made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     krf              = _mm256_set1_ps(fr->ic->k_rf);
114     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
115     crf              = _mm256_set1_ps(fr->ic->c_rf);
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
123     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
124     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
125     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rvdw_switch;
133     rswitch          = _mm256_set1_ps(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm256_set1_ps(d_scalar);
137     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm256_setzero_ps();
182         fiy0             = _mm256_setzero_ps();
183         fiz0             = _mm256_setzero_ps();
184         fix1             = _mm256_setzero_ps();
185         fiy1             = _mm256_setzero_ps();
186         fiz1             = _mm256_setzero_ps();
187         fix2             = _mm256_setzero_ps();
188         fiy2             = _mm256_setzero_ps();
189         fiz2             = _mm256_setzero_ps();
190         fix3             = _mm256_setzero_ps();
191         fiy3             = _mm256_setzero_ps();
192         fiz3             = _mm256_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_ps();
196         vvdwsum          = _mm256_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             jnrE             = jjnr[jidx+4];
208             jnrF             = jjnr[jidx+5];
209             jnrG             = jjnr[jidx+6];
210             jnrH             = jjnr[jidx+7];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215             j_coord_offsetE  = DIM*jnrE;
216             j_coord_offsetF  = DIM*jnrF;
217             j_coord_offsetG  = DIM*jnrG;
218             j_coord_offsetH  = DIM*jnrH;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  x+j_coord_offsetE,x+j_coord_offsetF,
224                                                  x+j_coord_offsetG,x+j_coord_offsetH,
225                                                  &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm256_sub_ps(ix0,jx0);
229             dy00             = _mm256_sub_ps(iy0,jy0);
230             dz00             = _mm256_sub_ps(iz0,jz0);
231             dx10             = _mm256_sub_ps(ix1,jx0);
232             dy10             = _mm256_sub_ps(iy1,jy0);
233             dz10             = _mm256_sub_ps(iz1,jz0);
234             dx20             = _mm256_sub_ps(ix2,jx0);
235             dy20             = _mm256_sub_ps(iy2,jy0);
236             dz20             = _mm256_sub_ps(iz2,jz0);
237             dx30             = _mm256_sub_ps(ix3,jx0);
238             dy30             = _mm256_sub_ps(iy3,jy0);
239             dz30             = _mm256_sub_ps(iz3,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
243             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
244             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
245             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
246
247             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
248             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
249             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
250             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
251
252             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
253             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
254             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
255             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
256
257             /* Load parameters for j particles */
258             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
259                                                                  charge+jnrC+0,charge+jnrD+0,
260                                                                  charge+jnrE+0,charge+jnrF+0,
261                                                                  charge+jnrG+0,charge+jnrH+0);
262             vdwjidx0A        = 2*vdwtype[jnrA+0];
263             vdwjidx0B        = 2*vdwtype[jnrB+0];
264             vdwjidx0C        = 2*vdwtype[jnrC+0];
265             vdwjidx0D        = 2*vdwtype[jnrD+0];
266             vdwjidx0E        = 2*vdwtype[jnrE+0];
267             vdwjidx0F        = 2*vdwtype[jnrF+0];
268             vdwjidx0G        = 2*vdwtype[jnrG+0];
269             vdwjidx0H        = 2*vdwtype[jnrH+0];
270
271             fjx0             = _mm256_setzero_ps();
272             fjy0             = _mm256_setzero_ps();
273             fjz0             = _mm256_setzero_ps();
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_mm256_any_lt(rsq00,rcutoff2))
280             {
281
282             r00              = _mm256_mul_ps(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
286                                             vdwioffsetptr0+vdwjidx0B,
287                                             vdwioffsetptr0+vdwjidx0C,
288                                             vdwioffsetptr0+vdwjidx0D,
289                                             vdwioffsetptr0+vdwjidx0E,
290                                             vdwioffsetptr0+vdwjidx0F,
291                                             vdwioffsetptr0+vdwjidx0G,
292                                             vdwioffsetptr0+vdwjidx0H,
293                                             &c6_00,&c12_00);
294
295             /* LENNARD-JONES DISPERSION/REPULSION */
296
297             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
298             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
299             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
300             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
301             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
302
303             d                = _mm256_sub_ps(r00,rswitch);
304             d                = _mm256_max_ps(d,_mm256_setzero_ps());
305             d2               = _mm256_mul_ps(d,d);
306             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
307
