made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          gbitab;
80     __m128i          gbitab_lo,gbitab_hi;
81     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
82     __m256           minushalf = _mm256_set1_ps(-0.5);
83     real             *invsqrta,*dvda,*gbtab;
84     int              nvdwtype;
85     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
89     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
90     __m256i          vfitab;
91     __m128i          vfitab_lo,vfitab_hi;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
118
119     invsqrta         = fr->invsqrta;
120     dvda             = fr->dvda;
121     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
122     gbtab            = fr->gbtab.data;
123     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131     j_coord_offsetE = 0;
132     j_coord_offsetF = 0;
133     j_coord_offsetG = 0;
134     j_coord_offsetH = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm256_setzero_ps();
162         fiy0             = _mm256_setzero_ps();
163         fiz0             = _mm256_setzero_ps();
164
165         /* Load parameters for i particles */
166         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
167         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
168         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_ps();
172         vgbsum           = _mm256_setzero_ps();
173         vvdwsum          = _mm256_setzero_ps();
174         dvdasum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0,
218                                                                  charge+jnrE+0,charge+jnrF+0,
219                                                                  charge+jnrG+0,charge+jnrH+0);
220             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
221                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
222                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
223                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228             vdwjidx0E        = 2*vdwtype[jnrE+0];
229             vdwjidx0F        = 2*vdwtype[jnrF+0];
230             vdwjidx0G        = 2*vdwtype[jnrG+0];
231             vdwjidx0H        = 2*vdwtype[jnrH+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm256_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm256_mul_ps(iq0,jq0);
241             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
242                                             vdwioffsetptr0+vdwjidx0B,
243                                             vdwioffsetptr0+vdwjidx0C,
244                                             vdwioffsetptr0+vdwjidx0D,
245                                             vdwioffsetptr0+vdwjidx0E,
246                                             vdwioffsetptr0+vdwjidx0F,
247                                             vdwioffsetptr0+vdwjidx0G,
248                                             vdwioffsetptr0+vdwjidx0H,
249                                             &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm256_mul_ps(r00,vftabscale);
253             vfitab           = _mm256_cvttps_epi32(rt);
254             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
255             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
256             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
257             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
258             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
259             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
260
261             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
262             isaprod          = _mm256_mul_ps(isai0,isaj0);
263             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
264             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
265
266             /* Calculate generalized born table index - this is a separate table from the normal one,
267              * but we use the same procedure by multiplying r with scale and truncating to integer.
268              */
269             rt               = _mm256_mul_ps(r00,gbscale);
270             gbitab           = _mm256_cvttps_epi32(rt);
271             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
272             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
273             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
274             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
275             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
276             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
277             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
278                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
279             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
280                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
281             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
282                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
283             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
284                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
285             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
286             Heps             = _mm256_mul_ps(gbeps,H);
287             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
288             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
289             vgb              = _mm256_mul_ps(gbqqfactor,VV);
290
291             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
292             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
293             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
294             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
295             fjptrA           = dvda+jnrA;
296             fjptrB           = dvda+jnrB;
297             fjptrC           = dvda+jnrC;
298             fjptrD           = dvda+jnrD;
299             fjptrE           = dvda+jnrE;
300             fjptrF           = dvda+jnrF;
301             fjptrG           = dvda+jnrG;
302             fjptrH           = dvda+jnrH;
303             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
304                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
305             velec            = _mm256_mul_ps(qq00,rinv00);
306             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
307
308             /* CUBIC SPLINE TABLE DISPERSION */
309             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
311             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
313             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
314                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
315             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
316                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
317             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
318             Heps             = _mm256_mul_ps(vfeps,H);
319             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
320             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
321             vvdw6            = _mm256_mul_ps(c6_00,VV);
322             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
323             fvdw6            = _mm256_mul_ps(c6_00,FF);
324
325             /* CUBIC SPLINE TABLE REPULSION */
326             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
327             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
328             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
330             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
