Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_single
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256i          gbitab;
96     __m128i          gbitab_lo,gbitab_hi;
97     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
98     __m256           minushalf = _mm256_set1_ps(-0.5);
99     real             *invsqrta,*dvda,*gbtab;
100     int              nvdwtype;
101     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
105     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
106     __m256i          vfitab;
107     __m128i          vfitab_lo,vfitab_hi;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110     real             *vftab;
111     __m256           dummy_mask,cutoff_mask;
112     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
113     __m256           one     = _mm256_set1_ps(1.0);
114     __m256           two     = _mm256_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     invsqrta         = fr->invsqrta;
133     dvda             = fr->dvda;
134     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
135     gbtab            = fr->gbtab.data;
136     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144     j_coord_offsetE = 0;
145     j_coord_offsetF = 0;
146     j_coord_offsetG = 0;
147     j_coord_offsetH = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_ps();
175         fiy0             = _mm256_setzero_ps();
176         fiz0             = _mm256_setzero_ps();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
180         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
181         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_ps();
185         vgbsum           = _mm256_setzero_ps();
186         vvdwsum          = _mm256_setzero_ps();
187         dvdasum          = _mm256_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             jnrE             = jjnr[jidx+4];
199             jnrF             = jjnr[jidx+5];
200             jnrG             = jjnr[jidx+6];
201             jnrH             = jjnr[jidx+7];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206             j_coord_offsetE  = DIM*jnrE;
207             j_coord_offsetF  = DIM*jnrF;
208             j_coord_offsetG  = DIM*jnrG;
209             j_coord_offsetH  = DIM*jnrH;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  x+j_coord_offsetE,x+j_coord_offsetF,
215                                                  x+j_coord_offsetG,x+j_coord_offsetH,
216                                                  &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm256_sub_ps(ix0,jx0);
220             dy00             = _mm256_sub_ps(iy0,jy0);
221             dz00             = _mm256_sub_ps(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
225
226             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
227
228             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0,
233                                                                  charge+jnrE+0,charge+jnrF+0,
234                                                                  charge+jnrG+0,charge+jnrH+0);
235             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
236                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
237                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
238                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243             vdwjidx0E        = 2*vdwtype[jnrE+0];
244             vdwjidx0F        = 2*vdwtype[jnrF+0];
245             vdwjidx0G        = 2*vdwtype[jnrG+0];
246             vdwjidx0H        = 2*vdwtype[jnrH+0];
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm256_mul_ps(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm256_mul_ps(iq0,jq0);
256             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
257                                             vdwioffsetptr0+vdwjidx0B,
258                                             vdwioffsetptr0+vdwjidx0C,
259                                             vdwioffsetptr0+vdwjidx0D,
260                                             vdwioffsetptr0+vdwjidx0E,
261                                             vdwioffsetptr0+vdwjidx0F,
262                                             vdwioffsetptr0+vdwjidx0G,
263                                             vdwioffsetptr0+vdwjidx0H,
264                                             &c6_00,&c12_00);
265
266             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
267             isaprod          = _mm256_mul_ps(isai0,isaj0);
268             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
269             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
270
271             /* Calculate generalized born table index - this is a separate table from the normal one,
272              * but we use the same procedure by multiplying r with scale and truncating to integer.