308             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
309
310             /* Evaluate switch function */
311             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
312             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
313             vvdw             = _mm256_mul_ps(vvdw,sw);
314             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
318             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
319
320             fscal            = fvdw;
321
322             fscal            = _mm256_and_ps(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_ps(fscal,dx00);
326             ty               = _mm256_mul_ps(fscal,dy00);
327             tz               = _mm256_mul_ps(fscal,dz00);
328
329             /* Update vectorial force */
330             fix0             = _mm256_add_ps(fix0,tx);
331             fiy0             = _mm256_add_ps(fiy0,ty);
332             fiz0             = _mm256_add_ps(fiz0,tz);
333
334             fjx0             = _mm256_add_ps(fjx0,tx);
335             fjy0             = _mm256_add_ps(fjy0,ty);
336             fjz0             = _mm256_add_ps(fjz0,tz);
337
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm256_any_lt(rsq10,rcutoff2))
345             {
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq10             = _mm256_mul_ps(iq1,jq0);
349
350             /* REACTION-FIELD ELECTROSTATICS */
351             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
352             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
353
354             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm256_and_ps(velec,cutoff_mask);
358             velecsum         = _mm256_add_ps(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm256_and_ps(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_ps(fscal,dx10);
366             ty               = _mm256_mul_ps(fscal,dy10);
367             tz               = _mm256_mul_ps(fscal,dz10);
368
369             /* Update vectorial force */
370             fix1             = _mm256_add_ps(fix1,tx);
371             fiy1             = _mm256_add_ps(fiy1,ty);
372             fiz1             = _mm256_add_ps(fiz1,tz);
373
374             fjx0             = _mm256_add_ps(fjx0,tx);
375             fjy0             = _mm256_add_ps(fjy0,ty);
376             fjz0             = _mm256_add_ps(fjz0,tz);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm256_any_lt(rsq20,rcutoff2))
385             {
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq20             = _mm256_mul_ps(iq2,jq0);
389
390             /* REACTION-FIELD ELECTROSTATICS */
391             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
392             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
393
394             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velec            = _mm256_and_ps(velec,cutoff_mask);
398             velecsum         = _mm256_add_ps(velecsum,velec);
399
400             fscal            = felec;
401
402             fscal            = _mm256_and_ps(fscal,cutoff_mask);
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm256_mul_ps(fscal,dx20);
406             ty               = _mm256_mul_ps(fscal,dy20);
407             tz               = _mm256_mul_ps(fscal,dz20);
408
409             /* Update vectorial force */
410             fix2             = _mm256_add_ps(fix2,tx);
411             fiy2             = _mm256_add_ps(fiy2,ty);
412             fiz2             = _mm256_add_ps(fiz2,tz);
413
414             fjx0             = _mm256_add_ps(fjx0,tx);
415             fjy0             = _mm256_add_ps(fjy0,ty);
416             fjz0             = _mm256_add_ps(fjz0,tz);
417
418             }
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             if (gmx_mm256_any_lt(rsq30,rcutoff2))
425             {
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq30             = _mm256_mul_ps(iq3,jq0);
429
430             /* REACTION-FIELD ELECTROSTATICS */
431             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
432             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
433
434             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm256_and_ps(velec,cutoff_mask);
438             velecsum         = _mm256_add_ps(velecsum,velec);
439
440             fscal            = felec;
441
442             fscal            = _mm256_and_ps(fscal,cutoff_mask);
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm256_mul_ps(fscal,dx30);
446             ty               = _mm256_mul_ps(fscal,dy30);
447             tz               = _mm256_mul_ps(fscal,dz30);
448
449             /* Update vectorial force */
450             fix3             = _mm256_add_ps(fix3,tx);
451             fiy3             = _mm256_add_ps(fiy3,ty);
452             fiz3             = _mm256_add_ps(fiz3,tz);
453
454             fjx0             = _mm256_add_ps(fjx0,tx);
455             fjy0             = _mm256_add_ps(fjy0,ty);
456             fjz0             = _mm256_add_ps(fjz0,tz);
457
458             }
459
460             fjptrA             = f+j_coord_offsetA;
461             fjptrB             = f+j_coord_offsetB;
462             fjptrC             = f+j_coord_offsetC;
463             fjptrD             = f+j_coord_offsetD;
464             fjptrE             = f+j_coord_offsetE;
465             fjptrF             = f+j_coord_offsetF;
466             fjptrG             = f+j_coord_offsetG;
467             fjptrH             = f+j_coord_offsetH;
468
469             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
470
471             /* Inner loop uses 170 flops */
472         }
473
474         if(jidx<j_index_end)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrlistA         = jjnr[jidx];
479             jnrlistB         = jjnr[jidx+1];
480             jnrlistC         = jjnr[jidx+2];
481             jnrlistD         = jjnr[jidx+3];
482             jnrlistE         = jjnr[jidx+4];
483             jnrlistF         = jjnr[jidx+5];
484             jnrlistG         = jjnr[jidx+6];
485             jnrlistH         = jjnr[jidx+7];
486             /* Sign of each element will be negative for non-real atoms.