332             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
334             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
335                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
336             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
337             Heps             = _mm256_mul_ps(vfeps,H);
338             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
339             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
340             vvdw12           = _mm256_mul_ps(c12_00,VV);
341             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
342             fvdw12           = _mm256_mul_ps(c12_00,FF);
343             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
344             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_ps(velecsum,velec);
348             vgbsum           = _mm256_add_ps(vgbsum,vgb);
349             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
350
351             fscal            = _mm256_add_ps(felec,fvdw);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_ps(fscal,dx00);
355             ty               = _mm256_mul_ps(fscal,dy00);
356             tz               = _mm256_mul_ps(fscal,dz00);
357
358             /* Update vectorial force */
359             fix0             = _mm256_add_ps(fix0,tx);
360             fiy0             = _mm256_add_ps(fiy0,ty);
361             fiz0             = _mm256_add_ps(fiz0,tz);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367             fjptrE             = f+j_coord_offsetE;
368             fjptrF             = f+j_coord_offsetF;
369             fjptrG             = f+j_coord_offsetG;
370             fjptrH             = f+j_coord_offsetH;
371             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
372
373             /* Inner loop uses 91 flops */
374         }
375
376         if(jidx<j_index_end)
377         {
378
379             /* Get j neighbor index, and coordinate index */
380             jnrlistA         = jjnr[jidx];
381             jnrlistB         = jjnr[jidx+1];
382             jnrlistC         = jjnr[jidx+2];
383             jnrlistD         = jjnr[jidx+3];
384             jnrlistE         = jjnr[jidx+4];
385             jnrlistF         = jjnr[jidx+5];
386             jnrlistG         = jjnr[jidx+6];
387             jnrlistH         = jjnr[jidx+7];
388             /* Sign of each element will be negative for non-real atoms.
389              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
390              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
391              */
392             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
393                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
394                                             
395             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
396             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
397             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
398             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
399             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
400             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
401             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
402             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
403             j_coord_offsetA  = DIM*jnrA;
404             j_coord_offsetB  = DIM*jnrB;
405             j_coord_offsetC  = DIM*jnrC;
406             j_coord_offsetD  = DIM*jnrD;
407             j_coord_offsetE  = DIM*jnrE;
408             j_coord_offsetF  = DIM*jnrF;
409             j_coord_offsetG  = DIM*jnrG;
410             j_coord_offsetH  = DIM*jnrH;
411
412             /* load j atom coordinates */
413             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
414                                                  x+j_coord_offsetC,x+j_coord_offsetD,
415                                                  x+j_coord_offsetE,x+j_coord_offsetF,
416                                                  x+j_coord_offsetG,x+j_coord_offsetH,
417                                                  &jx0,&jy0,&jz0);
418
419             /* Calculate displacement vector */
420             dx00             = _mm256_sub_ps(ix0,jx0);
421             dy00             = _mm256_sub_ps(iy0,jy0);
422             dz00             = _mm256_sub_ps(iz0,jz0);
423
424             /* Calculate squared distance and things based on it */
425             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
426
427             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
428
429             /* Load parameters for j particles */
430             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
431                                                                  charge+jnrC+0,charge+jnrD+0,
432                                                                  charge+jnrE+0,charge+jnrF+0,
433                                                                  charge+jnrG+0,charge+jnrH+0);
434             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
435                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
436                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
437                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439             vdwjidx0B        = 2*vdwtype[jnrB+0];
440             vdwjidx0C        = 2*vdwtype[jnrC+0];
441             vdwjidx0D        = 2*vdwtype[jnrD+0];
442             vdwjidx0E        = 2*vdwtype[jnrE+0];
443             vdwjidx0F        = 2*vdwtype[jnrF+0];
444             vdwjidx0G        = 2*vdwtype[jnrG+0];
445             vdwjidx0H        = 2*vdwtype[jnrH+0];
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r00              = _mm256_mul_ps(rsq00,rinv00);
452             r00              = _mm256_andnot_ps(dummy_mask,r00);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq00             = _mm256_mul_ps(iq0,jq0);
456             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
457                                             vdwioffsetptr0+vdwjidx0B,
458                                             vdwioffsetptr0+vdwjidx0C,
459                                             vdwioffsetptr0+vdwjidx0D,
460                                             vdwioffsetptr0+vdwjidx0E,
461                                             vdwioffsetptr0+vdwjidx0F,
462                                             vdwioffsetptr0+vdwjidx0G,
463                                             vdwioffsetptr0+vdwjidx0H,
464                                             &c6_00,&c12_00);
465
466             /* Calculate table index by multiplying r with table scale and truncate to integer */
467             rt               = _mm256_mul_ps(r00,vftabscale);
468             vfitab           = _mm256_cvttps_epi32(rt);
469             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
470             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
471             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
472             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
473             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
474             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
475
476             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
477             isaprod          = _mm256_mul_ps(isai0,isaj0);
478             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
479             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
480
481             /* Calculate generalized born table index - this is a separate table from the normal one,
482              * but we use the same procedure by multiplying r with scale and truncating to integer.
