f626f719200621bf6b1e032012b1f269bb4e617b
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          gbitab;
80     __m128i          gbitab_lo,gbitab_hi;
81     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
82     __m256           minushalf = _mm256_set1_ps(-0.5);
83     real             *invsqrta,*dvda,*gbtab;
84     int              nvdwtype;
85     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
89     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
90     __m256i          vfitab;
91     __m128i          vfitab_lo,vfitab_hi;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_ps();
159         fiy0             = _mm256_setzero_ps();
160         fiz0             = _mm256_setzero_ps();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
164         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
165         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_ps();
169         vgbsum           = _mm256_setzero_ps();
170         vvdwsum          = _mm256_setzero_ps();
171         dvdasum          = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_ps(ix0,jx0);
204             dy00             = _mm256_sub_ps(iy0,jy0);
205             dz00             = _mm256_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0,
217                                                                  charge+jnrE+0,charge+jnrF+0,
218                                                                  charge+jnrG+0,charge+jnrH+0);
219             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
220                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
221                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
222                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227             vdwjidx0E        = 2*vdwtype[jnrE+0];
228             vdwjidx0F        = 2*vdwtype[jnrF+0];
229             vdwjidx0G        = 2*vdwtype[jnrG+0];
230             vdwjidx0H        = 2*vdwtype[jnrH+0];
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm256_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm256_mul_ps(iq0,jq0);
240             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
241                                             vdwioffsetptr0+vdwjidx0B,
242                                             vdwioffsetptr0+vdwjidx0C,
243                                             vdwioffsetptr0+vdwjidx0D,
244                                             vdwioffsetptr0+vdwjidx0E,
245                                             vdwioffsetptr0+vdwjidx0F,
246                                             vdwioffsetptr0+vdwjidx0G,
247                                             vdwioffsetptr0+vdwjidx0H,
248                                             &c6_00,&c12_00);
249
250             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
251             isaprod          = _mm256_mul_ps(isai0,isaj0);
252             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
253             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
254
255             /* Calculate generalized born table index - this is a separate table from the normal one,
256              * but we use the same procedure by multiplying r with scale and truncating to integer.
257              */
258             rt               = _mm256_mul_ps(r00,gbscale);
259             gbitab           = _mm256_cvttps_epi32(rt);
260             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
261             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
262             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
263             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
264             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
265             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
266             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
267                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
268             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
269                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
270             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
271                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
272             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
273                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
274             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm256_mul_ps(gbeps,H);
276             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
277             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
278             vgb              = _mm256_mul_ps(gbqqfactor,VV);
279
280             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
281             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
282             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
283             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
284             fjptrA           = dvda+jnrA;
285             fjptrB           = dvda+jnrB;
286             fjptrC           = dvda+jnrC;
287             fjptrD           = dvda+jnrD;
288             fjptrE           = dvda+jnrE;
289             fjptrF           = dvda+jnrF;
290             fjptrG           = dvda+jnrG;
291             fjptrH           = dvda+jnrH;
292             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
293                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
294             velec            = _mm256_mul_ps(qq00,rinv00);
295             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
296
297             /* LENNARD-JONES DISPERSION/REPULSION */
298
299             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
301             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
302             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
303             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_ps(velecsum,velec);
307             vgbsum           = _mm256_add_ps(vgbsum,vgb);
308             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
309
310             fscal            = _mm256_add_ps(felec,fvdw);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_ps(fscal,dx00);
314             ty               = _mm256_mul_ps(fscal,dy00);
315             tz               = _mm256_mul_ps(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_ps(fix0,tx);
319             fiy0             = _mm256_add_ps(fiy0,ty);
320             fiz0             = _mm256_add_ps(fiz0,tz);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             fjptrE             = f+j_coord_offsetE;
327             fjptrF             = f+j_coord_offsetF;
328             fjptrG             = f+j_coord_offsetG;
329             fjptrH             = f+j_coord_offsetH;
330             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
331
332             /* Inner loop uses 70 flops */
333         }
334
335         if(jidx<j_index_end)
336         {
337
338             /* Get j neighbor index, and coordinate index */
339             jnrlistA         = jjnr[jidx];
340             jnrlistB         = jjnr[jidx+1];
341             jnrlistC         = jjnr[jidx+2];
342             jnrlistD         = jjnr[jidx+3];
343             jnrlistE         = jjnr[jidx+4];
344             jnrlistF         = jjnr[jidx+5];
345             jnrlistG         = jjnr[jidx+6];
346             jnrlistH         = jjnr[jidx+7];
347             /* Sign of each element will be negative for non-real atoms.