487              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
488              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
489              */
490             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
491                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
492                                             
493             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
494             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
495             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
496             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
497             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
498             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
499             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
500             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
501             j_coord_offsetA  = DIM*jnrA;
502             j_coord_offsetB  = DIM*jnrB;
503             j_coord_offsetC  = DIM*jnrC;
504             j_coord_offsetD  = DIM*jnrD;
505             j_coord_offsetE  = DIM*jnrE;
506             j_coord_offsetF  = DIM*jnrF;
507             j_coord_offsetG  = DIM*jnrG;
508             j_coord_offsetH  = DIM*jnrH;
509
510             /* load j atom coordinates */
511             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
512                                                  x+j_coord_offsetC,x+j_coord_offsetD,
513                                                  x+j_coord_offsetE,x+j_coord_offsetF,
514                                                  x+j_coord_offsetG,x+j_coord_offsetH,
515                                                  &jx0,&jy0,&jz0);
516
517             /* Calculate displacement vector */
518             dx00             = _mm256_sub_ps(ix0,jx0);
519             dy00             = _mm256_sub_ps(iy0,jy0);
520             dz00             = _mm256_sub_ps(iz0,jz0);
521             dx10             = _mm256_sub_ps(ix1,jx0);
522             dy10             = _mm256_sub_ps(iy1,jy0);
523             dz10             = _mm256_sub_ps(iz1,jz0);
524             dx20             = _mm256_sub_ps(ix2,jx0);
525             dy20             = _mm256_sub_ps(iy2,jy0);
526             dz20             = _mm256_sub_ps(iz2,jz0);
527             dx30             = _mm256_sub_ps(ix3,jx0);
528             dy30             = _mm256_sub_ps(iy3,jy0);
529             dz30             = _mm256_sub_ps(iz3,jz0);
530
531             /* Calculate squared distance and things based on it */
532             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
533             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
534             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
535             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
536
537             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
538             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
539             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
540             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
541
542             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
543             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
544             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
545             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
546
547             /* Load parameters for j particles */
548             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
549                                                                  charge+jnrC+0,charge+jnrD+0,
550                                                                  charge+jnrE+0,charge+jnrF+0,
551                                                                  charge+jnrG+0,charge+jnrH+0);
552             vdwjidx0A        = 2*vdwtype[jnrA+0];
553             vdwjidx0B        = 2*vdwtype[jnrB+0];
554             vdwjidx0C        = 2*vdwtype[jnrC+0];
555             vdwjidx0D        = 2*vdwtype[jnrD+0];
556             vdwjidx0E        = 2*vdwtype[jnrE+0];
557             vdwjidx0F        = 2*vdwtype[jnrF+0];
558             vdwjidx0G        = 2*vdwtype[jnrG+0];
559             vdwjidx0H        = 2*vdwtype[jnrH+0];
560
561             fjx0             = _mm256_setzero_ps();
562             fjy0             = _mm256_setzero_ps();
563             fjz0             = _mm256_setzero_ps();
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm256_any_lt(rsq00,rcutoff2))
570             {
571
572             r00              = _mm256_mul_ps(rsq00,rinv00);
573             r00              = _mm256_andnot_ps(dummy_mask,r00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
577                                             vdwioffsetptr0+vdwjidx0B,
578                                             vdwioffsetptr0+vdwjidx0C,
579                                             vdwioffsetptr0+vdwjidx0D,
580                                             vdwioffsetptr0+vdwjidx0E,
581                                             vdwioffsetptr0+vdwjidx0F,
582                                             vdwioffsetptr0+vdwjidx0G,
583                                             vdwioffsetptr0+vdwjidx0H,
584                                             &c6_00,&c12_00);
585
586             /* LENNARD-JONES DISPERSION/REPULSION */
587
588             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
589             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
590             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
591             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
592             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
593
594             d                = _mm256_sub_ps(r00,rswitch);
595             d                = _mm256_max_ps(d,_mm256_setzero_ps());
596             d2               = _mm256_mul_ps(d,d);
597             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
598
599             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
600
601             /* Evaluate switch function */
602             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
603             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
604             vvdw             = _mm256_mul_ps(vvdw,sw);
605             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
609             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
610             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
611
612             fscal            = fvdw;
613
614             fscal            = _mm256_and_ps(fscal,cutoff_mask);
615
616             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_ps(fscal,dx00);
620             ty               = _mm256_mul_ps(fscal,dy00);
621             tz               = _mm256_mul_ps(fscal,dz00);
622
623             /* Update vectorial force */
624             fix0             = _mm256_add_ps(fix0,tx);
625             fiy0             = _mm256_add_ps(fiy0,ty);
626             fiz0             = _mm256_add_ps(fiz0,tz);
627
628             fjx0             = _mm256_add_ps(fjx0,tx);
629             fjy0             = _mm256_add_ps(fjy0,ty);
630             fjz0             = _mm256_add_ps(fjz0,tz);
631
632             }