483              */
484             rt               = _mm256_mul_ps(r00,gbscale);
485             gbitab           = _mm256_cvttps_epi32(rt);
486             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
487             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
488             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
489             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
490             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
491             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
492             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
493                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
494             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
495                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
496             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
497                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
498             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
499                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
500             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
501             Heps             = _mm256_mul_ps(gbeps,H);
502             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
503             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
504             vgb              = _mm256_mul_ps(gbqqfactor,VV);
505
506             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
507             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
508             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
509             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
510             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
511             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
512             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
513             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
514             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
515             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
516             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
517             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
518             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
519             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
520                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
521             velec            = _mm256_mul_ps(qq00,rinv00);
522             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
523
524             /* CUBIC SPLINE TABLE DISPERSION */
525             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
526                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
527             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
528                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
529             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
530                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
531             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
532                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
533             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
534             Heps             = _mm256_mul_ps(vfeps,H);
535             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
536             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
537             vvdw6            = _mm256_mul_ps(c6_00,VV);
538             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
539             fvdw6            = _mm256_mul_ps(c6_00,FF);
540
541             /* CUBIC SPLINE TABLE REPULSION */
542             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
543             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
544             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
545                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
546             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
547                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
548             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
549                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
550             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
551                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
552             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
553             Heps             = _mm256_mul_ps(vfeps,H);
554             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
555             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
556             vvdw12           = _mm256_mul_ps(c12_00,VV);
557             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
558             fvdw12           = _mm256_mul_ps(c12_00,FF);
559             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
560             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm256_andnot_ps(dummy_mask,velec);
564             velecsum         = _mm256_add_ps(velecsum,velec);
565             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
566             vgbsum           = _mm256_add_ps(vgbsum,vgb);
567             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
568             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
569
570             fscal            = _mm256_add_ps(felec,fvdw);
571
572             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm256_mul_ps(fscal,dx00);
576             ty               = _mm256_mul_ps(fscal,dy00);
577             tz               = _mm256_mul_ps(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm256_add_ps(fix0,tx);
581             fiy0             = _mm256_add_ps(fiy0,ty);
582             fiz0             = _mm256_add_ps(fiz0,tz);
583
584             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
585             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
586             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
587             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
588             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
589             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
590             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
591             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
592             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
593
594             /* Inner loop uses 92 flops */
595         }
596
597         /* End of innermost loop */
598
599         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
600                                                  f+i_coord_offset,fshift+i_shift_offset);
601
602         ggid                        = gid[iidx];
603         /* Update potential energies */
604         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
605         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
606         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
607         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
608         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
609
610         /* Increment number of inner iterations */
611         inneriter                  += j_index_end - j_index_start;
612
613         /* Outer loop uses 10 flops */
614     }
615
616     /* Increment number of outer iterations */
617     outeriter        += nri;
618
619     /* Update outer/inner flops */
620
621     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
622 }
623 /*
624  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
625  * Electrostatics interaction: GeneralizedBorn
626  * VdW interaction:            CubicSplineTable
627  * Geometry:                   Particle-Particle
628  * Calculate force/pot:        Force
629  */
630 void
631 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_single
632                     (t_nblist * gmx_restrict                nlist,
633                      rvec * gmx_restrict                    xx,
634                      rvec * gmx_restrict                    ff,
635                      t_forcerec * gmx_restrict              fr,
636                      t_mdatoms * gmx_restrict               mdatoms,
637                      nb_kernel_data_t * gmx_restrict        kernel_data,
638                      t_nrnb * gmx_restrict                  nrnb)
639 {
640     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
641      * just 0 for non-waters.
642      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
643      * jnr indices corresponding to data put in the four positions in the SIMD register.