348              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
349              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
350              */
351             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
352                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
353                                             
354             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
355             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
356             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
357             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
358             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
359             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
360             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
361             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
362             j_coord_offsetA  = DIM*jnrA;
363             j_coord_offsetB  = DIM*jnrB;
364             j_coord_offsetC  = DIM*jnrC;
365             j_coord_offsetD  = DIM*jnrD;
366             j_coord_offsetE  = DIM*jnrE;
367             j_coord_offsetF  = DIM*jnrF;
368             j_coord_offsetG  = DIM*jnrG;
369             j_coord_offsetH  = DIM*jnrH;
370
371             /* load j atom coordinates */
372             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
373                                                  x+j_coord_offsetC,x+j_coord_offsetD,
374                                                  x+j_coord_offsetE,x+j_coord_offsetF,
375                                                  x+j_coord_offsetG,x+j_coord_offsetH,
376                                                  &jx0,&jy0,&jz0);
377
378             /* Calculate displacement vector */
379             dx00             = _mm256_sub_ps(ix0,jx0);
380             dy00             = _mm256_sub_ps(iy0,jy0);
381             dz00             = _mm256_sub_ps(iz0,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
385
386             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
387
388             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
389
390             /* Load parameters for j particles */
391             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
392                                                                  charge+jnrC+0,charge+jnrD+0,
393                                                                  charge+jnrE+0,charge+jnrF+0,
394                                                                  charge+jnrG+0,charge+jnrH+0);
395             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
396                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
397                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
398                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400             vdwjidx0B        = 2*vdwtype[jnrB+0];
401             vdwjidx0C        = 2*vdwtype[jnrC+0];
402             vdwjidx0D        = 2*vdwtype[jnrD+0];
403             vdwjidx0E        = 2*vdwtype[jnrE+0];
404             vdwjidx0F        = 2*vdwtype[jnrF+0];
405             vdwjidx0G        = 2*vdwtype[jnrG+0];
406             vdwjidx0H        = 2*vdwtype[jnrH+0];
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r00              = _mm256_mul_ps(rsq00,rinv00);
413             r00              = _mm256_andnot_ps(dummy_mask,r00);
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq00             = _mm256_mul_ps(iq0,jq0);
417             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
418                                             vdwioffsetptr0+vdwjidx0B,
419                                             vdwioffsetptr0+vdwjidx0C,
420                                             vdwioffsetptr0+vdwjidx0D,
421                                             vdwioffsetptr0+vdwjidx0E,
422                                             vdwioffsetptr0+vdwjidx0F,
423                                             vdwioffsetptr0+vdwjidx0G,
424                                             vdwioffsetptr0+vdwjidx0H,
425                                             &c6_00,&c12_00);
426
427             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
428             isaprod          = _mm256_mul_ps(isai0,isaj0);
429             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
430             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
431
432             /* Calculate generalized born table index - this is a separate table from the normal one,
433              * but we use the same procedure by multiplying r with scale and truncating to integer.