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             if (gmx_mm256_any_lt(rsq10,rcutoff2))
639             {
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq10             = _mm256_mul_ps(iq1,jq0);
643
644             /* REACTION-FIELD ELECTROSTATICS */
645             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
646             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
647
648             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm256_and_ps(velec,cutoff_mask);
652             velec            = _mm256_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm256_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm256_and_ps(fscal,cutoff_mask);
658
659             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm256_mul_ps(fscal,dx10);
663             ty               = _mm256_mul_ps(fscal,dy10);
664             tz               = _mm256_mul_ps(fscal,dz10);
665
666             /* Update vectorial force */
667             fix1             = _mm256_add_ps(fix1,tx);
668             fiy1             = _mm256_add_ps(fiy1,ty);
669             fiz1             = _mm256_add_ps(fiz1,tz);
670
671             fjx0             = _mm256_add_ps(fjx0,tx);
672             fjy0             = _mm256_add_ps(fjy0,ty);
673             fjz0             = _mm256_add_ps(fjz0,tz);
674
675             }
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm256_any_lt(rsq20,rcutoff2))
682             {
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq20             = _mm256_mul_ps(iq2,jq0);
686
687             /* REACTION-FIELD ELECTROSTATICS */
688             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
689             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
690
691             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
692
693             /* Update potential sum for this i atom from the interaction with this j atom. */
694             velec            = _mm256_and_ps(velec,cutoff_mask);
695             velec            = _mm256_andnot_ps(dummy_mask,velec);
696             velecsum         = _mm256_add_ps(velecsum,velec);
697
698             fscal            = felec;
699
700             fscal            = _mm256_and_ps(fscal,cutoff_mask);
701
702             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
703
704             /* Calculate temporary vectorial force */
705             tx               = _mm256_mul_ps(fscal,dx20);
706             ty               = _mm256_mul_ps(fscal,dy20);
707             tz               = _mm256_mul_ps(fscal,dz20);
708
709             /* Update vectorial force */
710             fix2             = _mm256_add_ps(fix2,tx);
711             fiy2             = _mm256_add_ps(fiy2,ty);
712             fiz2             = _mm256_add_ps(fiz2,tz);
713
714             fjx0             = _mm256_add_ps(fjx0,tx);
715             fjy0             = _mm256_add_ps(fjy0,ty);
716             fjz0             = _mm256_add_ps(fjz0,tz);
717
718             }
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             if (gmx_mm256_any_lt(rsq30,rcutoff2))
725             {
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq30             = _mm256_mul_ps(iq3,jq0);
729
730             /* REACTION-FIELD ELECTROSTATICS */
731             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
732             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
733
734             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
735
736             /* Update potential sum for this i atom from the interaction with this j atom. */
737             velec            = _mm256_and_ps(velec,cutoff_mask);
738             velec            = _mm256_andnot_ps(dummy_mask,velec);
739             velecsum         = _mm256_add_ps(velecsum,velec);
740
741             fscal            = felec;
742
743             fscal            = _mm256_and_ps(fscal,cutoff_mask);
744
745             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
746
747             /* Calculate temporary vectorial force */
748             tx               = _mm256_mul_ps(fscal,dx30);
749             ty               = _mm256_mul_ps(fscal,dy30);
750             tz               = _mm256_mul_ps(fscal,dz30);
751
752             /* Update vectorial force */
753             fix3             = _mm256_add_ps(fix3,tx);
754             fiy3             = _mm256_add_ps(fiy3,ty);
755             fiz3             = _mm256_add_ps(fiz3,tz);
756
757             fjx0             = _mm256_add_ps(fjx0,tx);
758             fjy0             = _mm256_add_ps(fjy0,ty);
759             fjz0             = _mm256_add_ps(fjz0,tz);
760
761             }
762
763             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
764             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
765             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
766             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
767             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
768             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
769             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
770             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
771
772             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
773
774             /* Inner loop uses 171 flops */
775         }
776
777         /* End of innermost loop */
778
779         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
780                                                  f+i_coord_offset,fshift+i_shift_offset);
781
782         ggid                        = gid[iidx];
783         /* Update potential energies */
784         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
785         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
786
787         /* Increment number of inner iterations */
788         inneriter                  += j_index_end - j_index_start;
789
790         /* Outer loop uses 26 flops */
791     }
792
793     /* Increment number of outer iterations */
794     outeriter        += nri;
795
796     /* Update outer/inner flops */
797
798     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
799 }
800 /*
801  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_single
802  * Electrostatics interaction: ReactionField
803  * VdW interaction:            LennardJones
804  * Geometry:                   Water4-Particle
805  * Calculate force/pot:        Force
806  */
807 void
808 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_single
809                     (t_nblist * gmx_restrict                nlist,
810                      rvec * gmx_restrict                    xx,
811                      rvec * gmx_restrict                    ff,
812                      t_forcerec * gmx_restrict              fr,
813                      t_mdatoms * gmx_restrict               mdatoms,
814                      nb_kernel_data_t * gmx_restrict        kernel_data,
815                      t_nrnb * gmx_restrict                  nrnb)
816 {
817     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
818      * just 0 for non-waters.
819      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
820      * jnr indices corresponding to data put in the four positions in the SIMD register.