644      */
645     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
646     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
647     int              jnrA,jnrB,jnrC,jnrD;
648     int              jnrE,jnrF,jnrG,jnrH;
649     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
650     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
651     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
652     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
653     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
654     real             rcutoff_scalar;
655     real             *shiftvec,*fshift,*x,*f;
656     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
657     real             scratch[4*DIM];
658     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
659     real *           vdwioffsetptr0;
660     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
661     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
662     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
663     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
664     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
665     real             *charge;
666     __m256i          gbitab;
667     __m128i          gbitab_lo,gbitab_hi;
668     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
669     __m256           minushalf = _mm256_set1_ps(-0.5);
670     real             *invsqrta,*dvda,*gbtab;
671     int              nvdwtype;
672     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
673     int              *vdwtype;
674     real             *vdwparam;
675     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
676     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
677     __m256i          vfitab;
678     __m128i          vfitab_lo,vfitab_hi;
679     __m128i          ifour       = _mm_set1_epi32(4);
680     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
681     real             *vftab;
682     __m256           dummy_mask,cutoff_mask;
683     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
684     __m256           one     = _mm256_set1_ps(1.0);
685     __m256           two     = _mm256_set1_ps(2.0);
686     x                = xx[0];
687     f                = ff[0];
688
689     nri              = nlist->nri;
690     iinr             = nlist->iinr;
691     jindex           = nlist->jindex;
692     jjnr             = nlist->jjnr;
693     shiftidx         = nlist->shift;
694     gid              = nlist->gid;
695     shiftvec         = fr->shift_vec[0];
696     fshift           = fr->fshift[0];
697     facel            = _mm256_set1_ps(fr->epsfac);
698     charge           = mdatoms->chargeA;
699     nvdwtype         = fr->ntype;
700     vdwparam         = fr->nbfp;
701     vdwtype          = mdatoms->typeA;
702
703     vftab            = kernel_data->table_vdw->data;
704     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
705
706     invsqrta         = fr->invsqrta;
707     dvda             = fr->dvda;
708     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
709     gbtab            = fr->gbtab.data;
710     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
711
712     /* Avoid stupid compiler warnings */
713     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
714     j_coord_offsetA = 0;
715     j_coord_offsetB = 0;
716     j_coord_offsetC = 0;
717     j_coord_offsetD = 0;
718     j_coord_offsetE = 0;
719     j_coord_offsetF = 0;
720     j_coord_offsetG = 0;
721     j_coord_offsetH = 0;
722
723     outeriter        = 0;
724     inneriter        = 0;
725
726     for(iidx=0;iidx<4*DIM;iidx++)
727     {
728         scratch[iidx] = 0.0;
729     }
730
731     /* Start outer loop over neighborlists */
732     for(iidx=0; iidx<nri; iidx++)
733     {
734         /* Load shift vector for this list */
735         i_shift_offset   = DIM*shiftidx[iidx];
736
737         /* Load limits for loop over neighbors */
738         j_index_start    = jindex[iidx];
739         j_index_end      = jindex[iidx+1];
740
741         /* Get outer coordinate index */
742         inr              = iinr[iidx];
743         i_coord_offset   = DIM*inr;
744
745         /* Load i particle coords and add shift vector */
746         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
747
748         fix0             = _mm256_setzero_ps();
749         fiy0             = _mm256_setzero_ps();
750         fiz0             = _mm256_setzero_ps();
751
752         /* Load parameters for i particles */
753         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
754         isai0            = _mm256_set1_ps(invsqrta[inr+0]);
755         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
756
757         dvdasum          = _mm256_setzero_ps();
758
759         /* Start inner kernel loop */
760         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
761         {
762
763             /* Get j neighbor index, and coordinate index */
764             jnrA             = jjnr[jidx];
765             jnrB             = jjnr[jidx+1];
766             jnrC             = jjnr[jidx+2];
767             jnrD             = jjnr[jidx+3];
768             jnrE             = jjnr[jidx+4];
769             jnrF             = jjnr[jidx+5];
770             jnrG             = jjnr[jidx+6];
771             jnrH             = jjnr[jidx+7];
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774             j_coord_offsetC  = DIM*jnrC;
775             j_coord_offsetD  = DIM*jnrD;
776             j_coord_offsetE  = DIM*jnrE;
777             j_coord_offsetF  = DIM*jnrF;
778             j_coord_offsetG  = DIM*jnrG;
779             j_coord_offsetH  = DIM*jnrH;
780
781             /* load j atom coordinates */
782             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783                                                  x+j_coord_offsetC,x+j_coord_offsetD,
784                                                  x+j_coord_offsetE,x+j_coord_offsetF,
785                                                  x+j_coord_offsetG,x+j_coord_offsetH,
786                                                  &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm256_sub_ps(ix0,jx0);
790             dy00             = _mm256_sub_ps(iy0,jy0);
791             dz00             = _mm256_sub_ps(iz0,jz0);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
795
796             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
797
798             /* Load parameters for j particles */
799             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
800                                                                  charge+jnrC+0,charge+jnrD+0,
801                                                                  charge+jnrE+0,charge+jnrF+0,
802                                                                  charge+jnrG+0,charge+jnrH+0);
803             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
804                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
805                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