273              */
274             rt               = _mm256_mul_ps(r00,gbscale);
275             gbitab           = _mm256_cvttps_epi32(rt);
276             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
277             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
278             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
279             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
280             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
281             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
282             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
283                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
284             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
285                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
286             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
287                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
288             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
289                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
290             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
291             Heps             = _mm256_mul_ps(gbeps,H);
292             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
293             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
294             vgb              = _mm256_mul_ps(gbqqfactor,VV);
295
296             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
297             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
298             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
299             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
300             fjptrA           = dvda+jnrA;
301             fjptrB           = dvda+jnrB;
302             fjptrC           = dvda+jnrC;
303             fjptrD           = dvda+jnrD;
304             fjptrE           = dvda+jnrE;
305             fjptrF           = dvda+jnrF;
306             fjptrG           = dvda+jnrG;
307             fjptrH           = dvda+jnrH;
308             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
309                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
310             velec            = _mm256_mul_ps(qq00,rinv00);
311             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
312
313             /* LENNARD-JONES DISPERSION/REPULSION */
314
315             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
316             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
317             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
318             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
319             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _mm256_add_ps(velecsum,velec);
323             vgbsum           = _mm256_add_ps(vgbsum,vgb);
324             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
325
326             fscal            = _mm256_add_ps(felec,fvdw);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm256_mul_ps(fscal,dx00);
330             ty               = _mm256_mul_ps(fscal,dy00);
331             tz               = _mm256_mul_ps(fscal,dz00);
332
333             /* Update vectorial force */
334             fix0             = _mm256_add_ps(fix0,tx);
335             fiy0             = _mm256_add_ps(fiy0,ty);
336             fiz0             = _mm256_add_ps(fiz0,tz);
337
338             fjptrA             = f+j_coord_offsetA;
339             fjptrB             = f+j_coord_offsetB;
340             fjptrC             = f+j_coord_offsetC;
341             fjptrD             = f+j_coord_offsetD;
342             fjptrE             = f+j_coord_offsetE;
343             fjptrF             = f+j_coord_offsetF;
344             fjptrG             = f+j_coord_offsetG;
345             fjptrH             = f+j_coord_offsetH;
346             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
347
348             /* Inner loop uses 70 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             jnrlistE         = jjnr[jidx+4];
360             jnrlistF         = jjnr[jidx+5];
361             jnrlistG         = jjnr[jidx+6];
362             jnrlistH         = jjnr[jidx+7];
363             /* Sign of each element will be negative for non-real atoms.
364              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
365              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
366              */
367             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
368                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
369                                             
370             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
371             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
372             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
373             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
374             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
375             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
376             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
377             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
378             j_coord_offsetA  = DIM*jnrA;
379             j_coord_offsetB  = DIM*jnrB;
380             j_coord_offsetC  = DIM*jnrC;
381             j_coord_offsetD  = DIM*jnrD;
382             j_coord_offsetE  = DIM*jnrE;
383             j_coord_offsetF  = DIM*jnrF;
384             j_coord_offsetG  = DIM*jnrG;
385             j_coord_offsetH  = DIM*jnrH;
386
387             /* load j atom coordinates */
388             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
389                                                  x+j_coord_offsetC,x+j_coord_offsetD,
390                                                  x+j_coord_offsetE,x+j_coord_offsetF,
391                                                  x+j_coord_offsetG,x+j_coord_offsetH,
392                                                  &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _mm256_sub_ps(ix0,jx0);
396             dy00             = _mm256_sub_ps(iy0,jy0);
397             dz00             = _mm256_sub_ps(iz0,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
401
402             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
403
404             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
405
406             /* Load parameters for j particles */
407             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
408                                                                  charge+jnrC+0,charge+jnrD+0,
409                                                                  charge+jnrE+0,charge+jnrF+0,
410                                                                  charge+jnrG+0,charge+jnrH+0);
411             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
412                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
413                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
414                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
415             vdwjidx0A        = 2*vdwtype[jnrA+0];
416             vdwjidx0B        = 2*vdwtype[jnrB+0];
417             vdwjidx0C        = 2*vdwtype[jnrC+0];
418             vdwjidx0D        = 2*vdwtype[jnrD+0];
419             vdwjidx0E        = 2*vdwtype[jnrE+0];
420             vdwjidx0F        = 2*vdwtype[jnrF+0];
421             vdwjidx0G        = 2*vdwtype[jnrG+0];
422             vdwjidx0H        = 2*vdwtype[jnrH+0];
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             r00              = _mm256_mul_ps(rsq00,rinv00);
429             r00              = _mm256_andnot_ps(dummy_mask,r00);
430
431             /* Compute parameters for interactions between i and j atoms */
432             qq00             = _mm256_mul_ps(iq0,jq0);
433             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
434                                             vdwioffsetptr0+vdwjidx0B,
435                                             vdwioffsetptr0+vdwjidx0C,
436                                             vdwioffsetptr0+vdwjidx0D,
437                                             vdwioffsetptr0+vdwjidx0E,
438                                             vdwioffsetptr0+vdwjidx0F,
439                                             vdwioffsetptr0+vdwjidx0G,
440                                             vdwioffsetptr0+vdwjidx0H,
441                                             &c6_00,&c12_00);
442
443             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
444             isaprod          = _mm256_mul_ps(isai0,isaj0);
445             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
446             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
447
448             /* Calculate generalized born table index - this is a separate table from the normal one,
449              * but we use the same procedure by multiplying r with scale and truncating to integer.