821      */
822     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
823     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
824     int              jnrA,jnrB,jnrC,jnrD;
825     int              jnrE,jnrF,jnrG,jnrH;
826     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
827     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
828     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
829     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
830     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
831     real             rcutoff_scalar;
832     real             *shiftvec,*fshift,*x,*f;
833     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
834     real             scratch[4*DIM];
835     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
836     real *           vdwioffsetptr0;
837     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
838     real *           vdwioffsetptr1;
839     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
840     real *           vdwioffsetptr2;
841     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
842     real *           vdwioffsetptr3;
843     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
844     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
845     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
846     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
847     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
848     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
849     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
850     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
851     real             *charge;
852     int              nvdwtype;
853     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
854     int              *vdwtype;
855     real             *vdwparam;
856     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
857     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
858     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
859     real             rswitch_scalar,d_scalar;
860     __m256           dummy_mask,cutoff_mask;
861     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
862     __m256           one     = _mm256_set1_ps(1.0);
863     __m256           two     = _mm256_set1_ps(2.0);
864     x                = xx[0];
865     f                = ff[0];
866
867     nri              = nlist->nri;
868     iinr             = nlist->iinr;
869     jindex           = nlist->jindex;
870     jjnr             = nlist->jjnr;
871     shiftidx         = nlist->shift;
872     gid              = nlist->gid;
873     shiftvec         = fr->shift_vec[0];
874     fshift           = fr->fshift[0];
875     facel            = _mm256_set1_ps(fr->epsfac);
876     charge           = mdatoms->chargeA;
877     krf              = _mm256_set1_ps(fr->ic->k_rf);
878     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
879     crf              = _mm256_set1_ps(fr->ic->c_rf);
880     nvdwtype         = fr->ntype;
881     vdwparam         = fr->nbfp;
882     vdwtype          = mdatoms->typeA;
883
884     /* Setup water-specific parameters */
885     inr              = nlist->iinr[0];
886     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
887     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
888     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
889     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
890
891     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
892     rcutoff_scalar   = fr->rcoulomb;
893     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
894     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
895
896     rswitch_scalar   = fr->rvdw_switch;
897     rswitch          = _mm256_set1_ps(rswitch_scalar);
898     /* Setup switch parameters */
899     d_scalar         = rcutoff_scalar-rswitch_scalar;
900     d                = _mm256_set1_ps(d_scalar);
901     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
902     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
903     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
904     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
905     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
906     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
907
908     /* Avoid stupid compiler warnings */
909     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
910     j_coord_offsetA = 0;
911     j_coord_offsetB = 0;
912     j_coord_offsetC = 0;
913     j_coord_offsetD = 0;
914     j_coord_offsetE = 0;
915     j_coord_offsetF = 0;
916     j_coord_offsetG = 0;
917     j_coord_offsetH = 0;
918
919     outeriter        = 0;
920     inneriter        = 0;
921
922     for(iidx=0;iidx<4*DIM;iidx++)
923     {
924         scratch[iidx] = 0.0;
925     }
926
927     /* Start outer loop over neighborlists */
928     for(iidx=0; iidx<nri; iidx++)
929     {
930         /* Load shift vector for this list */
931         i_shift_offset   = DIM*shiftidx[iidx];
932
933         /* Load limits for loop over neighbors */
934         j_index_start    = jindex[iidx];
935         j_index_end      = jindex[iidx+1];
936
937         /* Get outer coordinate index */
938         inr              = iinr[iidx];
939         i_coord_offset   = DIM*inr;
940
941         /* Load i particle coords and add shift vector */
942         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
943                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
944
945         fix0             = _mm256_setzero_ps();
946         fiy0             = _mm256_setzero_ps();
947         fiz0             = _mm256_setzero_ps();
948         fix1             = _mm256_setzero_ps();
949         fiy1             = _mm256_setzero_ps();
950         fiz1             = _mm256_setzero_ps();
951         fix2             = _mm256_setzero_ps();
952         fiy2             = _mm256_setzero_ps();
953         fiz2             = _mm256_setzero_ps();
954         fix3             = _mm256_setzero_ps();
955         fiy3             = _mm256_setzero_ps();
956         fiz3             = _mm256_setzero_ps();
957
958         /* Start inner kernel loop */
959         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
960         {
961
962             /* Get j neighbor index, and coordinate index */
963             jnrA             = jjnr[jidx];
964             jnrB             = jjnr[jidx+1];
965             jnrC             = jjnr[jidx+2];
966             jnrD             = jjnr[jidx+3];
967             jnrE             = jjnr[jidx+4];
968             jnrF             = jjnr[jidx+5];
969             jnrG             = jjnr[jidx+6];
970             jnrH             = jjnr[jidx+7];
971             j_coord_offsetA  = DIM*jnrA;
972             j_coord_offsetB  = DIM*jnrB;
973             j_coord_offsetC  = DIM*jnrC;
974             j_coord_offsetD  = DIM*jnrD;
975             j_coord_offsetE  = DIM*jnrE;
976             j_coord_offsetF  = DIM*jnrF;
977             j_coord_offsetG  = DIM*jnrG;
978             j_coord_offsetH  = DIM*jnrH;
979
980             /* load j atom coordinates */
981             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
982                                                  x+j_coord_offsetC,x+j_coord_offsetD,
983                                                  x+j_coord_offsetE,x+j_coord_offsetF,
984                                                  x+j_coord_offsetG,x+j_coord_offsetH,
985                                                  &jx0,&jy0,&jz0);
986
987             /* Calculate displacement vector */
988             dx00             = _mm256_sub_ps(ix0,jx0);
989             dy00             = _mm256_sub_ps(iy0,jy0);
990             dz00             = _mm256_sub_ps(iz0,jz0);
991             dx10             = _mm256_sub_ps(ix1,jx0);
992             dy10             = _mm256_sub_ps(iy1,jy0);
993             dz10             = _mm256_sub_ps(iz1,jz0);
994             dx20             = _mm256_sub_ps(ix2,jx0);
995             dy20             = _mm256_sub_ps(iy2,jy0);
996             dz20             = _mm256_sub_ps(iz2,jz0);
997             dx30             = _mm256_sub_ps(ix3,jx0);
998             dy30             = _mm256_sub_ps(iy3,jy0);
999             dz30             = _mm256_sub_ps(iz3,jz0);
1000
1001             /* Calculate squared distance and things based on it */