434              */
435             rt               = _mm256_mul_ps(r00,gbscale);
436             gbitab           = _mm256_cvttps_epi32(rt);
437             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
438             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
439             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
440             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
441             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
442             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
443             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
444                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
445             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
446                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
447             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
448                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
449             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
450                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
451             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
452             Heps             = _mm256_mul_ps(gbeps,H);
453             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
454             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
455             vgb              = _mm256_mul_ps(gbqqfactor,VV);
456
457             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
458             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
459             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
460             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
461             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
462             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
463             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
464             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
465             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
466             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
467             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
468             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
469             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
470             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
471                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
472             velec            = _mm256_mul_ps(qq00,rinv00);
473             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
474
475             /* LENNARD-JONES DISPERSION/REPULSION */
476
477             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
478             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
479             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
480             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
481             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velec            = _mm256_andnot_ps(dummy_mask,velec);
485             velecsum         = _mm256_add_ps(velecsum,velec);
486             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
487             vgbsum           = _mm256_add_ps(vgbsum,vgb);
488             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
489             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
490
491             fscal            = _mm256_add_ps(felec,fvdw);
492
493             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm256_mul_ps(fscal,dx00);
497             ty               = _mm256_mul_ps(fscal,dy00);
498             tz               = _mm256_mul_ps(fscal,dz00);
499
500             /* Update vectorial force */
501             fix0             = _mm256_add_ps(fix0,tx);
502             fiy0             = _mm256_add_ps(fiy0,ty);
503             fiz0             = _mm256_add_ps(fiz0,tz);
504
505             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
506             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
507             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
508             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
509             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
510             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
511             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
512             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
513             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
514
515             /* Inner loop uses 71 flops */
516         }
517
518         /* End of innermost loop */
519
520         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
521                                                  f+i_coord_offset,fshift+i_shift_offset);
522
523         ggid                        = gid[iidx];
524         /* Update potential energies */
525         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
526         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
527         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
528         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
529         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
530
531         /* Increment number of inner iterations */
532         inneriter                  += j_index_end - j_index_start;
533
534         /* Outer loop uses 10 flops */
535     }
536
537     /* Increment number of outer iterations */
538     outeriter        += nri;
539
540     /* Update outer/inner flops */
541
542     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
543 }
544 /*
545  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
546  * Electrostatics interaction: GeneralizedBorn
547  * VdW interaction:            LennardJones
548  * Geometry:                   Particle-Particle
549  * Calculate force/pot:        Force
550  */
551 void
552 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
553                     (t_nblist * gmx_restrict                nlist,
554                      rvec * gmx_restrict                    xx,
555                      rvec * gmx_restrict                    ff,
556                      t_forcerec * gmx_restrict              fr,
557                      t_mdatoms * gmx_restrict               mdatoms,
558                      nb_kernel_data_t * gmx_restrict        kernel_data,
559                      t_nrnb * gmx_restrict                  nrnb)
560 {
561     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
562      * just 0 for non-waters.
563      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
564      * jnr indices corresponding to data put in the four positions in the SIMD register.
565      */
566     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
567     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
568     int              jnrA,jnrB,jnrC,jnrD;
569     int              jnrE,jnrF,jnrG,jnrH;
570     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
571     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
572     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
573     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
574     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
575     real             rcutoff_scalar;
576     real             *shiftvec,*fshift,*x,*f;
577     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
578     real             scratch[4*DIM];
579     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
580     real *           vdwioffsetptr0;
581     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
582     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
583     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
584     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
585     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