450              */
451             rt               = _mm256_mul_ps(r00,gbscale);
452             gbitab           = _mm256_cvttps_epi32(rt);
453             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
454             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
455             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
456             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
457             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
458             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
459             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
460                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
461             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
462                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
463             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
464                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
465             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
466                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
467             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
468             Heps             = _mm256_mul_ps(gbeps,H);
469             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
470             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
471             vgb              = _mm256_mul_ps(gbqqfactor,VV);
472
473             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
474             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
475             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
476             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
477             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
478             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
479             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
480             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
481             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
482             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
483             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
484             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
485             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
486             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
487                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
488             velec            = _mm256_mul_ps(qq00,rinv00);
489             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
490
491             /* LENNARD-JONES DISPERSION/REPULSION */
492
493             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
494             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
495             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
496             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
497             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velec            = _mm256_andnot_ps(dummy_mask,velec);
501             velecsum         = _mm256_add_ps(velecsum,velec);
502             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
503             vgbsum           = _mm256_add_ps(vgbsum,vgb);
504             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
505             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
506
507             fscal            = _mm256_add_ps(felec,fvdw);
508
509             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm256_mul_ps(fscal,dx00);
513             ty               = _mm256_mul_ps(fscal,dy00);
514             tz               = _mm256_mul_ps(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm256_add_ps(fix0,tx);
518             fiy0             = _mm256_add_ps(fiy0,ty);
519             fiz0             = _mm256_add_ps(fiz0,tz);
520
521             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
522             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
523             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
524             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
525             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
526             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
527             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
528             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
529             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
530
531             /* Inner loop uses 71 flops */
532         }
533
534         /* End of innermost loop */
535
536         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
537                                                  f+i_coord_offset,fshift+i_shift_offset);
538
539         ggid                        = gid[iidx];
540         /* Update potential energies */
541         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
542         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
543         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
544         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
545         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
546
547         /* Increment number of inner iterations */
548         inneriter                  += j_index_end - j_index_start;
549
550         /* Outer loop uses 10 flops */
551     }
552
553     /* Increment number of outer iterations */
554     outeriter        += nri;
555
556     /* Update outer/inner flops */
557
558     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
559 }
560 /*
561  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
562  * Electrostatics interaction: GeneralizedBorn
563  * VdW interaction:            LennardJones
564  * Geometry:                   Particle-Particle
565  * Calculate force/pot:        Force
566  */
567 void
568 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_single
569                     (t_nblist * gmx_restrict                nlist,
570                      rvec * gmx_restrict                    xx,
571                      rvec * gmx_restrict                    ff,
572                      t_forcerec * gmx_restrict              fr,
573                      t_mdatoms * gmx_restrict               mdatoms,
574                      nb_kernel_data_t * gmx_restrict        kernel_data,
575                      t_nrnb * gmx_restrict                  nrnb)
576 {
577     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
578      * just 0 for non-waters.
579      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
580      * jnr indices corresponding to data put in the four positions in the SIMD register.
581      */
582     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
583     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
584     int              jnrA,jnrB,jnrC,jnrD;
585     int              jnrE,jnrF,jnrG,jnrH;
586     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
587     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
588     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
589     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
590     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
591     real             rcutoff_scalar;
592     real             *shiftvec,*fshift,*x,*f;
593     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
594     real             scratch[4*DIM];
595     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
596     real *           vdwioffsetptr0;
597     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
598     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
599     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
600     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
601     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
602     real             *charge;