1002             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1003             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1004             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1005             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1006
1007             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1008             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1009             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1010             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1011
1012             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1013             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1014             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1015             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1016
1017             /* Load parameters for j particles */
1018             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1019                                                                  charge+jnrC+0,charge+jnrD+0,
1020                                                                  charge+jnrE+0,charge+jnrF+0,
1021                                                                  charge+jnrG+0,charge+jnrH+0);
1022             vdwjidx0A        = 2*vdwtype[jnrA+0];
1023             vdwjidx0B        = 2*vdwtype[jnrB+0];
1024             vdwjidx0C        = 2*vdwtype[jnrC+0];
1025             vdwjidx0D        = 2*vdwtype[jnrD+0];
1026             vdwjidx0E        = 2*vdwtype[jnrE+0];
1027             vdwjidx0F        = 2*vdwtype[jnrF+0];
1028             vdwjidx0G        = 2*vdwtype[jnrG+0];
1029             vdwjidx0H        = 2*vdwtype[jnrH+0];
1030
1031             fjx0             = _mm256_setzero_ps();
1032             fjy0             = _mm256_setzero_ps();
1033             fjz0             = _mm256_setzero_ps();
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1040             {
1041
1042             r00              = _mm256_mul_ps(rsq00,rinv00);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1046                                             vdwioffsetptr0+vdwjidx0B,
1047                                             vdwioffsetptr0+vdwjidx0C,
1048                                             vdwioffsetptr0+vdwjidx0D,
1049                                             vdwioffsetptr0+vdwjidx0E,
1050                                             vdwioffsetptr0+vdwjidx0F,
1051                                             vdwioffsetptr0+vdwjidx0G,
1052                                             vdwioffsetptr0+vdwjidx0H,
1053                                             &c6_00,&c12_00);
1054
1055             /* LENNARD-JONES DISPERSION/REPULSION */
1056
1057             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1058             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1059             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1060             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1061             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1062
1063             d                = _mm256_sub_ps(r00,rswitch);
1064             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1065             d2               = _mm256_mul_ps(d,d);
1066             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1067
1068             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1069
1070             /* Evaluate switch function */
1071             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1072             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1073             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1074
1075             fscal            = fvdw;
1076
1077             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm256_mul_ps(fscal,dx00);
1081             ty               = _mm256_mul_ps(fscal,dy00);
1082             tz               = _mm256_mul_ps(fscal,dz00);
1083
1084             /* Update vectorial force */
1085             fix0             = _mm256_add_ps(fix0,tx);
1086             fiy0             = _mm256_add_ps(fiy0,ty);
1087             fiz0             = _mm256_add_ps(fiz0,tz);
1088
1089             fjx0             = _mm256_add_ps(fjx0,tx);
1090             fjy0             = _mm256_add_ps(fjy0,ty);
1091             fjz0             = _mm256_add_ps(fjz0,tz);
1092
1093             }
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1100             {
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq10             = _mm256_mul_ps(iq1,jq0);
1104
1105             /* REACTION-FIELD ELECTROSTATICS */
1106             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1107
1108             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1113
1114             /* Calculate temporary vectorial force */
1115             tx               = _mm256_mul_ps(fscal,dx10);
1116             ty               = _mm256_mul_ps(fscal,dy10);
1117             tz               = _mm256_mul_ps(fscal,dz10);
1118
1119             /* Update vectorial force */
1120             fix1             = _mm256_add_ps(fix1,tx);
1121             fiy1             = _mm256_add_ps(fiy1,ty);
1122             fiz1             = _mm256_add_ps(fiz1,tz);
1123
1124             fjx0             = _mm256_add_ps(fjx0,tx);
1125             fjy0             = _mm256_add_ps(fjy0,ty);
1126             fjz0             = _mm256_add_ps(fjz0,tz);
1127
1128             }
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1135             {
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq20             = _mm256_mul_ps(iq2,jq0);
1139
1140             /* REACTION-FIELD ELECTROSTATICS */
1141             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1142
1143             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm256_mul_ps(fscal,dx20);
1151             ty               = _mm256_mul_ps(fscal,dy20);
1152             tz               = _mm256_mul_ps(fscal,dz20);
1153
1154             /* Update vectorial force */
1155             fix2             = _mm256_add_ps(fix2,tx);
1156             fiy2             = _mm256_add_ps(fiy2,ty);
1157             fiz2             = _mm256_add_ps(fiz2,tz);
1158
1159             fjx0             = _mm256_add_ps(fjx0,tx);
1160             fjy0             = _mm256_add_ps(fjy0,ty);
1161             fjz0             = _mm256_add_ps(fjz0,tz);
1162
1163             }
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1170             {
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq30             = _mm256_mul_ps(iq3,jq0);
1174
1175             /* REACTION-FIELD ELECTROSTATICS */
1176             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1177
1178             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm256_mul_ps(fscal,dx30);
1186             ty               = _mm256_mul_ps(fscal,dy30);
1187             tz               = _mm256_mul_ps(fscal,dz30);
1188
1189             /* Update vectorial force */
1190             fix3             = _mm256_add_ps(fix3,tx);
1191             fiy3             = _mm256_add_ps(fiy3,ty);
1192             fiz3             = _mm256_add_ps(fiz3,tz);
1193
1194             fjx0             = _mm256_add_ps(fjx0,tx);
1195             fjy0             = _mm256_add_ps(fjy0,ty);
1196             fjz0             = _mm256_add_ps(fjz0,tz);
1197
1198             }
1199
1200             fjptrA             = f+j_coord_offsetA;
1201             fjptrB             = f+j_coord_offsetB;
1202             fjptrC             = f+j_coord_offsetC;
1203             fjptrD             = f+j_coord_offsetD;
1204             fjptrE             = f+j_coord_offsetE;
1205             fjptrF             = f+j_coord_offsetF;
1206             fjptrG             = f+j_coord_offsetG;
1207             fjptrH             = f+j_coord_offsetH;
1208
1209             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1210
1211             /* Inner loop uses 149 flops */
1212         }
1213
1214         if(jidx<j_index_end)
1215         {
1216
1217             /* Get j neighbor index, and coordinate index */
1218             jnrlistA         = jjnr[jidx];
1219             jnrlistB         = jjnr[jidx+1];
1220             jnrlistC         = jjnr[jidx+2];
1221             jnrlistD         = jjnr[jidx+3];
1222             jnrlistE         = jjnr[jidx+4];
1223             jnrlistF         = jjnr[jidx+5];
1224             jnrlistG         = jjnr[jidx+6];
1225             jnrlistH         = jjnr[jidx+7];
1226             /* Sign of each element will be negative for non-real atoms.