806                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
807             vdwjidx0A        = 2*vdwtype[jnrA+0];
808             vdwjidx0B        = 2*vdwtype[jnrB+0];
809             vdwjidx0C        = 2*vdwtype[jnrC+0];
810             vdwjidx0D        = 2*vdwtype[jnrD+0];
811             vdwjidx0E        = 2*vdwtype[jnrE+0];
812             vdwjidx0F        = 2*vdwtype[jnrF+0];
813             vdwjidx0G        = 2*vdwtype[jnrG+0];
814             vdwjidx0H        = 2*vdwtype[jnrH+0];
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r00              = _mm256_mul_ps(rsq00,rinv00);
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq00             = _mm256_mul_ps(iq0,jq0);
824             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
825                                             vdwioffsetptr0+vdwjidx0B,
826                                             vdwioffsetptr0+vdwjidx0C,
827                                             vdwioffsetptr0+vdwjidx0D,
828                                             vdwioffsetptr0+vdwjidx0E,
829                                             vdwioffsetptr0+vdwjidx0F,
830                                             vdwioffsetptr0+vdwjidx0G,
831                                             vdwioffsetptr0+vdwjidx0H,
832                                             &c6_00,&c12_00);
833
834             /* Calculate table index by multiplying r with table scale and truncate to integer */
835             rt               = _mm256_mul_ps(r00,vftabscale);
836             vfitab           = _mm256_cvttps_epi32(rt);
837             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
838             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
839             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
840             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
841             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
842             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
843
844             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
845             isaprod          = _mm256_mul_ps(isai0,isaj0);
846             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
847             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
848
849             /* Calculate generalized born table index - this is a separate table from the normal one,
850              * but we use the same procedure by multiplying r with scale and truncating to integer.
851              */
852             rt               = _mm256_mul_ps(r00,gbscale);
853             gbitab           = _mm256_cvttps_epi32(rt);
854             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
855             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
856             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
857             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
858             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
859             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
860             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
861                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
862             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
863                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
864             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
865                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
866             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
867                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
868             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
869             Heps             = _mm256_mul_ps(gbeps,H);
870             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
871             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
872             vgb              = _mm256_mul_ps(gbqqfactor,VV);
873
874             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
875             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
876             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
877             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
878             fjptrA           = dvda+jnrA;
879             fjptrB           = dvda+jnrB;
880             fjptrC           = dvda+jnrC;
881             fjptrD           = dvda+jnrD;
882             fjptrE           = dvda+jnrE;
883             fjptrF           = dvda+jnrF;
884             fjptrG           = dvda+jnrG;
885             fjptrH           = dvda+jnrH;
886             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
887                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
888             velec            = _mm256_mul_ps(qq00,rinv00);
889             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
890
891             /* CUBIC SPLINE TABLE DISPERSION */
892             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
893                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
894             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
895                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
896             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
897                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
898             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
899                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
900             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
901             Heps             = _mm256_mul_ps(vfeps,H);
902             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
903             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
904             fvdw6            = _mm256_mul_ps(c6_00,FF);
905
906             /* CUBIC SPLINE TABLE REPULSION */
907             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
908             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
909             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
910                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
911             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
912                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
913             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
914                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
915             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
916                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
917             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
918             Heps             = _mm256_mul_ps(vfeps,H);
919             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
920             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
921             fvdw12           = _mm256_mul_ps(c12_00,FF);
922             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
923
924             fscal            = _mm256_add_ps(felec,fvdw);