586     real             *charge;
587     __m256i          gbitab;
588     __m128i          gbitab_lo,gbitab_hi;
589     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
590     __m256           minushalf = _mm256_set1_ps(-0.5);
591     real             *invsqrta,*dvda,*gbtab;
592     int              nvdwtype;
593     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
594     int              *vdwtype;
595     real             *vdwparam;
596     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
597     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
598     __m256i          vfitab;
599     __m128i          vfitab_lo,vfitab_hi;
600     __m128i          ifour       = _mm_set1_epi32(4);
601     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
602     real             *vftab;
603     __m256           dummy_mask,cutoff_mask;
604     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
605     __m256           one     = _mm256_set1_ps(1.0);
606     __m256           two     = _mm256_set1_ps(2.0);
607     x                = xx[0];
608     f                = ff[0];
609
610     nri              = nlist->nri;
611     iinr             = nlist->iinr;
612     jindex           = nlist->jindex;
613     jjnr             = nlist->jjnr;
614     shiftidx         = nlist->shift;
615     gid              = nlist->gid;
616     shiftvec         = fr->shift_vec[0];
617     fshift           = fr->fshift[0];
618     facel            = _mm256_set1_ps(fr->epsfac);
619     charge           = mdatoms->chargeA;
620     nvdwtype         = fr->ntype;
621     vdwparam         = fr->nbfp;
622     vdwtype          = mdatoms->typeA;
623
624     invsqrta         = fr->invsqrta;
625     dvda             = fr->dvda;
626     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
627     gbtab            = fr->gbtab.data;
628     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
629
630     /* Avoid stupid compiler warnings */
631     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
632     j_coord_offsetA = 0;
633     j_coord_offsetB = 0;
634     j_coord_offsetC = 0;
635     j_coord_offsetD = 0;
636     j_coord_offsetE = 0;
637     j_coord_offsetF = 0;
638     j_coord_offsetG = 0;
639     j_coord_offsetH = 0;
640
641     outeriter        = 0;
642     inneriter        = 0;
643
644     for(iidx=0;iidx<4*DIM;iidx++)
645     {
646         scratch[iidx] = 0.0;
647     }
648
649     /* Start outer loop over neighborlists */
650     for(iidx=0; iidx<nri; iidx++)
651     {
652         /* Load shift vector for this list */
653         i_shift_offset   = DIM*shiftidx[iidx];
654
655         /* Load limits for loop over neighbors */
656         j_index_start    = jindex[iidx];
657         j_index_end      = jindex[iidx+1];
658
659         /* Get outer coordinate index */
660         inr              = iinr[iidx];
661         i_coord_offset   = DIM*inr;
662
663         /* Load i particle coords and add shift vector */
664         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
665
666         fix0             = _mm256_setzero_ps();
667         fiy0             = _mm256_setzero_ps();
668         fiz0             = _mm256_setzero_ps();
669
670         /* Load parameters for i particles */
671         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
672         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
673         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
674
675         dvdasum          = _mm256_setzero_ps();
676
677         /* Start inner kernel loop */
678         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
679         {
680
681             /* Get j neighbor index, and coordinate index */
682             jnrA             = jjnr[jidx];
683             jnrB             = jjnr[jidx+1];
684             jnrC             = jjnr[jidx+2];
685             jnrD             = jjnr[jidx+3];
686             jnrE             = jjnr[jidx+4];
687             jnrF             = jjnr[jidx+5];
688             jnrG             = jjnr[jidx+6];
689             jnrH             = jjnr[jidx+7];
690             j_coord_offsetA  = DIM*jnrA;
691             j_coord_offsetB  = DIM*jnrB;
692             j_coord_offsetC  = DIM*jnrC;
693             j_coord_offsetD  = DIM*jnrD;
694             j_coord_offsetE  = DIM*jnrE;
695             j_coord_offsetF  = DIM*jnrF;
696             j_coord_offsetG  = DIM*jnrG;
697             j_coord_offsetH  = DIM*jnrH;
698
699             /* load j atom coordinates */
700             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
701                                                  x+j_coord_offsetC,x+j_coord_offsetD,
702                                                  x+j_coord_offsetE,x+j_coord_offsetF,
703                                                  x+j_coord_offsetG,x+j_coord_offsetH,
704                                                  &jx0,&jy0,&jz0);
705
706             /* Calculate displacement vector */
707             dx00             = _mm256_sub_ps(ix0,jx0);
708             dy00             = _mm256_sub_ps(iy0,jy0);
709             dz00             = _mm256_sub_ps(iz0,jz0);
710
711             /* Calculate squared distance and things based on it */
712             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
713
714             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
715
716             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
717
718             /* Load parameters for j particles */
719             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
720                                                                  charge+jnrC+0,charge+jnrD+0,
721                                                                  charge+jnrE+0,charge+jnrF+0,
722                                                                  charge+jnrG+0,charge+jnrH+0);
723             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
724                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
725                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
726                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
727             vdwjidx0A        = 2*vdwtype[jnrA+0];
728             vdwjidx0B        = 2*vdwtype[jnrB+0];
729             vdwjidx0C        = 2*vdwtype[jnrC+0];
730             vdwjidx0D        = 2*vdwtype[jnrD+0];
731             vdwjidx0E        = 2*vdwtype[jnrE+0];
732             vdwjidx0F        = 2*vdwtype[jnrF+0];
733             vdwjidx0G        = 2*vdwtype[jnrG+0];
734             vdwjidx0H        = 2*vdwtype[jnrH+0];
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             r00              = _mm256_mul_ps(rsq00,rinv00);
741
742             /* Compute parameters for interactions between i and j atoms */
743             qq00             = _mm256_mul_ps(iq0,jq0);
744             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
745                                             vdwioffsetptr0+vdwjidx0B,
746                                             vdwioffsetptr0+vdwjidx0C,
747                                             vdwioffsetptr0+vdwjidx0D,
748                                             vdwioffsetptr0+vdwjidx0E,
749                                             vdwioffsetptr0+vdwjidx0F,
750                                             vdwioffsetptr0+vdwjidx0G,
751                                             vdwioffsetptr0+vdwjidx0H,
752                                             &c6_00,&c12_00);
753
754             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
755             isaprod          = _mm256_mul_ps(isai0,isaj0);
756             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
757             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
758
759             /* Calculate generalized born table index - this is a separate table from the normal one,
760              * but we use the same procedure by multiplying r with scale and truncating to integer.