1227              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1228              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1229              */
1230             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1231                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1232                                             
1233             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1234             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1235             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1236             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1237             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1238             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1239             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1240             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1241             j_coord_offsetA  = DIM*jnrA;
1242             j_coord_offsetB  = DIM*jnrB;
1243             j_coord_offsetC  = DIM*jnrC;
1244             j_coord_offsetD  = DIM*jnrD;
1245             j_coord_offsetE  = DIM*jnrE;
1246             j_coord_offsetF  = DIM*jnrF;
1247             j_coord_offsetG  = DIM*jnrG;
1248             j_coord_offsetH  = DIM*jnrH;
1249
1250             /* load j atom coordinates */
1251             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1252                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1253                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1254                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1255                                                  &jx0,&jy0,&jz0);
1256
1257             /* Calculate displacement vector */
1258             dx00             = _mm256_sub_ps(ix0,jx0);
1259             dy00             = _mm256_sub_ps(iy0,jy0);
1260             dz00             = _mm256_sub_ps(iz0,jz0);
1261             dx10             = _mm256_sub_ps(ix1,jx0);
1262             dy10             = _mm256_sub_ps(iy1,jy0);
1263             dz10             = _mm256_sub_ps(iz1,jz0);
1264             dx20             = _mm256_sub_ps(ix2,jx0);
1265             dy20             = _mm256_sub_ps(iy2,jy0);
1266             dz20             = _mm256_sub_ps(iz2,jz0);
1267             dx30             = _mm256_sub_ps(ix3,jx0);
1268             dy30             = _mm256_sub_ps(iy3,jy0);
1269             dz30             = _mm256_sub_ps(iz3,jz0);
1270
1271             /* Calculate squared distance and things based on it */
1272             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1273             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1274             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1275             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1276
1277             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1278             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1279             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1280             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1281
1282             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1283             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1284             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1285             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1286
1287             /* Load parameters for j particles */
1288             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1289                                                                  charge+jnrC+0,charge+jnrD+0,
1290                                                                  charge+jnrE+0,charge+jnrF+0,
1291                                                                  charge+jnrG+0,charge+jnrH+0);
1292             vdwjidx0A        = 2*vdwtype[jnrA+0];
1293             vdwjidx0B        = 2*vdwtype[jnrB+0];
1294             vdwjidx0C        = 2*vdwtype[jnrC+0];
1295             vdwjidx0D        = 2*vdwtype[jnrD+0];
1296             vdwjidx0E        = 2*vdwtype[jnrE+0];
1297             vdwjidx0F        = 2*vdwtype[jnrF+0];
1298             vdwjidx0G        = 2*vdwtype[jnrG+0];
1299             vdwjidx0H        = 2*vdwtype[jnrH+0];
1300
1301             fjx0             = _mm256_setzero_ps();
1302             fjy0             = _mm256_setzero_ps();
1303             fjz0             = _mm256_setzero_ps();
1304
1305             /**************************
1306              * CALCULATE INTERACTIONS *
1307              **************************/
1308
1309             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1310             {
1311
1312             r00              = _mm256_mul_ps(rsq00,rinv00);
1313             r00              = _mm256_andnot_ps(dummy_mask,r00);
1314
1315             /* Compute parameters for interactions between i and j atoms */
1316             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1317                                             vdwioffsetptr0+vdwjidx0B,
1318                                             vdwioffsetptr0+vdwjidx0C,
1319                                             vdwioffsetptr0+vdwjidx0D,
1320                                             vdwioffsetptr0+vdwjidx0E,
1321                                             vdwioffsetptr0+vdwjidx0F,
1322                                             vdwioffsetptr0+vdwjidx0G,
1323                                             vdwioffsetptr0+vdwjidx0H,
1324                                             &c6_00,&c12_00);
1325
1326             /* LENNARD-JONES DISPERSION/REPULSION */
1327
1328             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1329             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1330             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1331             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1332             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1333
1334             d                = _mm256_sub_ps(r00,rswitch);
1335             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1336             d2               = _mm256_mul_ps(d,d);
1337             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1338
1339             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1340
1341             /* Evaluate switch function */
1342             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1343             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1344             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1345