603     __m256i          gbitab;
604     __m128i          gbitab_lo,gbitab_hi;
605     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
606     __m256           minushalf = _mm256_set1_ps(-0.5);
607     real             *invsqrta,*dvda,*gbtab;
608     int              nvdwtype;
609     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
610     int              *vdwtype;
611     real             *vdwparam;
612     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
613     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
614     __m256i          vfitab;
615     __m128i          vfitab_lo,vfitab_hi;
616     __m128i          ifour       = _mm_set1_epi32(4);
617     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
618     real             *vftab;
619     __m256           dummy_mask,cutoff_mask;
620     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
621     __m256           one     = _mm256_set1_ps(1.0);
622     __m256           two     = _mm256_set1_ps(2.0);
623     x                = xx[0];
624     f                = ff[0];
625
626     nri              = nlist->nri;
627     iinr             = nlist->iinr;
628     jindex           = nlist->jindex;
629     jjnr             = nlist->jjnr;
630     shiftidx         = nlist->shift;
631     gid              = nlist->gid;
632     shiftvec         = fr->shift_vec[0];
633     fshift           = fr->fshift[0];
634     facel            = _mm256_set1_ps(fr->epsfac);
635     charge           = mdatoms->chargeA;
636     nvdwtype         = fr->ntype;
637     vdwparam         = fr->nbfp;
638     vdwtype          = mdatoms->typeA;
639
640     invsqrta         = fr->invsqrta;
641     dvda             = fr->dvda;
642     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
643     gbtab            = fr->gbtab.data;
644     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
645
646     /* Avoid stupid compiler warnings */
647     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
648     j_coord_offsetA = 0;
649     j_coord_offsetB = 0;
650     j_coord_offsetC = 0;
651     j_coord_offsetD = 0;
652     j_coord_offsetE = 0;
653     j_coord_offsetF = 0;
654     j_coord_offsetG = 0;
655     j_coord_offsetH = 0;
656
657     outeriter        = 0;
658     inneriter        = 0;
659
660     for(iidx=0;iidx<4*DIM;iidx++)
661     {
662         scratch[iidx] = 0.0;
663     }
664
665     /* Start outer loop over neighborlists */
666     for(iidx=0; iidx<nri; iidx++)
667     {
668         /* Load shift vector for this list */
669         i_shift_offset   = DIM*shiftidx[iidx];
670
671         /* Load limits for loop over neighbors */
672         j_index_start    = jindex[iidx];
673         j_index_end      = jindex[iidx+1];
674
675         /* Get outer coordinate index */
676         inr              = iinr[iidx];
677         i_coord_offset   = DIM*inr;
678
679         /* Load i particle coords and add shift vector */
680         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
681
682         fix0             = _mm256_setzero_ps();
683         fiy0             = _mm256_setzero_ps();
684         fiz0             = _mm256_setzero_ps();
685
686         /* Load parameters for i particles */
687         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
688         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
689         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
690
691         dvdasum          = _mm256_setzero_ps();
692
693         /* Start inner kernel loop */
694         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
695         {
696
697             /* Get j neighbor index, and coordinate index */
698             jnrA             = jjnr[jidx];
699             jnrB             = jjnr[jidx+1];
700             jnrC             = jjnr[jidx+2];
701             jnrD             = jjnr[jidx+3];
702             jnrE             = jjnr[jidx+4];
703             jnrF             = jjnr[jidx+5];
704             jnrG             = jjnr[jidx+6];
705             jnrH             = jjnr[jidx+7];
706             j_coord_offsetA  = DIM*jnrA;
707             j_coord_offsetB  = DIM*jnrB;
708             j_coord_offsetC  = DIM*jnrC;
709             j_coord_offsetD  = DIM*jnrD;
710             j_coord_offsetE  = DIM*jnrE;
711             j_coord_offsetF  = DIM*jnrF;
712             j_coord_offsetG  = DIM*jnrG;
713             j_coord_offsetH  = DIM*jnrH;
714
715             /* load j atom coordinates */
716             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
717                                                  x+j_coord_offsetC,x+j_coord_offsetD,
718                                                  x+j_coord_offsetE,x+j_coord_offsetF,
719                                                  x+j_coord_offsetG,x+j_coord_offsetH,
720                                                  &jx0,&jy0,&jz0);
721
722             /* Calculate displacement vector */
723             dx00             = _mm256_sub_ps(ix0,jx0);
724             dy00             = _mm256_sub_ps(iy0,jy0);
725             dz00             = _mm256_sub_ps(iz0,jz0);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
729
730             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
731
732             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
733
734             /* Load parameters for j particles */
735             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
736                                                                  charge+jnrC+0,charge+jnrD+0,
737                                                                  charge+jnrE+0,charge+jnrF+0,
738                                                                  charge+jnrG+0,charge+jnrH+0);
739             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
740                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
741                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
742                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
743             vdwjidx0A        = 2*vdwtype[jnrA+0];
744             vdwjidx0B        = 2*vdwtype[jnrB+0];
745             vdwjidx0C        = 2*vdwtype[jnrC+0];
746             vdwjidx0D        = 2*vdwtype[jnrD+0];
747             vdwjidx0E        = 2*vdwtype[jnrE+0];
748             vdwjidx0F        = 2*vdwtype[jnrF+0];
749             vdwjidx0G        = 2*vdwtype[jnrG+0];
750             vdwjidx0H        = 2*vdwtype[jnrH+0];
751
752             /**************************
753              * CALCULATE INTERACTIONS *
754              **************************/
755
756             r00              = _mm256_mul_ps(rsq00,rinv00);
757
758             /* Compute parameters for interactions between i and j atoms */
759             qq00             = _mm256_mul_ps(iq0,jq0);
760             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
761                                             vdwioffsetptr0+vdwjidx0B,
762                                             vdwioffsetptr0+vdwjidx0C,
763                                             vdwioffsetptr0+vdwjidx0D,
764                                             vdwioffsetptr0+vdwjidx0E,
765                                             vdwioffsetptr0+vdwjidx0F,
766                                             vdwioffsetptr0+vdwjidx0G,
767                                             vdwioffsetptr0+vdwjidx0H,
768                                             &c6_00,&c12_00);
769
770             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
771             isaprod          = _mm256_mul_ps(isai0,isaj0);
772             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
773             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
774
775             /* Calculate generalized born table index - this is a separate table from the normal one,
776              * but we use the same procedure by multiplying r with scale and truncating to integer.