761              */
762             rt               = _mm256_mul_ps(r00,gbscale);
763             gbitab           = _mm256_cvttps_epi32(rt);
764             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
765             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
766             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
767             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
768             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
769             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
770             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
771                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
772             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
773                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
774             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
775                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
776             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
777                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
778             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
779             Heps             = _mm256_mul_ps(gbeps,H);
780             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
781             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
782             vgb              = _mm256_mul_ps(gbqqfactor,VV);
783
784             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
785             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
786             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
787             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
788             fjptrA           = dvda+jnrA;
789             fjptrB           = dvda+jnrB;
790             fjptrC           = dvda+jnrC;
791             fjptrD           = dvda+jnrD;
792             fjptrE           = dvda+jnrE;
793             fjptrF           = dvda+jnrF;
794             fjptrG           = dvda+jnrG;
795             fjptrH           = dvda+jnrH;
796             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
797                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
798             velec            = _mm256_mul_ps(qq00,rinv00);
799             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
800
801             /* LENNARD-JONES DISPERSION/REPULSION */
802
803             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
804             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
805
806             fscal            = _mm256_add_ps(felec,fvdw);
807
808             /* Calculate temporary vectorial force */
809             tx               = _mm256_mul_ps(fscal,dx00);
810             ty               = _mm256_mul_ps(fscal,dy00);
811             tz               = _mm256_mul_ps(fscal,dz00);
812
813             /* Update vectorial force */
814             fix0             = _mm256_add_ps(fix0,tx);
815             fiy0             = _mm256_add_ps(fiy0,ty);
816             fiz0             = _mm256_add_ps(fiz0,tz);
817
818             fjptrA             = f+j_coord_offsetA;
819             fjptrB             = f+j_coord_offsetB;
820             fjptrC             = f+j_coord_offsetC;
821             fjptrD             = f+j_coord_offsetD;
822             fjptrE             = f+j_coord_offsetE;
823             fjptrF             = f+j_coord_offsetF;
824             fjptrG             = f+j_coord_offsetG;
825             fjptrH             = f+j_coord_offsetH;
826             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
827
828             /* Inner loop uses 63 flops */
829         }
830
831         if(jidx<j_index_end)
832         {
833
834             /* Get j neighbor index, and coordinate index */
835             jnrlistA         = jjnr[jidx];
836             jnrlistB         = jjnr[jidx+1];
837             jnrlistC         = jjnr[jidx+2];
838             jnrlistD         = jjnr[jidx+3];
839             jnrlistE         = jjnr[jidx+4];
840             jnrlistF         = jjnr[jidx+5];
841             jnrlistG         = jjnr[jidx+6];
842             jnrlistH         = jjnr[jidx+7];
843             /* Sign of each element will be negative for non-real atoms.