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm256_mul_ps(fscal,dx00);
928             ty               = _mm256_mul_ps(fscal,dy00);
929             tz               = _mm256_mul_ps(fscal,dz00);
930
931             /* Update vectorial force */
932             fix0             = _mm256_add_ps(fix0,tx);
933             fiy0             = _mm256_add_ps(fiy0,ty);
934             fiz0             = _mm256_add_ps(fiz0,tz);
935
936             fjptrA             = f+j_coord_offsetA;
937             fjptrB             = f+j_coord_offsetB;
938             fjptrC             = f+j_coord_offsetC;
939             fjptrD             = f+j_coord_offsetD;
940             fjptrE             = f+j_coord_offsetE;
941             fjptrF             = f+j_coord_offsetF;
942             fjptrG             = f+j_coord_offsetG;
943             fjptrH             = f+j_coord_offsetH;
944             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
945
946             /* Inner loop uses 81 flops */
947         }
948
949         if(jidx<j_index_end)
950         {
951
952             /* Get j neighbor index, and coordinate index */
953             jnrlistA         = jjnr[jidx];
954             jnrlistB         = jjnr[jidx+1];
955             jnrlistC         = jjnr[jidx+2];
956             jnrlistD         = jjnr[jidx+3];
957             jnrlistE         = jjnr[jidx+4];
958             jnrlistF         = jjnr[jidx+5];
959             jnrlistG         = jjnr[jidx+6];
960             jnrlistH         = jjnr[jidx+7];
961             /* Sign of each element will be negative for non-real atoms.
962              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
963              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
964              */
965             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
966                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
967                                             
968             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
969             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
970             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
971             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
972             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
973             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
974             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
975             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
976             j_coord_offsetA  = DIM*jnrA;
977             j_coord_offsetB  = DIM*jnrB;
978             j_coord_offsetC  = DIM*jnrC;
979             j_coord_offsetD  = DIM*jnrD;
980             j_coord_offsetE  = DIM*jnrE;
981             j_coord_offsetF  = DIM*jnrF;
982             j_coord_offsetG  = DIM*jnrG;
983             j_coord_offsetH  = DIM*jnrH;
984
985             /* load j atom coordinates */
986             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
987                                                  x+j_coord_offsetC,x+j_coord_offsetD,
988                                                  x+j_coord_offsetE,x+j_coord_offsetF,
989                                                  x+j_coord_offsetG,x+j_coord_offsetH,
990                                                  &jx0,&jy0,&jz0);
991
992             /* Calculate displacement vector */
993             dx00             = _mm256_sub_ps(ix0,jx0);
994             dy00             = _mm256_sub_ps(iy0,jy0);
995             dz00             = _mm256_sub_ps(iz0,jz0);
996
997             /* Calculate squared distance and things based on it */
998             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
999
1000             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1001
1002             /* Load parameters for j particles */
1003             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1004                                                                  charge+jnrC+0,charge+jnrD+0,
1005                                                                  charge+jnrE+0,charge+jnrF+0,
1006                                                                  charge+jnrG+0,charge+jnrH+0);
1007             isaj0            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
1008                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0,
1009                                                                  invsqrta+jnrE+0,invsqrta+jnrF+0,
1010                                                                  invsqrta+jnrG+0,invsqrta+jnrH+0);
1011             vdwjidx0A        = 2*vdwtype[jnrA+0];
1012             vdwjidx0B        = 2*vdwtype[jnrB+0];
1013             vdwjidx0C        = 2*vdwtype[jnrC+0];
1014             vdwjidx0D        = 2*vdwtype[jnrD+0];
1015             vdwjidx0E        = 2*vdwtype[jnrE+0];
1016             vdwjidx0F        = 2*vdwtype[jnrF+0];
1017             vdwjidx0G        = 2*vdwtype[jnrG+0];
1018             vdwjidx0H        = 2*vdwtype[jnrH+0];
1019
1020             /**************************
1021              * CALCULATE INTERACTIONS *
1022              **************************/
1023
1024             r00              = _mm256_mul_ps(rsq00,rinv00);
1025             r00              = _mm256_andnot_ps(dummy_mask,r00);
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             qq00             = _mm256_mul_ps(iq0,jq0);
1029             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1030                                             vdwioffsetptr0+vdwjidx0B,
1031                                             vdwioffsetptr0+vdwjidx0C,
1032                                             vdwioffsetptr0+vdwjidx0D,
1033                                             vdwioffsetptr0+vdwjidx0E,
1034                                             vdwioffsetptr0+vdwjidx0F,
1035                                             vdwioffsetptr0+vdwjidx0G,
1036                                             vdwioffsetptr0+vdwjidx0H,
1037                                             &c6_00,&c12_00);
1038
1039             /* Calculate table index by multiplying r with table scale and truncate to integer */
1040             rt               = _mm256_mul_ps(r00,vftabscale);
1041             vfitab           = _mm256_cvttps_epi32(rt);
1042             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1043             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1044             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1045             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1046             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1047             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1048
1049             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
1050             isaprod          = _mm256_mul_ps(isai0,isaj0);
1051             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq00,_mm256_mul_ps(isaprod,gbinvepsdiff)));
1052             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
1053