777              */
778             rt               = _mm256_mul_ps(r00,gbscale);
779             gbitab           = _mm256_cvttps_epi32(rt);
780             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
781             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
782             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
783             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
784             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
785             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
786             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
787                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
788             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
789                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
790             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
791                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
792             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
793                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
794             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
795             Heps             = _mm256_mul_ps(gbeps,H);
796             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
797             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
798             vgb              = _mm256_mul_ps(gbqqfactor,VV);
799
800             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
801             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
802             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
803             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
804             fjptrA           = dvda+jnrA;
805             fjptrB           = dvda+jnrB;
806             fjptrC           = dvda+jnrC;
807             fjptrD           = dvda+jnrD;
808             fjptrE           = dvda+jnrE;
809             fjptrF           = dvda+jnrF;
810             fjptrG           = dvda+jnrG;
811             fjptrH           = dvda+jnrH;
812             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
813                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
814             velec            = _mm256_mul_ps(qq00,rinv00);
815             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
816
817             /* LENNARD-JONES DISPERSION/REPULSION */
818
819             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
820             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
821
822             fscal            = _mm256_add_ps(felec,fvdw);
823
824             /* Calculate temporary vectorial force */
825             tx               = _mm256_mul_ps(fscal,dx00);
826             ty               = _mm256_mul_ps(fscal,dy00);
827             tz               = _mm256_mul_ps(fscal,dz00);
828
829             /* Update vectorial force */
830             fix0             = _mm256_add_ps(fix0,tx);
831             fiy0             = _mm256_add_ps(fiy0,ty);
832             fiz0             = _mm256_add_ps(fiz0,tz);
833
834             fjptrA             = f+j_coord_offsetA;
835             fjptrB             = f+j_coord_offsetB;
836             fjptrC             = f+j_coord_offsetC;
837             fjptrD             = f+j_coord_offsetD;
838             fjptrE             = f+j_coord_offsetE;
839             fjptrF             = f+j_coord_offsetF;
840             fjptrG             = f+j_coord_offsetG;
841             fjptrH             = f+j_coord_offsetH;
842             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
843
844             /* Inner loop uses 63 flops */
845         }
846
847         if(jidx<j_index_end)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrlistA         = jjnr[jidx];
852             jnrlistB         = jjnr[jidx+1];
853             jnrlistC         = jjnr[jidx+2];
854             jnrlistD         = jjnr[jidx+3];
855             jnrlistE         = jjnr[jidx+4];
856             jnrlistF         = jjnr[jidx+5];
857             jnrlistG         = jjnr[jidx+6];
858             jnrlistH         = jjnr[jidx+7];
859             /* Sign of each element will be negative for non-real atoms.
