial force */
255             tx               = fscal*dx20;
256             ty               = fscal*dy20;
257             tz               = fscal*dz20;
258
259             /* Update vectorial force */
260             fix2            += tx;
261             fiy2            += ty;
262             fiz2            += tz;
263             f[j_coord_offset+DIM*0+XX] -= tx;
264             f[j_coord_offset+DIM*0+YY] -= ty;
265             f[j_coord_offset+DIM*0+ZZ] -= tz;
266
267             }
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (rsq30<rcutoff2)
274             {
275
276             r30              = rsq30*rinv30;
277
278             qq30             = iq3*jq0;
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
283             ewrt             = r30*ewtabscale;
284             ewitab           = ewrt;
285             eweps            = ewrt-ewitab;
286             ewitab           = 4*ewitab;
287             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
288             velec            = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
289             felec            = qq30*rinv30*(rinvsq30-felec);
290
291             /* Update potential sums from outer loop */
292             velecsum        += velec;
293
294             fscal            = felec;
295
296             /* Calculate temporary vectorial force */
297             tx               = fscal*dx30;
298             ty               = fscal*dy30;
299             tz               = fscal*dz30;
300
301             /* Update vectorial force */
302             fix3            += tx;
303             fiy3            += ty;
304             fiz3            += tz;
305             f[j_coord_offset+DIM*0+XX] -= tx;
306             f[j_coord_offset+DIM*0+YY] -= ty;
307             f[j_coord_offset+DIM*0+ZZ] -= tz;
308
309             }
310
311             /* Inner loop uses 126 flops */
312         }
313         /* End of innermost loop */
314
315         tx = ty = tz = 0;
316         f[i_coord_offset+DIM*1+XX] += fix1;
317         f[i_coord_offset+DIM*1+YY] += fiy1;
318         f[i_coord_offset+DIM*1+ZZ] += fiz1;
319         tx                         += fix1;
320         ty                         += fiy1;
321         tz                         += fiz1;
322         f[i_coord_offset+DIM*2+XX] += fix2;
323         f[i_coord_offset+DIM*2+YY] += fiy2;
324         f[i_coord_offset+DIM*2+ZZ] += fiz2;
325         tx                         += fix2;
326         ty                         += fiy2;
327         tz                         += fiz2;
328         f[i_coord_offset+DIM*3+XX] += fix3;
329         f[i_coord_offset+DIM*3+YY] += fiy3;
330         f[i_coord_offset+DIM*3+ZZ] += fiz3;
331         tx                         += fix3;
332         ty                         += fiy3;
333         tz                         += fiz3;
334         fshift[i_shift_offset+XX]  += tx;
335         fshift[i_shift_offset+YY]  += ty;
336         fshift[i_shift_offset+ZZ]  += tz;
337
338         ggid                        = gid[iidx];
339         /* Update potential energies */
340         kernel_data->energygrp_elec[ggid] += velecsum;
341
342         /* Increment number of inner iterations */
343         inneriter                  += j_index_end - j_index_start;
344
345         /* Outer loop uses 31 flops */
346     }
347
348     /* Increment number of outer iterations */
349     outeriter        += nri;
350
351     /* Update outer/inner flops */
352
353     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*126);
354 }
355 /*
356  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_c
357  * Electrostatics interaction: Ewald
358  * VdW interaction:            None
359  * Geometry:                   Water4-Particle
360  * Calculate force/pot:        Force
361  */
362 void
363 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_c
364                     (t_nblist * gmx_restrict                nlist,
365                      rvec * gmx_restrict                    xx,
366                      rvec * gmx_restrict                    ff,
367                      t_forcerec * gmx_restrict              fr,
368                      t_mdatoms * gmx_restrict               mdatoms,
369                      nb_kernel_data_t * gmx_restrict        kernel_data,
370                      t_nrnb * gmx_restrict                  nrnb)
371 {
372     int              i_shift_offset,i_coord_offset,j_coord_offset;
373     int              j_index_start,j_index_end;
374     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
375     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
376     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
377     real             *shiftvec,*fshift,*x,*f;
378     int              vdwioffset1;
379     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