844              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
845              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
846              */
847             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
848                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
849                                             
850             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
851             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
852             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
853             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
854             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
855             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
856             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
857             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
858             j_coord_offsetA  = DIM*jnrA;
859             j_coord_offsetB  = DIM*jnrB;
860             j_coord_offsetC  = DIM*jnrC;
861             j_coord_offsetD  = DIM*jnrD;
862             j_coord_offsetE  = DIM*jnrE;
863             j_coord_offsetF  = DIM*jnrF;
864             j_coord_offsetG  = DIM*jnrG;
865             j_coord_offsetH  = DIM*jnrH;
866
867             /* load j atom coordinates */
868             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
869                                                  x+j_coord_offsetC,x+j_coord_offsetD,
870                                                  x+j_coord_offsetE,x+j_coord_offsetF,
871                                                  x+j_coord_offsetG,x+j_coord_offsetH,
872                                                  &jx0,&jy0,&jz0);
873
874             /* Calculate displacement vector */
875             dx00             = _mm256_sub_ps(ix0,jx0);
876             dy00             = _mm256_sub_ps(iy0,jy0);
877             dz00             = _mm256_sub_ps(iz0,jz0);
878
879             /* Calculate squared distance and things based on it */
880             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
881
882             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
883
884             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
885
886             /* Load parameters for j particles */
887             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
888                                                                  charge+jnrC+0,charge+jnrD+0,
889                                                                  charge+jnrE+0,charge+jnrF+0,
890                                                                  charge+jnrG+0,charge+jnrH+0);
891             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
892                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
893                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
894                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
895             vdwjidx0A        = 2*vdwtype[jnrA+0];
896             vdwjidx0B        = 2*vdwtype[jnrB+0];
897             vdwjidx0C        = 2*vdwtype[jnrC+0];
898             vdwjidx0D        = 2*vdwtype[jnrD+0];
899             vdwjidx0E        = 2*vdwtype[jnrE+0];
900             vdwjidx0F        = 2*vdwtype[jnrF+0];
901             vdwjidx0G        = 2*vdwtype[jnrG+0];
902             vdwjidx0H        = 2*vdwtype[jnrH+0];
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             r00              = _mm256_mul_ps(rsq00,rinv00);
909             r00              = _mm256_andnot_ps(dummy_mask,r00);
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq00             = _mm256_mul_ps(iq0,jq0);
913             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
914                                             vdwioffsetptr0+vdwjidx0B,
915                                             vdwioffsetptr0+vdwjidx0C,
916                                             vdwioffsetptr0+vdwjidx0D,
917                                             vdwioffsetptr0+vdwjidx0E,
918                                             vdwioffsetptr0+vdwjidx0F,
919                                             vdwioffsetptr0+vdwjidx0G,
920                                             vdwioffsetptr0+vdwjidx0H,
921                                             &c6_00,&c12_00);
922
923             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
924             isaprod          = _mm256_mul_ps(isai0,isaj0);
925             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
926             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
927
928             /* Calculate generalized born table index - this is a separate table from the normal one,
929              * but we use the same procedure by multiplying r with scale and truncating to integer.
930              */
931             rt               = _mm256_mul_ps(r00,gbscale);
932             gbitab           = _mm256_cvttps_epi32(rt);
933             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
934             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
935             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
936             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
937             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
938             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
939             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
940                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
941             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
942                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
943             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
944                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
945             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
946                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
947             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
948             Heps             = _mm256_mul_ps(gbeps,H);
949             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
950             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
951             vgb              = _mm256_mul_ps(gbqqfactor,VV);
952
953             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
954             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
955             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
956             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
957             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
958             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
959             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
960             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
961             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
962             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
963             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
964             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
965             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
966             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
967                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
968             velec            = _mm256_mul_ps(qq00,rinv00);
969             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
970
971             /* LENNARD-JONES DISPERSION/REPULSION */
972
973             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
974             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
975
976             fscal            = _mm256_add_ps(felec,fvdw);
977
978             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm256_mul_ps(fscal,dx00);
982             ty               = _mm256_mul_ps(fscal,dy00);
983             tz               = _mm256_mul_ps(fscal,dz00);
984
985             /* Update vectorial force */
986             fix0             = _mm256_add_ps(fix0,tx);
987             fiy0             = _mm256_add_ps(fiy0,ty);
988             fiz0             = _mm256_add_ps(fiz0,tz);
989
990             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
991             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
992             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
993             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
994             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
995             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
996             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
997             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
998             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
999
1000             /* Inner loop uses 64 flops */
1001         }
1002
1003         /* End of innermost loop */
1004
1005         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1006                                                  f+i_coord_offset,fshift+i_shift_offset);
1007
1008         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1009         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1010
1011         /* Increment number of inner iterations */
1012         inneriter                  += j_index_end - j_index_start;
1013
1014         /* Outer loop uses 7 flops */
1015     }
1016
1017     /* Increment number of outer iterations */
1018     outeriter        += nri;
1019
1020     /* Update outer/inner flops */
1021
1022     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
1023 }