1054             /* Calculate generalized born table index - this is a separate table from the normal one,
1055              * but we use the same procedure by multiplying r with scale and truncating to integer.
1056              */
1057             rt               = _mm256_mul_ps(r00,gbscale);
1058             gbitab           = _mm256_cvttps_epi32(rt);
1059             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1060             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1061             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
1062             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
1063             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
1064             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
1065             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
1066                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
1067             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
1068                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
1069             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
1070                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
1071             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
1072                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
1073             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1074             Heps             = _mm256_mul_ps(gbeps,H);
1075             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
1076             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
1077             vgb              = _mm256_mul_ps(gbqqfactor,VV);
1078
1079             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1080             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
1081             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r00)));
1082             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
1083             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
1084             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
1085             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
1086             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
1087             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
1088             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
1089             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
1090             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
1091             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
1092             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1093                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj0,isaj0)));
1094             velec            = _mm256_mul_ps(qq00,rinv00);
1095             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv00),fgb),rinv00);
1096
1097             /* CUBIC SPLINE TABLE DISPERSION */
1098             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1099                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1100             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1101                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1102             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1103                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1104             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1105                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1106             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1107             Heps             = _mm256_mul_ps(vfeps,H);
1108             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1109             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1110             fvdw6            = _mm256_mul_ps(c6_00,FF);
1111
1112             /* CUBIC SPLINE TABLE REPULSION */
1113             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1114             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1115             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1116                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1117             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1119             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1120                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1121             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1122                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1123             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1124             Heps             = _mm256_mul_ps(vfeps,H);
1125             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1126             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1127             fvdw12           = _mm256_mul_ps(c12_00,FF);
1128             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1129
1130             fscal            = _mm256_add_ps(felec,fvdw);
1131
1132             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1133
1134             /* Calculate temporary vectorial force */
1135             tx               = _mm256_mul_ps(fscal,dx00);
1136             ty               = _mm256_mul_ps(fscal,dy00);
1137             tz               = _mm256_mul_ps(fscal,dz00);
1138
1139             /* Update vectorial force */
1140             fix0             = _mm256_add_ps(fix0,tx);
1141             fiy0             = _mm256_add_ps(fiy0,ty);
1142             fiz0             = _mm256_add_ps(fiz0,tz);
1143
1144             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1145             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1146             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1147             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1148             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1149             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1150             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1151             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1152             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1153
1154             /* Inner loop uses 82 flops */
1155         }
1156
1157         /* End of innermost loop */
1158
1159         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1160                                                  f+i_coord_offset,fshift+i_shift_offset);
1161
1162         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai0,isai0));
1163         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1164
1165         /* Increment number of inner iterations */
1166         inneriter                  += j_index_end - j_index_start;
1167
1168         /* Outer loop uses 7 flops */
1169     }
1170
1171     /* Increment number of outer iterations */
1172     outeriter        += nri;
1173
1174     /* Update outer/inner flops */
1175
1176     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
1177 }