380     int              vdwioffset2;
381     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
382     int              vdwioffset3;
383     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
384     int              vdwjidx0;
385     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
386     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
387     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
388     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
389     real             velec,felec,velecsum,facel,crf,krf,krf2;
390     real             *charge;
391     int              ewitab;
392     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
393     real             *ewtab;
394
395     x                = xx[0];
396     f                = ff[0];
397
398     nri              = nlist->nri;
399     iinr             = nlist->iinr;
400     jindex           = nlist->jindex;
401     jjnr             = nlist->jjnr;
402     shiftidx         = nlist->shift;
403     gid              = nlist->gid;
404     shiftvec         = fr->shift_vec[0];
405     fshift           = fr->fshift[0];
406     facel            = fr->epsfac;
407     charge           = mdatoms->chargeA;
408
409     sh_ewald         = fr->ic->sh_ewald;
410     ewtab            = fr->ic->tabq_coul_F;
411     ewtabscale       = fr->ic->tabq_scale;
412     ewtabhalfspace   = 0.5/ewtabscale;
413
414     /* Setup water-specific parameters */
415     inr              = nlist->iinr[0];
416     iq1              = facel*charge[inr+1];
417     iq2              = facel*charge[inr+2];
418     iq3              = facel*charge[inr+3];
419
420     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
421     rcutoff          = fr->rcoulomb;
422     rcutoff2         = rcutoff*rcutoff;
423
424     outeriter        = 0;
425     inneriter        = 0;
426
427     /* Start outer loop over neighborlists */
428     for(iidx=0; iidx<nri; iidx++)
429     {
430         /* Load shift vector for this list */
431         i_shift_offset   = DIM*shiftidx[iidx];
432         shX              = shiftvec[i_shift_offset+XX];
433         shY              = shiftvec[i_shift_offset+YY];
434         shZ              = shiftvec[i_shift_offset+ZZ];
435
436         /* Load limits for loop over neighbors */
437         j_index_start    = jindex[iidx];
438         j_index_end      = jindex[iidx+1];
439
440         /* Get outer coordinate index */
441         inr              = iinr[iidx];
442         i_coord_offset   = DIM*inr;
443
444         /* Load i particle coords and add shift vector */
445         ix1              = shX + x[i_coord_offset+DIM*1+XX];
446         iy1              = shY + x[i_coord_offset+DIM*1+YY];
447         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
448         ix2              = shX + x[i_coord_offset+DIM*2+XX];
449         iy2              = shY + x[i_coord_offset+DIM*2+YY];
450         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
451         ix3              = shX + x[i_coord_offset+DIM*3+XX];
452         iy3              = shY + x[i_coord_offset+DIM*3+YY];
453         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
454
455         fix1             = 0.0;
456         fiy1             = 0.0;
457         fiz1             = 0.0;
458         fix2             = 0.0;
459         fiy2             = 0.0;
460         fiz2             = 0.0;
461         fix3             = 0.0;
462         fiy3             = 0.0;
463         fiz3             = 0.0;
464
465         /* Start inner kernel loop */
466         for(jidx=j_index_start; jidx<j_index_end; jidx++)
467         {
468             /* Get j neighbor index, and coordinate index */
469             jnr              = jjnr[jidx];
470             j_coord_offset   = DIM*jnr;
471
472             /* load j atom coordinates */
473             jx0              = x[j_coord_offset+DIM*0+XX];
474             jy0              = x[j_coord_offset+DIM*0+YY];
475             jz0              = x[j_coord_offset+DIM*0+ZZ];
476
477             /* Calculate displacement vector */
478             dx10             = ix1 - jx0;
479             dy10             = iy1 - jy0;
480             dz10             = iz1 - jz0;
481             dx20             = ix2 - jx0;
482             dy20             = iy2 - jy0;
483             dz20             = iz2 - jz0;
484             dx30             = ix3 - jx0;
485             dy30             = iy3 - jy0;
486             dz30             = iz3 - jz0;
487
488             /* Calculate squared distance and things based on it */
489             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
490             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
491             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
492
493             rinv10           = gmx_invsqrt(rsq10);