1346             fscal            = fvdw;
1347
1348             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1349
1350             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1351
1352             /* Calculate temporary vectorial force */
1353             tx               = _mm256_mul_ps(fscal,dx00);
1354             ty               = _mm256_mul_ps(fscal,dy00);
1355             tz               = _mm256_mul_ps(fscal,dz00);
1356
1357             /* Update vectorial force */
1358             fix0             = _mm256_add_ps(fix0,tx);
1359             fiy0             = _mm256_add_ps(fiy0,ty);
1360             fiz0             = _mm256_add_ps(fiz0,tz);
1361
1362             fjx0             = _mm256_add_ps(fjx0,tx);
1363             fjy0             = _mm256_add_ps(fjy0,ty);
1364             fjz0             = _mm256_add_ps(fjz0,tz);
1365
1366             }
1367
1368             /**************************
1369              * CALCULATE INTERACTIONS *
1370              **************************/
1371
1372             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1373             {
1374
1375             /* Compute parameters for interactions between i and j atoms */
1376             qq10             = _mm256_mul_ps(iq1,jq0);
1377
1378             /* REACTION-FIELD ELECTROSTATICS */
1379             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1380
1381             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1382
1383             fscal            = felec;
1384
1385             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1386
1387             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1388
1389             /* Calculate temporary vectorial force */
1390             tx               = _mm256_mul_ps(fscal,dx10);
1391             ty               = _mm256_mul_ps(fscal,dy10);
1392             tz               = _mm256_mul_ps(fscal,dz10);
1393
1394             /* Update vectorial force */
1395             fix1             = _mm256_add_ps(fix1,tx);
1396             fiy1             = _mm256_add_ps(fiy1,ty);
1397             fiz1             = _mm256_add_ps(fiz1,tz);
1398
1399             fjx0             = _mm256_add_ps(fjx0,tx);
1400             fjy0             = _mm256_add_ps(fjy0,ty);
1401             fjz0             = _mm256_add_ps(fjz0,tz);
1402
1403             }
1404
1405             /**************************
1406              * CALCULATE INTERACTIONS *
1407              **************************/
1408
1409             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1410             {
1411
1412             /* Compute parameters for interactions between i and j atoms */
1413             qq20             = _mm256_mul_ps(iq2,jq0);
1414
1415             /* REACTION-FIELD ELECTROSTATICS */
1416             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1417
1418             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1419
1420             fscal            = felec;
1421
1422             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1423
1424             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1425
1426             /* Calculate temporary vectorial force */
1427             tx               = _mm256_mul_ps(fscal,dx20);
1428             ty               = _mm256_mul_ps(fscal,dy20);
1429             tz               = _mm256_mul_ps(fscal,dz20);
1430
1431             /* Update vectorial force */
1432             fix2             = _mm256_add_ps(fix2,tx);
1433             fiy2             = _mm256_add_ps(fiy2,ty);
1434             fiz2             = _mm256_add_ps(fiz2,tz);
1435
1436             fjx0             = _mm256_add_ps(fjx0,tx);
1437             fjy0             = _mm256_add_ps(fjy0,ty);
1438             fjz0             = _mm256_add_ps(fjz0,tz);
1439
1440             }
1441
1442             /**************************
1443              * CALCULATE INTERACTIONS *
1444              **************************/
1445
1446             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1447             {
1448
1449             /* Compute parameters for interactions between i and j atoms */
1450             qq30             = _mm256_mul_ps(iq3,jq0);
1451
1452             /* REACTION-FIELD ELECTROSTATICS */
1453             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1454
1455             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1456
1457             fscal            = felec;
1458
1459             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1460
1461             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1462
1463             /* Calculate temporary vectorial force */
1464             tx               = _mm256_mul_ps(fscal,dx30);
1465             ty               = _mm256_mul_ps(fscal,dy30);
1466             tz               = _mm256_mul_ps(fscal,dz30);
1467
1468             /* Update vectorial force */
1469             fix3             = _mm256_add_ps(fix3,tx);
1470             fiy3             = _mm256_add_ps(fiy3,ty);
1471             fiz3             = _mm256_add_ps(fiz3,tz);
1472
1473             fjx0             = _mm256_add_ps(fjx0,tx);
1474             fjy0             = _mm256_add_ps(fjy0,ty);
1475             fjz0             = _mm256_add_ps(fjz0,tz);
1476
1477             }
1478
1479             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1480             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1481             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1482             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1483             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1484             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1485             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1486             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1487
1488             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1489
1490             /* Inner loop uses 150 flops */
1491         }
1492
1493         /* End of innermost loop */
1494
1495         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1496                                                  f+i_coord_offset,fshift+i_shift_offset);
1497
1498         /* Increment number of inner iterations */
1499         inneriter                  += j_index_end - j_index_start;
1500
1501         /* Outer loop uses 24 flops */
1502     }
1503
1504     /* Increment number of outer iterations */
1505     outeriter        += nri;
1506
1507     /* Update outer/inner flops */
1508
1509     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1510 }