860              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
861              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
862              */
863             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
864                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
865                                             
866             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
867             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
868             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
869             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
870             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
871             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
872             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
873             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
874             j_coord_offsetA  = DIM*jnrA;
875             j_coord_offsetB  = DIM*jnrB;
876             j_coord_offsetC  = DIM*jnrC;
877             j_coord_offsetD  = DIM*jnrD;
878             j_coord_offsetE  = DIM*jnrE;
879             j_coord_offsetF  = DIM*jnrF;
880             j_coord_offsetG  = DIM*jnrG;
881             j_coord_offsetH  = DIM*jnrH;
882
883             /* load j atom coordinates */
884             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
885                                                  x+j_coord_offsetC,x+j_coord_offsetD,
886                                                  x+j_coord_offsetE,x+j_coord_offsetF,
887                                                  x+j_coord_offsetG,x+j_coord_offsetH,
888                                                  &jx0,&jy0,&jz0);
889
890             /* Calculate displacement vector */
891             dx00             = _mm256_sub_ps(ix0,jx0);
892             dy00             = _mm256_sub_ps(iy0,jy0);
893             dz00             = _mm256_sub_ps(iz0,jz0);
894
895             /* Calculate squared distance and things based on it */
896             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
897
898             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
899
900             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
904                                                                  charge+jnrC+0,charge+jnrD+0,
905                                                                  charge+jnrE+0,charge+jnrF+0,
906                                                                  charge+jnrG+0,charge+jnrH+0);
907             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
908                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
909                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
910                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
911             vdwjidx0A        = 2*vdwtype[jnrA+0];
912             vdwjidx0B        = 2*vdwtype[jnrB+0];
913             vdwjidx0C        = 2*vdwtype[jnrC+0];
914             vdwjidx0D        = 2*vdwtype[jnrD+0];
915             vdwjidx0E        = 2*vdwtype[jnrE+0];
916             vdwjidx0F        = 2*vdwtype[jnrF+0];
917             vdwjidx0G        = 2*vdwtype[jnrG+0];
918             vdwjidx0H        = 2*vdwtype[jnrH+0];
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             r00              = _mm256_mul_ps(rsq00,rinv00);
925             r00              = _mm256_andnot_ps(dummy_mask,r00);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq00             = _mm256_mul_ps(iq0,jq0);
929             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
930                                             vdwioffsetptr0+vdwjidx0B,
931                                             vdwioffsetptr0+vdwjidx0C,
932                                             vdwioffsetptr0+vdwjidx0D,
933                                             vdwioffsetptr0+vdwjidx0E,
934                                             vdwioffsetptr0+vdwjidx0F,
935                                             vdwioffsetptr0+vdwjidx0G,
936                                             vdwioffsetptr0+vdwjidx0H,
937                                             &c6_00,&c12_00);
938
939             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
940             isaprod          = _mm256_mul_ps(isai0,isaj0);
941             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
942             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
943
944             /* Calculate generalized born table index - this is a separate table from the normal one,
945              * but we use the same procedure by multiplying r with scale and truncating to integer.
946              */
947             rt               = _mm256_mul_ps(r00,gbscale);
948             gbitab           = _mm256_cvttps_epi32(rt);
949             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
950             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
951             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
952             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
953             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
954             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
955             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
956                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
957             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
958                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
959             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
960                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
961             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
962                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
963             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
964             Heps             = _mm256_mul_ps(gbeps,H);
965             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
966             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
967             vgb              = _mm256_mul_ps(gbqqfactor,VV);
968
969             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
970             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
971             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
972             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
973             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
974             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
975             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
976             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
977             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
978             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
979             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
980             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
981             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
982             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
983                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
984             velec            = _mm256_mul_ps(qq00,rinv00);
985             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
986
987             /* LENNARD-JONES DISPERSION/REPULSION */
988
989             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
990             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
991
992             fscal            = _mm256_add_ps(felec,fvdw);
993
994             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_ps(fscal,dx00);
998             ty               = _mm256_mul_ps(fscal,dy00);
999             tz               = _mm256_mul_ps(fscal,dz00);
1000
1001             /* Update vectorial force */
1002             fix0             = _mm256_add_ps(fix0,tx);
1003             fiy0             = _mm256_add_ps(fiy0,ty);
1004             fiz0             = _mm256_add_ps(fiz0,tz);
1005
1006             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1007             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1008             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1009             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1010             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1011             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1012             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1013             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1014             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1015
1016             /* Inner loop uses 64 flops */
1017         }
1018
1019         /* End of innermost loop */
1020
1021         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1022                                                  f+i_coord_offset,fshift+i_shift_offset);
1023
1024         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1025         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1026
1027         /* Increment number of inner iterations */
1028         inneriter                  += j_index_end - j_index_start;
1029
1030         /* Outer loop uses 7 flops */
1031     }
1032
1033     /* Increment number of outer iterations */
1034     outeriter        += nri;
1035
1036     /* Update outer/inner flops */
1037
1038     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
1039 }