494             rinv20           = gmx_invsqrt(rsq20);
495             rinv30           = gmx_invsqrt(rsq30);
496
497             rinvsq10         = rinv10*rinv10;
498             rinvsq20         = rinv20*rinv20;
499             rinvsq30         = rinv30*rinv30;
500
501             /* Load parameters for j particles */
502             jq0              = charge[jnr+0];
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (rsq10<rcutoff2)
509             {
510
511             r10              = rsq10*rinv10;
512
513             qq10             = iq1*jq0;
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = r10*ewtabscale;
519             ewitab           = ewrt;
520             eweps            = ewrt-ewitab;
521             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
522             felec            = qq10*rinv10*(rinvsq10-felec);
523
524             fscal            = felec;
525
526             /* Calculate temporary vectorial force */
527             tx               = fscal*dx10;
528             ty               = fscal*dy10;
529             tz               = fscal*dz10;
530
531             /* Update vectorial force */
532             fix1            += tx;
533             fiy1            += ty;
534             fiz1            += tz;
535             f[j_coord_offset+DIM*0+XX] -= tx;
536             f[j_coord_offset+DIM*0+YY] -= ty;
537             f[j_coord_offset+DIM*0+ZZ] -= tz;
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (rsq20<rcutoff2)
546             {
547
548             r20              = rsq20*rinv20;
549
550             qq20             = iq2*jq0;
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = r20*ewtabscale;
556             ewitab           = ewrt;
557             eweps            = ewrt-ewitab;
558             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
559             felec            = qq20*rinv20*(rinvsq20-felec);
560
561             fscal            = felec;
562
563             /* Calculate temporary vectorial force */
564             tx               = fscal*dx20;
565             ty               = fscal*dy20;
566             tz               = fscal*dz20;
567
568             /* Update vectorial force */
569             fix2            += tx;
570             fiy2            += ty;
571             fiz2            += tz;
572             f[j_coord_offset+DIM*0+XX] -= tx;
573             f[j_coord_offset+DIM*0+YY] -= ty;
574             f[j_coord_offset+DIM*0+ZZ] -= tz;
575
576             }
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (rsq30<rcutoff2)
583             {
584
585             r30              = rsq30*rinv30;
586
587             qq30             = iq3*jq0;
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = r30*ewtabscale;
593             ewitab           = ewrt;
594             eweps            = ewrt-ewitab;
595             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
596             felec            = qq30*rinv30*(rinvsq30-felec);
597
598             fscal            = felec;
599
600             /* Calculate temporary vectorial force */
601             tx               = fscal*dx30;
602             ty               = fscal*dy30;
603             tz               = fscal*dz30;
604
605             /* Update vectorial force */
606             fix3            += tx;
607             fiy3            += ty;
608             fiz3            += tz;
609             f[j_coord_offset+DIM*0+XX] -= tx;
610             f[j_coord_offset+DIM*0+YY] -= ty;
611             f[j_coord_offset+DIM*0+ZZ] -= tz;
612
613             }
614
615             /* Inner loop uses 102 flops */
616         }
617         /* End of innermost loop */
618
619         tx = ty = tz = 0;
620         f[i_coord_offset+DIM*1+XX] += fix1;
621         f[i_coord_offset+DIM*1+YY] += fiy1;
622         f[i_coord_offset+DIM*1+ZZ] += fiz1;
623         tx                         += fix1;
624         ty                         += fiy1;
625         tz                         += fiz1;
626         f[i_coord_offset+DIM*2+XX] += fix2;
627         f[i_coord_offset+DIM*2+YY] += fiy2;
628         f[i_coord_offset+DIM*2+ZZ] += fiz2;
629         tx                         += fix2;
630         ty                         += fiy2;
631         tz                         += fiz2;
632         f[i_coord_offset+DIM*3+XX] += fix3;
633         f[i_coord_offset+DIM*3+YY] += fiy3;
634         f[i_coord_offset+DIM*3+ZZ] += fiz3;
635         tx                         += fix3;
636         ty                         += fiy3;
637         tz                         += fiz3;
638         fshift[i_shift_offset+XX]  += tx;
639         fshift[i_shift_offset+YY]  += ty;
640         fshift[i_shift_offset+ZZ]  += tz;
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 30 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*102);
654 }